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Abstract 13 

Skilful forecasts of high streamflows a month or more in advance are likely to be of 14 

considerable benefit to emergency services and the broader community. This is particularly 15 

true for mesoscale catchments (<2000 km
2
) with little or no seasonal snow melt, where real-16 

time warning systems are only able to give short notice of impending floods. In this study, we 17 

generate forecasts of high streamflows for the coming 1-month and coming 3-month periods 18 

using large-scale ocean/atmosphere climate indices and catchment wetness as predictors. 19 

Forecasts are generated with a combination of Bayesian joint probability modeling and 20 

Bayesian model averaging. High streamflows are defined as maximum single-day 21 

streamflows and maximum 5-day streamflows that occur during each 1-month or 3-month 22 

forecast period. Skill is clearly evident in the 1-month forecasts of high streamflows. 23 

Surprisingly, in several catchments positive skill is also evident in forecasts of large threshold 24 

events (exceedance probabilities of 25%) over the next month. Little skill is evident in 25 

forecasts of high streamflows for the 3-month period. We show that including lagged climate 26 

indices as predictors adds little skill to the forecasts, and thus catchment wetness is by far the 27 

most important predictor. Accordingly, we recommend that forecasts may be improved by 28 

using accurate estimates of catchment wetness.  29 

 30 
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1 Introduction 33 

Skilful forecasts of high streamflows a month or more in advance have the potential to 34 

improve the management of floods. Flood warnings in Australia are presently derived from 35 

event-based forecast models that use real-time streamflow and rainfall observations to 36 

forecast floods with typical lead-times from hours to a few days, depending on flood travel 37 

time (Elliott et al., 2005). Real-time forecasts offer precise estimates of flood stage, but are 38 

only available around the time of the flood itself. This leaves emergency services a narrow 39 

window to prepare themselves and the community to mitigate flood impacts, particularly in 40 

mesoscale catchments that have little or no seasonal snowmelt. In these catchments flood 41 

warning systems can only give warning of floods from hours to one or two days in advance of 42 

an event. Ill-preparedness for floods can have serious implications. Pfister (2002) identified 43 

poor community preparedness to evacuate as the major cause of citizens’ slow (and non-44 

existent) responses to a flood evacuation order issued by emergency services. Australian 45 

emergency services rely heavily on volunteers for disaster response (Baxter-Tomkins and 46 

Wallace, 2009), and ensuring that sufficient volunteer-labour is available during emergencies 47 

is a challenge for flood-response agencies like the State Emergency Services (SES). Medium 48 

range forecasts (to forecast horizons of 3 months) of high streamflows are needed to enable 49 

both emergency services and the community to be better prepared for floods. 50 

This study is a response to a request from the Australian Bureau of Meteorology to explore 51 

the skill of real-time high streamflow forecasts at medium range forecast horizons. The 52 

Bureau of Meteorology is the lead agency for flood warnings in Australia, and emergency 53 

services are important users of these flood warnings. While medium range forecasts of high 54 

streamflows cannot hope to be as precise as real-time flood models, forewarning of conditions 55 

that could result in large or frequent flooding in the next month or more could allow 56 

emergency services to better plan and prepare for the impacts of floods, for example by 57 
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informing volunteer emergency services personnel of heightened flood risk in the coming 58 

month(s). 59 

Several studies have described teleconnections between Australian runoff variability and 60 

large-scale oceanic and atmospheric climate indices (hereafter, climate indices), particularly 61 

climate indices describing the El Niño Southern Oscillation (ENSO) (Chiew et al., 1998; 62 

Verdon et al., 2004; Schepen et al., 2012a). These teleconnections have been used to produce 63 

forecasts of total seasonal streamflows that are skilful relative to forecasts derived from 64 

streamflow climatologies (Wang et al., 2009; Piechota et al., 1998; Sharma, 2000). Flood risk 65 

in south-east Australia has also been linked to ENSO (Kiem et al., 2003), but despite this no 66 

attempt has yet been made to use such a teleconnection to forecast high streamflows in 67 

Australia. Attempts to forecast high streamflows a month or more in advance are rarely 68 

reported for other continents, and the examples that exist focus on catchments where 69 

snowmelt makes a large contribution to seasonal floods (e.g. Kwon et al., 2009; Lindström 70 

and Olsson, 2011). Seasonal snow-melt is rarely an important feature of Australian rivers, and 71 

accordingly forecasts that rely on indicators of snow-melt have limited application in 72 

Australia. 73 

The aim of this study is to apply a statistical technique, the Bayesian joint probability 74 

modelling approach (BJP), to the problem of forecasting high streamflows in mesoscale 75 

catchments over the coming 1-month and 3-month periods. The BJP was developed to 76 

forecast seasonal total volumes of streamflows (Wang et al., 2009; Wang and Robertson, 77 

2011; Robertson and Wang, 2012) and is now used operationally by the Bureau of 78 

Meteorology to issue forecasts for more than 70 sites across Australia  (forecasts available at 79 

http://www.bom.gov.au/water/ssf/). The BJP produces probabilistic streamflow forecasts that 80 

are more accurate than climatology, and, importantly, it is able to reliably estimate uncertainty 81 

in the streamflow forecasts. Knowledge of the amount of water held in storage in a catchment 82 

http://www.bom.gov.au/water/ssf/
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(in the soil, as ground water, in surface stores, or as snow/ice – collectively, catchment 83 

wetness) often contributes more skill to next-month/next-season forecasts of streamflow than 84 

climate forecasts (Shukla and Lettenmaier, 2011; Li et al., 2009; Koster et al., 2010; 85 

Mahanama et al., 2012). The BJP is able to use multiple predictors to generate forecasts, 86 

meaning forecasts can be constructed from both catchment wetness and predictors of climate. 87 

For example, Wang et al. (2009) used the BJP to pair the initial catchment wetness with the 88 

southern oscillation index (SOI) to forecast seasonal streamflow totals. 89 

A number of sets of predictors can be used to construct different forecast models, and 90 

forecasts can be improved by selecting models with the best predictive power (Robertson and 91 

Wang, 2012) or by weighting models according to predictive power (Wang et al., 2012a). 92 

Wang et al. (2012a) showed that Bayesian model averaging (BMA) outperformed predictor 93 

selection methods for merging rainfall forecast models generated with the BJP. In addition, 94 

predictor selection can lead to artificially inflated estimates of cross-validation skill if the 95 

predictor selection is not included in the cross-validation (DelSole and Shukla, 2009; 96 

Robertson and Wang, 2013), a problem that is not present with the BMA method we use in 97 

this study. 98 

Our study aims to test the ability of the BJP to forecast high streamflows up to three months 99 

in advance. To achieve this, we build a set of forecast models with the BJP by combining an 100 

estimate of initial catchment wetness with a suite of climate indices derived from oceanic and 101 

atmospheric variables. We combine the models with the BMA method described by Wang et 102 

al. (2012a) to maximise predictive power.  103 

We next describe the study sites and give an overview of the forecast models. This is 104 

followed by descriptions of the verification measures we use to demonstrate the reliability and 105 

skill of the forecasts. We present the reliability and skill of these forecasts, and discuss the 106 
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prospects for improving long lead forecasts of high streamflows. We conclude with a 107 

summary of the paper. 108 

2 Data and methods 109 

2.1 Study sites 110 

Forecasts are generated for six catchments in south-east Australia shown in Fig. 1. 111 

Characteristics of the six catchments are summarised in Table 1 and Fig. 2. The catchments 112 

are selected as they have long (>40 year) streamflow records, are free of diversions or 113 

impoundments, and are minimally impacted by human activities. Streamflow data is taken 114 

from the quality controlled Catchment Water Yield Estimation Tool (CWYET) dataset (Vaze 115 

et al., 2011). All the catchments are of a size we describe as mesoscale, with drainage areas 116 

between 1000 km
2
 and 2000 km

2
. The catchments are large enough to minimise the influence 117 

of highly localised storms (e.g. localised convective storms) on the streamflow records. 118 

Conversely, catchments are small enough so that flood travel times extend no more than two 119 

days, making it difficult to get advance warning of floods of more than two days with a 120 

forecasting model that makes use only of observed rainfalls. 121 

The catchments span a range of climate and hydrological conditions. Streamflows in the two 122 

north-eastern catchments, the Orara River (ORB) and the Nowendoc River (NOR), are only 123 

weakly seasonal, with the highest streamflows occurring in February and March (Fig. 2). The 124 

remaining catchments - Abercrombie River (ABH), Murray River (MUR), Mitta Mitta River 125 

(MMH) and Tarwin River (TAW) - have more strongly seasonal streamflow regimes, with 126 

high streamflows in the austral winter/spring, and low streamflows in the austral summer 127 

(Fig. 2). High-elevation areas in the MUR and MMH catchments often receive snowfalls in 128 

the Austral winter. However, even in these two catchments the contribution of seasonal 129 

snowmelt to streamflows is relatively small. 130 
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2.2 Forecast model 131 

2.2.1 Overview 132 

Forecasts are generated on the last day of each month for two periods: the coming month (Jan, 133 

Feb, ..., Dec), and the coming three months (JFM, FMA, ..., DJF). We refer to these as 1-134 

month and 3-month forecast periods.  135 

Fig. 3 gives a schematic overview of how forecasts are generated. Thirteen forecast models 136 

are generated with the BJP method (Fig. 3a) for each forecast period and for each predictand. 137 

Forecasts from these individual models are then merged using BMA (Fig. 3b). We now 138 

describe the components shown in Fig. 3 in detail. 139 

2.2.2 Predictands 140 

While we pursue forecasts of large streamflows in a bid to improve information available for 141 

the management of floods, we employ the term high flows rather than floods in this paper. 142 

This is because we seek to build monthly statistical models in catchments that often have 143 

highly seasonal flow regimes. We define high flows from each month by exceedance 144 

probability, and in months where mean flows are low these ‘high’ flows often do not 145 

constitute what would be considered flood flows in other months. 146 

We investigate two predictands to represent high streamflows: 147 

1. The maximum 1-day streamflow (mm/d) for each forecast period (Max1D). 148 

2. The maximum 5-day aggregated streamflow (mm/d averaged across the 5 days) 149 

calculated for each forecast period (Max5D). 150 

As already noted, neither Max5D nor Max1D is necessarily a large flood. For example, in the 151 

catchments with strongly seasonally delineated streamflows, Max5D streamflows in summer 152 

can be very low compared to Max5D winter streamflows. In low streamflow months, medians 153 
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of both Max1D and Max5D streamflows are sometimes not much larger than average 154 

monthly streamflows (Fig. 2). For this reason, we also evaluate the performance of the 155 

forecasts in terms of probabilities of events exceeding larger thresholds (see Section 2.3.3). 156 

The BJP is able to generate forecasts jointly for multiple predictands. In addition to either 157 

Max1D or Max5D, we also include total rainfall for the forecast period as a predictand (from 158 

the Australian water availability project (AWAP) gridded rainfall dataset; Jones et al., 2009). 159 

We jointly forecast rainfall and streamflow because the influence of lagged climate indices on 160 

streamflow occurs mainly through rainfall (Robertson and Wang, 2012). Statistically, the 161 

correlations between lagged climate indices and rainfall and between rainfall and streamflow 162 

tend to be stronger, and thus easier to capture from data, than the correlation directly between 163 

lagged climate indices and streamflow. By including rainfall as a co-predictand, the statistical 164 

model needs to satisfy three correlations, with the two stronger correlations providing some 165 

guidance on sensible values for the weaker correlation.  166 

2.2.3 Predictors 167 

We use lagged catchment wetness and lagged climate indices as predictors of high 168 

streamflows. We approximate catchment wetness with total streamflow in the previous month 169 

for both 1-month and 3-month forecast periods. Total streamflow can be a somewhat coarse 170 

measure of catchment wetness, and takes no account of differences in catchment wetness 171 

stores (e.g. snow cf. soil moisture). However, using total streamflow as an estimate of 172 

catchment wetness has the virtue of simplicity, and is adequate for this exploratory study. 173 

Eleven lagged climate indices are evaluated as potential predictors in this study, and these are 174 

listed in Table 2. We select these climate indices as they have been linked to rainfall in south-175 

east Australia. The teleconnection between south-east Australian rainfall and ENSO has been 176 

extensively described (e.g. Schepen et al., 2012a; Chiew et al., 1998; Wang et al., 2009) 177 
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including, as already noted, the link between flooding and ENSO (Kiem et al., 2003). We use 178 

five indices to describe ENSO: NINO3, NINO3.4, NINO4, the ENSO Modoki index (EMI) 179 

(Ashok et al., 2007) and the southern oscillation index (SOI) (Troup, 1965). The influence of 180 

Indian Ocean sea surface temperatures has also been linked to rainfall in south-east Australia, 181 

with the teleconnection being most evident in winter months (Verdon and Franks, 2005; 182 

Schepen et al., 2012a; Ashok et al., 2003). We use four Indian Ocean indices as predictors: 183 

the Indian Ocean west pole index (WPI), east pole index (EPI) and dipole mode index (DMI) 184 

(Saji et al., 1999), as well as the Indonesia index (II) (Verdon and Franks, 2005). Finally, 185 

extra-tropical sea surface temperatures and atmospheric features along Australia’s east coast 186 

have been linked to south-east Australian rainfall (Murphy and Timbal, 2008; Risbey et al., 187 

2009; Pook et al., 2006). We use the Tasman Sea index (TSI) (Murphy and Timbal, 2008) and 188 

an index of atmospheric blocking (BI140) (Risbey et al., 2009) to represent extra-tropical 189 

climatic features. The teleconnection between lagged atmospheric climate indices (e.g., the 190 

Antarctic Oscillation index describing the Southern Annular Mode; Schepen et al., 2012a) and 191 

Australian seasonal precipitation is often weak, as they show little persistence in comparison 192 

to SST-derived indices. We note that Schepen et al. (2012a) found no evidence of a 193 

relationship of lagged B140 and TSI with mean rainfall in any season. It is therefore unlikely 194 

that lagged TSI or B140 will contribute skill to high streamflow forecasts, however we have 195 

included them in case they have a relationship with high rainfall events. Atmospheric 196 

blocking, for example, has been correlated with larger rain storms (Pook et al., 2006). 197 

We have not considered using multiple climate indices as joint predictors, which may 198 

describe the effects of interactions between climate indices on high streamflows. Some 199 

studies suggest that these interactions may be important in understanding concurrent 200 

relationships (e.g. Kiem et al., 2003), however results from our previous work demonstrates 201 

that adding a second joint predictor does not result in any improvement in forecast skill of 202 
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seasonal total rainfalls or streamflows when using lagged climate indices (Robertson and 203 

Wang, 2012; Wang et al., 2012a). 204 

Sea surface temperature climate indices are derived from the National Center for Atmospheric 205 

Research (NCAR) Extended Reconstruction of Sea Surface Temperature version 3 (Smith et 206 

al., 2008). B140 is derived from the National Centers for Environmental Prediction (NCEP)–207 

NCAR reanalysis data (Kalnay et al., 1996). SOI is sourced from the Australian Bureau of 208 

Meteorology (BOM).  209 

Mean monthly values of each climate index for the previous month are used for both 1-month 210 

and 3-month forecasts; accordingly we refer to these as lagged climate indices. Schepen et al. 211 

(2012a) showed that teleconnections between rainfall and lagged climate indices are strongest 212 

at short lags, and for this study we investigate only climate indices lagged by one month to 213 

establish forecast models. For example, for a 1-month forecast for June we use catchment 214 

wetness and NINO3 calculated for May as predictors, while for a 3-month forecast for 215 

January-February-March we use predictors calculated for December. 216 

Catchment wetness is combined with each of the 11 climate indices to create 11 forecast 217 

models for each predictand and for each forecast period. In addition, one forecast model is 218 

developed using only catchment wetness as a predictor, and one forecast model is developed 219 

based only on climatology (using no predictors). This gives a total of 13 forecast models for 220 

each predictand and for each forecast period.  221 

While the effect of snow on the two alpine catchments (MUR and MMH) is expected to be 222 

small, we investigated the use of snow accumulation as a predictor for these two snow-223 

affected catchments. Including snow accumulation as a predictor in these two catchments 224 

resulted in no increase in forecast skill and is not presented here.  225 
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2.2.4 Bayesian joint probability modelling 226 

The BJP is used to generate the 13 individual forecast models for each predictand and each 227 

forecast period (Fig. 3a), which we call BJP forecast models. Detailed mathematical 228 

formulations of the BJP are given by Wang et al. (2009), Wang and Robertson (2011) and 229 

Robertson and Wang (2012). In summary, the BJP is implemented as follows: 230 

1. Predictands and predictors are transformed to normalise their distributions and 231 

stabilise their variances. Streamflow and rainfall are transformed with a log-sinh 232 

transform (Wang et al., 2012b), and climate indices are transformed with the Yeo-233 

Johnson transform (Yeo and Johnson, 2000).  234 

2. We assume that the set of transformed predictors and predictands can be described by 235 

a joint probability distribution – in this case a multivariate normal distribution. 236 

3. The parameters of the log-sinh transform, the Yeo-Johnson transform, and the 237 

multivariate normal distribution are inferred jointly. Parameter inference is performed 238 

with Bayesian methods and Markov chain Monte Carlo (MCMC) sampling. Taken 239 

together, the parameters of the log-sinh transform, the Yeo-Johnson transform and the 240 

multivariate normal distribution define the statistical relationship between predictors 241 

and predictands, and allow us to generate forecasts. 242 

Mathematically, if predictors are given by vector y(1) and predictands by vector y(2), the 243 

probabilistic forecast is given by 244 

                                                                             

where M is the model used, and YOBS contains the historical data of both the predictors and the 245 

predictands used for model inference. θ is the vector of parameters for the log-sinh transform, 246 

the Yeo-Johnson transform, and the multivariate normal distribution. 247 
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2.2.5 Bayesian model averaging 248 

Forecasts from the thirteen BJP forecast models are merged with BMA to produce one BJP-249 

BMA forecast for each predictand and for each forecast period (Fig. 3b). The BMA method 250 

we use is described in detail by Wang et al. (2012a). For a set of models Mk, k=1, 2, ..., K, 251 

each model is assigned a weight, wk. The forecasts are then merged by: 252 

                   

 

   

                                                            

We calculate wk by maximizing the posterior distribution of the weights, which is proportional 253 

to: 254 

                     
         

         
       

 

   

 

   

 

   

                                

where α is the concentration parameter, y
t
OBS(1) and y

t
OBS(2) are the predictors and predictands 255 

for events t=1, ...,T, and Y
(t)

OBS is a matrix containing observed values of predictors and 256 

predictands for all the events except event t.          
    is from the symmetric Dirichlet 257 

prior distribution used by Wang et al. (2012a). We use α values greater than 1 to distribute 258 

weights more evenly among models, which helps to stabilise the weights when there is 259 

significant sampling variability. Specifically, α=1+a/K with a=1. The remainder of the right 260 

side of Eq. 3 is the cross-validation likelihood function. By using the cross-validation 261 

likelihood function, we base each model weight on the predictive power of the model, rather 262 

than on the fitting ability of the model. A is maximised with an iterative expectation-263 

maximization (EM) algorithm, as described by Wang et al. (2012a). 264 

2.3 Forecast verification 265 

Forecasts are verified using leave-one-out cross validation. Forecasts for events in year 266 

t=1, 2, ..., n are generated from all available historical data except those at year t. For each 267 
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forecast variable y, this produces a series of forecast cumulative probability distributions 268 

y
t
~F

t
(y

t
). Forecasts are then verified against observations y

t
OBS. 269 

Leave-one-out cross validation ensures that a forecast model is not validated against data used 270 

to build that model. We note that in this approach we use data after the forecast date to build 271 

the forecast model, data which would not be available to build operational real-time forecast 272 

models. The purpose of cross validation is to get an indication of model performance for 273 

future events. For future events, we would use all historical events to establish the model. The 274 

length of record used in model establishment in cross-validation is similar to (more precisely 275 

just short of) the full record length. In this sense, cross-validation gives a good indication of 276 

the skill of a true implementation for the future events. 277 

Verifying the probabilistic forecasts is not straightforward, particularly when the aim is to 278 

forecast rare events. Here we evaluate forecast reliability to demonstrate that the probabilistic 279 

forecasts are neither too confident nor underconfident. We then assess forecast accuracy using 280 

three skill scores. We now describe each of the verification measures in detail. 281 

2.3.1 Forecast reliability 282 

For probabilistic forecasts to be meaningful, we must first demonstrate that the forecast 283 

probability distributions are reliable; that is, the uncertainty in the forecasts is reliably 284 

represented, and thus the forecast distributions are neither too wide (not confident enough) 285 

nor too narrow (overconfident). To achieve this, we present reliability diagrams. A reliability 286 

diagram plots the observed frequency against the forecast probability and shows how well the 287 

predicted probability of an event corresponds to its observed frequency (Wilks, 1995). We 288 

present reliability diagrams calculated from events that are larger than the 50% exceedance 289 

probability threshold of Max1D and Max5D streamflows. 290 
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2.3.2 Overall forecast accuracy: root mean square error in probability  291 

The root mean square error in probability (RMSEP) works on the principle that if forecast and 292 

observed values are of similar exceedance probabilities then the forecast should be rewarded, 293 

even if the magnitudes of observed and forecast values are quite different (Wang and 294 

Robertson, 2011). RMSEP is calculated as follows: 295 

1. We represent the observed historical distribution (climatology), y, in the form of non-296 

exceedance probability, FCLI(y). 297 

2. For events t=1, 2, ..., n, we take the median of the forecast distribution, y
t
MED. 298 

3. RMSEP is then calculated as 299 

       
 

 
           

            
   

 
 

   

 

 
 

                                         

4. We calculate RMSEPREF by substituting the forecast median, y
t
MED, in Eq. 4 with the 300 

climatology median. We then calculate the RMSEP skill score: 301 

        
              

        
                                                        

RMSEP (eq. 4) demonstrates the ability of the model to forecast the rank of a given event, 302 

ranked in relation to historical events (i.e., the ability to forecast an event’s place on a 303 

cumulative distribution function generated from historical data). While this does not 304 

necessarily give an indication of how well the model is able to forecast the magnitude of an 305 

event, the ability to forecast an event’s rank is likely to be very useful to users of the forecast, 306 

who could categorise an event as, for example, ‘likely to exceed the 50 percentile of high 307 

flows’ or similar. SSRMSEP (eq. 5) measures the ability of the forecasts to outperform a naive 308 

climatology forecast.  309 
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In addition, we calculate SSRMSEP with RMSEPREF represented by the BJP forecast generated 310 

with only catchment wetness as a predictor (i.e., no climate information is used to generate 311 

RMSEPREF). This allows us to show the relative contribution of catchment wetness and 312 

climate indices to forecast skill. 313 

2.3.3 Accuracy of forecasts for large threshold events 314 

For a given month, we consider a subset of larger ‘high’ streamflows to assess forecast 315 

performance. These larger streamflows are defined as having exceedance probabilities of 50% 316 

(Q50), 25% (Q25) and 10% (Q10) for observed Max1D and Max5D. (These streamflows 317 

approximately correspond to annual exceedance probabilities (AEP) of 1:2 AEP, 1:4 AEP and 318 

1:10 AEP. To keep the study as simple as possible, we have defined larger events on the basis 319 

of empirical exceedance probabilities rather than fitting an extreme value distribution, so we 320 

continue to refer to large streamflows in terms of exceedance probabilities.) We treat these 321 

large streamflows as thresholds (we term them large threshold events), and measure forecast 322 

skill by comparing the forecast probability of exceeding a large threshold event with the 323 

corresponding observation. Q50, Q25, and Q10 thresholds are shown for 1-Month Max1D and 324 

Max5D streamflows are shown in Fig. 2. 325 

Use of multiple skill scores is recommended to demonstrate robustness in the results (e.g. 326 

Cloke and Pappenberger, 2008). We use two measures of skill to verify forecasts at larger 327 

streamflow thresholds: the Brier Score and the log-likelihood ratio.  328 

Brier Score 329 

The Brier score has been a staple for the verification of probabilistic forecasts since it was 330 

proposed by Brier (1950). We use the Brier score to verify forecasts of larger streamflows in 331 

order that our study can be compared to others. 332 
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Given forecast distributions y
t
 at events t=1, 2, ..., n, and streamflow thresholds QP, with 333 

exceedance probabilities P=50%, 25%, 10%, the forecast is presented as the probability of 334 

exceeding the streamflow threshold: 335 

                                                                                  

We calculate the Brier score as: 336 

   
 

 
                                                                        

 

   

 

where O
t
 takes the value of 1 if the threshold is exceeded, and 0 if it is not exceeded. We 337 

calculate BSREF by substituting F
t
 with a forecast calculated from climatology, F

t
REF. We then 338 

calculate the Brier skill score: 339 

     
        

     
                                                                    

Log-likelihood ratio 340 

The Brier score has been subject to criticism, particularly for producing unintuitive results for 341 

rare (and in our case, large) events when assessing very sharp forecasts (i.e., forecast 342 

probabilities of 100% or 0%) (Jewson, 2008; Benedetti, 2010). We adopt the 343 

recommendations of Benedetti (2010) and Jewson (2008), who both advocate variations on 344 

the likelihood to assess probabilistic forecasts. We term this measurethe log-likelihood ratio 345 

(LLR). 346 

The LLR is based on the likelihood ratio described by Jewson (2008). For all exceedance 347 

forecasts 1-F
t
, let all the cases of t where 1-F

t
 exceeds a streamflow threshold Q be given by 348 

the set A, and all cases of t where the streamflow threshold is not exceeded be given by B. The 349 

log-likelihood for a forecast is calculated by: 350 
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The log-likelihood of the reference forecast, LLREF, is calculated by substituting F
t
REF (again, 351 

based on climatology) for F
t
 in Eq. 9. The LLR is then calculated by: 352 

                                                                                 

The LLR differs from skill scores like RMSEP or the Brier score in that it does not show 353 

proportional improvement over a reference forecast on a normalised scale (often -∞% - 354 

100%), making direct comparisons to other skill scores difficult. However, the LLR is 355 

essentially identical to the natural logarithm of the pseudo Bayes factor (loge(PsBF)) 356 

presented by Robertson and Wang (2012) and Schepen et al. (2012a). Robertson and Wang 357 

(2012) showed that values of the loge(PsBF) up to 2 are indistinguishable from statistical 358 

noise, while there is a 95% chance that the relationship between a forecast model and 359 

observations is true if the loge(PsBF) is greater than 4. We adopt the qualitative categories for 360 

the LLR presented by Schepen et al. (2012a) for our study: little evidence of skill where 361 

LLR<2; positive evidence of skill where 2<LLR<4; strong evidence of skill where 4<LLR<6; 362 

very strong evidence of skill where LLR>6.  363 

3 Results 364 

3.1 Suitability of BJP for modelling high streamflows 365 

The log-sinh transform used to normalise streamflows has been shown to be well-suited to 366 

hydrological data in general (Wang et al., 2012b; Del Giudice et al., 2013), but its ability to 367 

adequately describe high streamflows needs to be established. In Fig. 4 we show the log-sinh 368 

transformed normal distributions fitted to observed Max1D values for two example months, 369 

February and September (other months give very similar results). These two months represent 370 

low and high streamflow regimes: February is a month of low mean streamflows in MMH, 371 

MUR, ABH and TAW, and a month of high mean streamflows in ORB and NOR, while 372 

September is a month of high mean streamflows in MMH, MUR, ABH and TAW and a 373 
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month of low mean streamflows in ORB and NOR. In general, the assumed log-sinh 374 

transformed normal distributions appear to adequately represent the marginal distribution of 375 

observations. Almost all observations fall within the confidence bounds of the fitted 376 

distributions, including large Max1D events. The log-sinh transformed normal distributions 377 

represent observed events well even in catchments with highly variable streamflows, such as 378 

ORB and ABH. In summary, the log-sinh transform is flexible enough to normalise the events 379 

we are attempting to forecast. 380 

3.2 Forecast reliability 381 

In general, forecast uncertainty is reliably represented by the forecasts after cross-validation. 382 

Fig. 5 shows reliability diagrams for the NOR and MUR catchments for Max1D 1-Month 383 

forecasts (the other catchments, not shown, produce similar results). In these diagrams, 384 

forecast probabilities are divided into five bins (see inserts). The [0.05, 0.95] uncertainty 385 

interval of the observed relative frequency is calculated through bootstrap resampling of the 386 

forecasts and observed streamflows. For the majority of forecast probability ranges, the 387 

uncertainty interval of the observed relative frequency intersects the theoretical 1:1 line, 388 

indicating that the forecasts of high streamflows are reliable. Similar results are obtained for 389 

the other catchments for all predictands and forecast periods (not shown). These results 390 

support the findings of Wang et al. (2009) and Wang and Robertson (2011), who showed the 391 

BJP produces reliable forecasts of seasonal streamflows. 392 

3.3 Overall forecast skill 393 

Fig. 6 shows BJP-BMA cross-validated hindcasts of Max1D for an example 20-year period 394 

for all catchments. Visual inspection of the hindcasts shows that the credible prediction 395 

intervals largely encompass the range of observations. In catchments with strongly seasonal 396 
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streamflows (e.g. MUR, MMH), the mean of the ensemble forecast often gives realistic 397 

predictions of Max1D streamflows during seasons of high streamflows. Accuracy of forecasts 398 

in more variable catchments (e.g. NOR, ABH) is much more difficult to ascertain from these 399 

time series, and we now turn to formal measures of skill to assess these. 400 

RMSEP skill scores are positive for Max5D forecasts for the 1-month forecast period for most 401 

months and catchments (Fig. 7b). Skill in Max5D 1-month forecasts is particularly strong in 402 

the winter-spring months (June-November). Skill in Max1D 1-month forecasts is generally 403 

lower than for Max5D 1-month forecasts (Fig. 7a, 7b). Max1D streamflows are inherently 404 

more variable than Max5D streamflows, as Max5D streamflows are smoothed by the greater 405 

number of data included in their calculation. This makes forecasting Max1D streamflows 406 

more challenging. Nonetheless, RMSEP skill scores for Max1D 1-month forecasts are 407 

positive for most catchments and seasons (Fig. 7a). Max1D 1-month forecast skill is strongest 408 

in the winter-spring months. For the 3-month forecast period, RMSEP scores are generally 409 

lower for both Max1D and Max5D forecasts, although positive skill scores occur in winter-410 

spring for the MUR, MMH, and ABH catchments, and the NOR catchment shows skill 411 

intermittently through the year (Fig. 7c, 7d). 412 

The reason for the reduced performance of the 3-month forecasts becomes evident when we 413 

review the contribution of climate indices to forecast skill. Fig. 8 shows RMSEP skill scores 414 

calculated relative to BJP forecasts generated using only streamflow as a predictor. The plot 415 

shows the skill gained by the inclusion of climate indices for Max1D 1-month forecasts. Fig. 416 

8 shows that almost no skill is gained in any month or catchment by including climate indices, 417 

meaning the forecasts depend heavily on catchment wetness for skill. Results are similar for 418 

Max5D (not shown). This finding is also supported by Robertson and Wang (2013), who 419 

found that climate indices made only weak contributions to the skill of forecasts of seasonal 420 

streamflow totals in the MMH and MUR catchments. The contribution of catchment wetness 421 
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to forecast skill declines over longer forecast periods (Mahanama et al., 2012; Shukla and 422 

Lettenmaier, 2011; Li et al., 2009). Thus forecasts for longer periods are less accurate than for 423 

shorter forecast periods. This effect is also evident in individual catchments. The TAW 424 

catchment, for example, has the lowest autocorrelation of monthly streamflows of the six 425 

catchments (not shown), and forecasts for this catchment show poor skill in relation to 426 

streamflow climatology. 427 

Nonetheless, 3-month forecasts can be skilful in certain catchments at times of the year when 428 

the influence of catchment wetness on high streamflows is strong. The influence of catchment 429 

wetness on streamflows is generally strongest on the receding limb of the annual hydrograph 430 

(Robertson and Wang, 2013). For the ORB and NOR catchments the annual hydrograph 431 

recedes in March-May, while in the ABH, MMH and MUR catchments the annual 432 

hydrograph recedes in August-November. This results in positive RMSEP skill scores for 3-433 

month forecasts of these catchments during these months (Fig. 7c, 7d). 434 

Overall, RMSEP generally shows positive skill scores for 1-month forecasts for both Max1D 435 

and Max5D streamflows, while 3-month forecasts are substantially less skilful. However, the 436 

positive RMSEP skill scores may be the result of good agreement of forecasts with lower 437 

‘high’ streamflows, and not reflect forecasts at larger streamflows. We now turn to forecast 438 

skill at higher streamflows to determine the size of streamflows for which forecasts are 439 

skilful. 440 

3.4 Forecast skill for large threshold events 441 

In general, forecast skill declines as streamflows get larger (Figs. 9-12). Brier scores show 442 

more instances of positive skill than LLR scores, particularly for streamflows larger than Q10. 443 

Because the Brier score has known problems with infrequent events (Benedetti, 2010), we 444 

focus on the LLR score to discuss forecast skill at larger streamflows. 445 
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Substantial skill is evident in forecasts where observed Max1D streamflows are larger than 446 

Q50 for 1-month forecasts, in both the Brier score (Fig. 9) and the LLR (Fig. 10). LLR scores 447 

are higher for Max5D streamflows than for Max1D streamflows, and the highest LLR scores 448 

generally occur in July-November. Skill is not related to seasonal changes in high or low 449 

Max1D/Max5D streamflows. The ARB, MUR, MMH and catchments show high skill during 450 

months of high streamflow (winter-spring, Fig. 10, Fig. 2) while the ORB and NOR 451 

catchments only exhibit skill during months of low streamflow (Jul-Nov, Fig. 10, Fig. 2). As 452 

with the RMSEP scores, the TAW catchment shows the lowest skill. Four of the six 453 

catchments show positive LLR scores in 6 or more months of the year for 1-month forecasts 454 

of Max5D streamflows above Q25 (Fig. 10). For Max1D streamflows greater than Q25, three 455 

catchments show positive LLR scores in six or more months of the year (Fig. 10). Little skill 456 

is evident in any catchment or season for either Max1D or Max5D streamflows above Q10. 457 

Skill for 3-month forecasts of larger streamflows is generally low (Figs. 11, 12). Except for 458 

one catchment (MUR), catchments show little forecast skill in the majority of months for any 459 

of the streamflow thresholds tested for either Max1D or Max5D streamflows. We find 460 

positive skill scores for 3-month forecasts in the MUR catchment of Max5D streamflows 461 

above Q50 and Q25 for six or more months, and also for Max1D streamflows above Q50 (Fig. 462 

12). Indeed, forecasts for MUR performed best in most measures and skill scores. It is not 463 

clear why this should be so. MUR receives reliable rainfall in the winter and spring, resulting 464 

in relatively low variability and strong autocorrelation in monthly streamflows. However 465 

these characteristics also apply to the nearby MMH catchment, for which forecasts perform 466 

no better than for ABH, ORB or NOR in a number of measures (e.g. Fig. 10).  467 

Overall, forecast skill is positive to very strong for 1-month exceedance forecasts of 468 

streamflows exceeding Q50 for a majority of months in all but the TAW catchment. Skill is not 469 

related to seasonal cycles of high and low streamflows. Positive skill scores are also found in 470 
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several catchments for 1-month exceedance forecasts of streamflows exceeding Q25. The 471 

remaining large streamflow forecasts tested here showed little skill in most catchments. 472 

4 Discussion 473 

RMSEP skill scores reported here show the 1-month forecasts to be superior to climatology in 474 

forecasting high streamflows. Further, the skill in forecasts is not limited to the lowest of the 475 

‘high’ streamflows - forecasts of the probability of exceeding Q50 Max1D streamflows one 476 

month in advance show robust skill in a number of catchments. We note, however, that the 477 

Q50 Max1D streamflows are still not necessarily very large streamflows. Skill in forecasting 478 

large threshold events in two catchments, ORB and NOR, is restricted to months where ‘high’ 479 

streamflows are small, and in which damaging floods are unlikely to occur. Conversely, skill 480 

in the MUR, ABH and MMH catchments is evident during periods of high streamflow. 481 

Accordingly, forecast skill in these catchments may be valuable to the Bureau of Meteorology 482 

when they are seeking to answer more general questions about the risks of high streamflows 483 

in a coming month. We note that the usefulness of the forecast is likely to vary with 484 

catchment in any case, both because forecast skill varies between catchments and because the 485 

prospect of flood damage varies greatly between catchments (i.e., in one catchment a common 486 

high streamflow event may damage property or have other deleterious impacts, in another 487 

catchment large floods may be of little consequence). 488 

The 1-month forecasts rely heavily on catchment wetness for skill. This supports the many 489 

studies that have demonstrated the preeminent contribution of catchment wetness to the skill 490 

of seasonal streamflow forecasts for catchments (or seasons) where seasonal snow-melt does 491 

not occur (e.g. Mahanama et al., 2012; Shukla and Lettenmaier, 2011; Li et al., 2009; Koster 492 

et al., 2010; Robertson and Wang, 2013). Accordingly, improving estimates of catchment 493 

wetness is likely to be a simple way of improving forecasts. Accumulated streamflow for a 494 
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month can be a poor measure of catchment wetness. For example, a high value of total 495 

streamflow may be caused by a single intense rainfall event that causes infiltration-excess 496 

overland flow, resulting in a large streamflow but little infiltration. In this example the 497 

catchment wetness is overestimated by total streamflow. Catchment wetness can be modelled 498 

more effectively for forecasting with so-called ‘dynamical’ approaches (Rosenberg et al., 499 

2011; Robertson et al., 2013a) that use soil-moisture accounting models (e.g. conceptual 500 

rainfall-runoff models forced by observed rainfall and evaporation) to improve estimates of 501 

catchment wetness and thereby improve forecasts.  502 

The ability of the BJP-BMA models to forecast high streamflows a month or more in advance 503 

is limited by knowledge of climate during the forecast period. This problem is not likely to be 504 

easily surmountable. The high variability of larger rainfall events makes their prediction 505 

inherently difficult. In addition, climate indices that have the potential to forecast particular 506 

types of rain-bearing weather patterns may have little persistence from month to month. This 507 

is particularly so for climate indices calculated from atmospheric variables, which tend to be 508 

less persistent than oceanic variables. For example, we have used the atmospheric blocking 509 

index (B140, see Table 2) to attempt to account for atmospheric blocking and associated 510 

cutoff lows in our forecasts. Cutoff lows associated with atmospheric blocking bring a 511 

substantial proportion of rainfall to south-east Australia (Pook et al., 2006), and may 512 

counteract the drying associated with very strong El Niño years (Brown et al., 2009). 513 

However, we find that B140 adds little skill to forecasts of high streamflows, supporting 514 

Schepen et al. (2012a) who showed that lagged B140 had no significant statistical relationship 515 

to mean rainfall anywhere in Australia. Similarly, this would very likely apply to other 516 

atmospheric indices, e.g. those used to describe the Southern Annular Mode or the 517 

Subtropical Ridge of high pressure (position or intensity). 518 
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As we noted in the introduction, several studies have shown positive relationships between 519 

climate indices and streamflow/rainfall in south-east Australia. However, our work shows that 520 

the benefit of using lagged climate indices to forecast high streamflows in south-east 521 

Australia is negligible. This can be explained in four ways: 522 

1. Many studies examine teleconnection between concurrent climate indices and 523 

streamflow/rainfall (e.g. Verdon and Franks, 2005; Ashok et al., 2003; Pook et al., 2006). 524 

The teleconnection between lagged climate indices and rainfall may be weaker than for 525 

concurrent indices as implied by the often weak relationships between lagged climate 526 

indices and Australian rainfall found by Schepen et al. (2012a). 527 

2. Even if a significant teleconnection exists between a lagged climate index and high 528 

streamflows, this information may still not contribute skill to forecasts of high 529 

streamflows when we include catchment wetness as a predictor because: 530 

a. even if the teleconnection between high rainfalls and lagged climate indices is 531 

strong, the influence of catchment wetness on high streamflows is so much more 532 

powerful that the predictive information provided by lagged climate indices is 533 

rendered negligible; 534 

b. the catchment wetness predictor implicitly contains information about the current 535 

state of the climate (e.g., a very wet October), and any information provided by 536 

lagged indices may be subsumed by the climate information implicit in catchment 537 

wetness.  538 

3. Even in areas where lagged climate indices show a significant teleconnection to seasonal 539 

rainfalls (Schepen et al., 2012a), the high variability of large rainfalls associated with high 540 

streamflows means that any positive relationships that have been shown to exist between 541 

lagged climate indices and seasonal rainfall totals  may not apply to high rainfall events. 542 
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4. Some studies (e.g. Kiem et al., 2003) use an index describing the Interdecadal Pacific 543 

Oscillation (IPO) to relate rainfall/streamflow to climate indices. If we limit our 544 

assessment of forecasts only to periods where IPO was in the negative phase, it is possible 545 

that ENSO SST indices may add more skill to the forecasts (as suggested by Kiem et al., 546 

2003). However, we sought to assess forecast skill in the context of generating forecasts in 547 

real-time. Describing the IPO is not particularly useful for real-time forecasting because it 548 

is only possible to define an IPO phase with certainty in retrospect (although informed 549 

speculation about the present IPO phase is possible; see, e.g., Cai and van Rensch, 2012). 550 

That is, it is often not possible to know with certainty which IPO phase we are in at the 551 

present time, so it cannot be used to inform real-time forecasts. 552 

Using conceptual rainfall runoff models forced by rainfall forecasts from dynamical climate 553 

models to forecast high streamflows at long lead times is an attractive alternative to the 554 

statistical models we have presented here. Statistical models require large volumes of data to 555 

characterise relationships between predictors and predictands, and this is particularly 556 

important when forecasting rare events. If dynamical climate and hydrological processes can 557 

be accurately simulated, fewer data may be required to generate skilful forecasts. Further, 558 

dynamical climate models should, in theory, be able to account for complex interactions 559 

between different climate drivers, which may influence rainfall. At present dynamical climate 560 

models do not necessarily exhibit more skill than statistical forecasts of seasonal precipitation 561 

(e.g. Schepen et al., 2012b). Future improvements in dynamical climate models used for 562 

forecasting weeks to months advance (e.g. Marshall et al., 2011) may ultimately improve 563 

forecasts of high rainfalls. In addition, we note that the skill of statistical forecasts may 564 

complement that of dynamical rainfall forecasts (e.g. the statistical rainfall forecasts may 565 

exhibit skill in different seasons or locations to dynamical forecasts; Schepen et al., 2012b), 566 

and that merging forecasts of high rainfalls from dynamical and statistical models may 567 
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improve overall skill. Using climate indices derived from SST forecasts from coupled ocean-568 

atmosphere dynamical climate models shows promise in improving forecasts of monthly 569 

rainfall totals at lead-times of more than six months (Hawthorne et al., 2013), and avoids the 570 

use of lagged climate indices for forecasting. 571 

Our forecast method could be adapted to catchments in different regions by including 572 

predictors that are relevant to a given region. In colder regions, seasonal snow melt has been 573 

shown to be a very important predictor of seasonal streamflows (e.g. Mahanama et al., 2012), 574 

and indicators of future snowmelt (e.g. temperature) could be included as predictors in this 575 

model. In addition, climate indices that are important to a given region may also be included, 576 

although their utility for forecasting high streamflows may be negligible, as we have shown 577 

here. 578 

The high streamflow forecasts we have developed here may be bolstered in future by the 579 

inclusion of Numerical Weather Prediction (NWP) models in hydrological forecasting. The 580 

Australian Bureau of Meteorology does not presently use NWP forecasts to quantify flood 581 

forecasts, although they are used qualitatively to inform flood warnings (Elliott et al., 2005). 582 

Very high resolution NWP forecasts have been shown to improve flood forecasts (Roberts et 583 

al., 2008). At present, however, NWP forecasts are skilful only for a few days (typically <6 584 

days); and even skilful NWP forecasts are often not accurate enough for use in hydrological 585 

forecasting systems, even in catchments substantially larger than those tested here (Cloke and 586 

Pappenberger, 2009; Shrestha et al., 2013; Cuo et al., 2011). As NWP models and post-587 

processing of NWP forecasts improve (e.g. Robertson et al., 2013b), NWP forecasts may 588 

complement the simpler forecasts we have generated in this study. 589 
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5 Summary and conclusions 590 

We have explored the ability of existing statistical forecasting methods to produce forecasts 591 

for high streamflows for the coming month and the coming three months. Forecast models are 592 

built from a combination of climate predictors and catchment wetness. Models are 593 

constructed with a Bayesian joint probability method, and the models are then weighted based 594 

on their predictive power using Bayesian model averaging. 595 

Skill is clearly evident in forecasts of high streamflows for the coming 1-month period. 596 

Forecasts of larger events, including maximum 1-day streamflows of exceedance probabilities 597 

as low as 25%, are also skilful in comparison to long-term climatologies. Our 1-month high 598 

streamflow forecasts have the potential to complement existing real-time flood warnings 599 

currently used in Australia, to give emergency services and the community more warning of 600 

impending high streamflows. 601 

Almost all forecast skill derives from the catchment wetness predictor. If the forecasts are to 602 

be extended to additional catchments, they are likely to be poor in catchments that have little 603 

month-to-month memory in streamflows. Forecasts in skilful catchments may be improved 604 

somewhat by using more refined estimates of catchment wetness. 605 

We find substantially lower skill in forecasts of high streamflows for the coming 3-month 606 

period. The influence of catchment wetness on streamflows diminishes over longer periods, 607 

and climate predictors add little skill to the forecasts. Future improvements in forecasts of 608 

extreme rainfalls from dynamical climate models may be able to improve longer range 609 

forecasts of high streamflows. 610 
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Table 1 Charactericstics of catchments used in this study.  1 

Name Short 

name 

Streamflow 

record used 

Fraction of 

record 

missing 

Area 

(km²) 

Annual 

rainfall (mm) 

Annual 

runoff (mm) 

Runoff 

coefficient 

Orara River at Bawden Bridge ORB 1956-2006 4.2% 1823 1396 407 0.29 

Nowendoc River at Rocks Crossing NOR 1950-2006 3.9% 1898 1155 258 0.22 

Abercrombie River at Hadley No. 2 ABH 1960-2005 0.5% 1626 842 117 0.14 

Murray River at Biggara MUR 1950-2005 2.5% 1254 1178 446 0.38 

Mitta Mitta River at Hinnomunjie MMH 1950-2006 2.6% 1528 1343 297 0.22 

Tarwin River at Meeniyan TAW 1955-2006 3.1% 1066 1084 233 0.21 

 2 
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Table 2 List of oceanic and atmospheric climate indices used as predictors. 1 

Index Description 

Southern Oscillation Index (SOI)  Troup (1965) 

NINO3 Mean SST anomaly over 150–90°W 

and 5°N-5°S 

NINO3.4 Mean SST anomaly over 170–120°W 

and 5°N–5°S 

NINO4 Mean SST anomaly over 150–160°E 

and 5°N–5°S 

ENSO Modoki Index (EMI) Ashok et al. (2003) 

Indian Ocean Dipole Mode Index (DMI) Saji et al. (1999) 

Indian Ocean West Pole Index (WPI) Saji et al. (1999) 

Indian Ocean East Pole Index (EPI) Saji et al. (1999) 

Indonesia Index (II) Verdon and Franks (2005) 

Tasman Sea Index (TSI) Murphy and Timbal (2008) 

140°E Blocking Index (B140) Risbey et al. (2009) 

 2 

  3 
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Fig. 1 Catchments (shaded) and streamflow gauge sites (black dots) used in this study. 1 

 2 
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Fig. 2 Catchment streamflow characteristics. Black dots show average monthly streamflows. 1 

Boxes show maximum five-day streamflow (Max5D - blue) and maximum 1-day streamflow 2 

(Max1D - red) occurring during each month for exceedance probabilities of 50% (Q50, bottom 3 

edge) to 10% (Q10, top edge), with box centreline showing Max5D/Max1D streamflows of 4 

exceedance probability of 25% (Q25).  5 
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  7 
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Fig. 3 Schematic of forecast model. (a) Example of individual forecast model generated with 1 

the Bayesian joint probability method. In this example, catchment wetness (CW) and 2 

NINO3.4 predictors are used to predict Max1D streamflows. Rainfall is included as a joint 3 

predictand to elicit more information from the climate indices. Parameters for the transforms 4 

and joint probability distribution are inferred jointly. This process is repeated for thirteen 5 

different predictor-sets. (b) The forecasts from thirteen BJP models are weighted based on 6 

cross-validated predictive performance with Bayesian model averaging (BMA) to produce a 7 

merged BJP-BMA forecast. The use of a symmetric Dirichlet prior encourages even weights 8 

in instances of high sampling uncertainty. See text for details. 9 
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Fig. 4 Fit of log-sinh transformed normal distributions to Max1D values for two months. Red 1 

circles show actual values, black solid line shows fitted log-sinh tranform, dashed lines show 2 

[0.1, 0.9] confidence intervals. 3 
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Fig. 5 Forecast reliability diagrams at two catchments for Max1D streamflows of exceedance 1 

probability ≤50%. (Forecasts are divided into five bins. 1:1 dashed lines, perfectly reliable 2 

forecast; circles, observed relative frequency; vertical lines, [0.05, 0.95] uncertainty interval 3 

of observed relative frequency; inserts, number of events in the different forecast probability 4 

bins.)  5 
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Fig. 6 Example forecast time series of cross-validated BJP-BMA for Max1D. Red circles 1 

show observed Max1D values, black points and lines show mean forecast and [0.1, 0.9] 2 

credible prediction intervals. 3 
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Fig. 7 RMSEP skill scores. Catchments are ordered by their location, from northernmost (top) 1 

to southernmost (bottom). (a) Max1D streamflows for 1-month forecasts, (b) Max5D 2 

streamflows for 1-month forecasts, (c) Max1D streamflows for 3-month forecasts, and (d) 3 

Max5D streamflows at 3-month forecasts. Scores show proportional improvement of 4 

forecasts over climatology forecasts. 5 

6 
  7 
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Fig. 8 Skill added by climate indices to forecasts. Plot shows RMSEP skill scores for Max1D 1 

1-month forecasts calculated with respect to BJP forecasts generated with only catchment 2 

wetness as a predictor. Scores show proportional improvement of BJP-BMA forecasts over 3 

BJP forecasts generated with only catchment wetness as a predictor. 4 

5 
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Fig. 9 Brier skill scores calculated at three streamflow thresholds for 1-month forecasts. Scores show proportional improvement of BJP-BMA 1 

forecasts over climatology forecasts. 2 
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Fig. 10 Evidence of skill from the log-likelihood ratio (LLR) at three streamflow thresholds for 1-month forecasts. Scores show evidence of 1 

skill of BJP-BMA forecasts over climatology forecasts. Categories are taken from Schepen et al. (2012a): little evidence of skill where 2 

LLR<2; positive evidence where 2<LLR>4; strong evidence where 4<LLR>6; very strong evidence where LLR>6. 3 
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Fig. 11 Brier skill scores calculated at three streamflow thresholds for 3-month forecasts. Scores show proportional improvement of BJP-1 

BMA forecasts over climatology forecasts. 2 
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Fig. 12 Evidence of skill from the log-likelihood ratio at three streamflow thresholds for 3-month forecasts. Scores show evidence of skill of 1 

BJP-BMA forecasts over climatology forecasts. Categories are taken from Schepen et al. (2012a): little evidence of skill where LLR<2; 2 

positive evidence where 2<LLR>4; strong evidence where 4<LLR>6; very strong evidence where LLR>6. 3 
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