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The paper reports on 3D numerical simulations of gravity wave trains on
finite depth subject to the Benjamin-Feir instability. The study includes
values of the dispersive parameter, k0h, less than the critical value 1.363.
This investigation is aimed at showing that rogue waves can be generated by
modulational instability in finite depth, namely when k0h < 1.363.
Before acceptance of the paper, I have important and minor comments that
I would like the authors take into account.

(i) What are the values, in the computational domain, of the components
of the wave vectors of the carrier wave (k0 = 5?) and sidebands (∆Kx =
1, ∆Ky = 0.7 or 0.77?). The values of these parameters are not given explic-
itly. What is the number of modes in the two directions? As I understand
the values of ∆Kx and ∆Ky are unchanged while k0h and a0k0 vary and
so it is not always the most unstable or almost unstable modes which are
selected. For instance, the linear stability analysis of McLean for k0h = 1
and a0k0 = 0.10 shows that the most unstable class I instability corresponds
to ∆Kx/k0 = 0.28 and ∆Ky/k0 = 0.19, i.e. ∆Ky/∆Kx = 0.67 instead of
0.77. For infinite depth, ∆Kx/k0 = 0.18 which is close to the value used
in the paper. To conclude section 3 does present clearly the choice of the
parameters discussed above.

(ii) How is computed the nonlinear basic wave?

(iii) In 3D (or 2D propagation), I believe that the frequency downshifting
phenomenon observed in tanks or in numerical simulations without dissipa-
tion, is due to the confined aspect in the transverse direction. If l is the
transverse dimension of the tank, there is a forced selection of modes whose
transverse wavenumbers are nπ/l with n = 1, 2.... The same mechanism may
work in numerical tanks. In other words oblique perturbation is selected at
the expense of the collinear perturbation. Furthermore, I suspect a numeri-
cal artefact when I see in Fig. 3c that for infinite depth the dominant mode
becomes an oblique one. From my point of view the frequency observed by
Trulsen et al (1999) in confined geometry does not prove that it prevails in
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open natural conditions.

(iv) Results presented in Fig. 9 are biased because the instability of higher
order are not introduced in the initial conditions or excited at the maximum
of modulation. In fact, there is a coupling between class I instability and
class II instability that leads to breaking wave in infinite and finite depth as
well. A deeper discussion is needed in the paper about this coupling. I do
not agree with the last paragraph of section 4 (pages 5246-5247). In deep
water, it is shown experimentally (see Su & Green, 1985) and numerically
(see Fructus et al, 2005) that there is a coupling between class I and class
II instabilities that results in 3D breaking waves of wave trains with initial
steepness as low as 0.12. When a0k0 is less than 0.12, class I instability sta-
bilizes class II instability. A diagram can be found in Fructus et al showing
predominance of class I instabilities versus class II instabilities for k0h = ∞

and k0h = 1 as a function of the wave steepness. These results were confirmed
and supplemented by Kristiansen et al (2005) in finite depth. In addition, it
is shown by Francius & Kharif (2006) that higher-order instabilities become
more important in shallower water.
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