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Abstract 8 

After an overview of existing methods, we present a novel method of “event-adjusted” 9 

evaluation of extremeness of weather and climate events. It is based on optimization of both 10 

the considered area and the time duration for every event. The method consists of three steps: 11 

(i) estimation of return periods of a representative variable at individual sites, performed 12 

separately for various time windows; (ii) spatial interpolation of the point return period data; 13 

and (iii) searching the area and the time window in which the extremeness of the event was 14 

maximum. The extremeness is quantified as the common logarithm of the spatial geometric 15 

mean of the return periods multiplied by the radius of a circle of the same area as the one over 16 

which the geometric mean is taken The maximum product is referred to as the Weather 17 

Extremity Index (WEI). The method is demonstrated by two precipitation events that affected 18 

the Czech Republic in May and in August 2010. The WEI is generally applicable regardless 19 

of the studied phenomenon (heavy rains, heat waves, windstorms, etc.). This fact makes it 20 

possible to study both weather and climate extremes more precisely from the viewpoint of 21 

possible recent and future changes in their frequency, seasonal distribution, and circulation 22 

conditions accompanying them. 23 

 24 

1 Introduction 25 

Weather and climate extremes have long been the focus of atmospheric sciences because of 26 

their significant social and economic impacts (Cutter et al., 2008). This effort has even 27 

increased during recent decades in the context of discussions of climate change impacts 28 

(Beniston and Stephenson, 2004). Already in the 1980s, Wigley (1988; reprinted in 2009) 29 
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showed that even a small shift in the mean and variance of a climate variable might lead to a 1 

strong shift in the frequency of respective weather and climate extremes. Since this time, 2 

many studies have focused on the analysis of past and possible future trends in extremes (e.g., 3 

Alexander et al., 2006; Klein Tank et al., 2006). Katz (2010) noted that not only the frequency 4 

but also the magnitude of extreme events should be considered in this type of study. The 5 

reason is that detected trends in more extreme events can be more (or less) significant than 6 

trends in moderate extreme events (Hegerl et al., 2004).    7 

A similarly large group of papers is concerned with meteorological causes of weather and 8 

climate extremes (e.g., Homar et al., 2007; Lupikasza, 2010). As in the above-mentioned type 9 

of study, the authors often select a group of extreme events and avoid quantifying their 10 

extremeness. However, considering all events as “equally extreme” can thwart discovering 11 

substantial differences in causes between more and less extreme events (Müller and Kaspar, 12 

2010). 13 

Obviously, one of the crucial challenges to authors of both presented types of studies is the 14 

correct selection of extreme events and evaluation of their extremeness. Our research is 15 

motivated by the fact that the selection method can substantially influence the results of a 16 

study (Visser, Petersen, 2012). In accordance with Diaz and Murnane (2008), we differentiate 17 

between short-term weather events (e.g., heavy rainfall) and longer-lived climate events (e.g., 18 

extra wet season). We focus mainly on weather extremes in the present study. The 19 

extremeness of climate events can be evaluated by similar methods when only the type of 20 

input data makes the difference (e.g., daily and monthly sums for weather and climate 21 

extremes, respectively). After a brief overview of the generally used methods (Sect. 2), we 22 

present two weather events (Sect. 3) and demonstrate a novel method of event-adjusted 23 

extremity evaluation (Sect. 4), which is generally applicable regardless of the type of event. 24 

We lastly compare this method with other methods and discuss the benefits and limits of the 25 

proposed method (Sect. 5). 26 

 27 

2 Approaches to weather extremity evaluation 28 

There is no unified method of defining extreme weather events and quantifying their 29 

extremeness because “extreme events are generally easy to recognize but difficult to define” 30 

(Stephenson, 2008, p. 12). The main reason is that the events can vary in terms of short-term 31 

intensity, duration, areal extent, socio-economic impacts, etc. Beniston et al. (2007) 32 
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summarized three characteristics that are generally used to identify weather (climate) events 1 

as extreme: (i) rarity, (ii) intensity, and (iii) severity (amount of socio-economic losses or 2 

number of casualties). Subsequently, the definition criteria of extreme events also vary as they 3 

reflect these aspects.  4 

The concept of severity is useful in many applications, for example, in insurance (Mills, 5 

2005). If we carefully consider aspects of inflation, population and property growth, their 6 

redistribution, etc., we can study possible trends (e.g., Balling, Cerveny, 2003; Bouwer, 7 

2011). The aspect of severity can also be very useful in branches in which we need to take 8 

into account extremeness in both the driver and the response, such as in ecology (Smith, 9 

2011). Nevertheless, severity always includes not only hazard but also other factors of the risk 10 

– exposure and vulnerability – which are not related to natural processes (Stephenson, 2008). 11 

Therefore, this measure cannot reasonably be used for evaluation of the extremeness of 12 

weather events if we, for example, compare it with the extremity of causal circulation 13 

conditions (Cavazos, 1999). For such research, aspects of rarity or intensity (often correlated) 14 

seem to be more suitable. Both can be evaluated using data either from individual sites (Sect. 15 

2.1) or from the entire affected area (Sect. 2.2). 16 

2.1 Point evaluation of extremeness of weather events 17 

The most popular approach to the extremeness evaluation of weather events is based on 18 

quantifying the intensity of a variable at individual sites and on comparing the values with a 19 

fixed threshold. For example, precipitation can be considered to be “extreme” if the total 20 

reaches 50 mm or more at a site during 24 hours (probability of exceeding this threshold 21 

belongs to ensemble prediction system products prescribed by WMO, 1992). Extreme events 22 

are then defined as peaks over the threshold and if needed, ordered with respect to the 23 

magnitude of the variable. This works if we study a single time series. In contrast, if extreme 24 

events are collected from various sites, this approach does not reflect the differences in 25 

climate among the sites. In the above-mentioned example, the daily total of 50 mm can be 26 

rather frequent at a site, whereas it is very rare at another one (in Fig. 1, there are 29 days with 27 

daily totals Rd  50 mm in the mountain site Churanov, but only 7 days in Prague). 28 

Subsequently, the set of such defined extreme events would be mainly composed of those 29 

from exposed sites ( mountain gauges); this fact can substantially influence our inferences 30 

from the analysis of the dataset. 31 
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Considering the rarity of measured values, the set of block maxima obviously also cannot be 1 

identified with the complete set of extreme events because extreme events are not equally 2 

distributed in time (in Fig. 1, for example, even the fourth highest daily total in 2002 was 3 

higher than the annual maximum in the next year in Churanov). Therefore, thresholds are 4 

used when studying the rarity of weather as well; nevertheless, thresholds are based on the 5 

empirical distribution of the variable at the given site (Stephenson, 2008). They can be 6 

defined most easily as quantiles (e.g., Zhang et al., 2011). The set of extreme events then 7 

comprises an equal number of events from all sites (in Fig. 1, there are 18 events at both sites 8 

if the threshold is set to 99.9 %). However, the values of the quantiles reflect only the ranking 9 

of the totals within the dataset rather than real differences among the values (in Fig. 1, for 10 

example, the difference between the second and the third highest total is much larger than 11 

between the third and the fourth one in Churanov; however, the difference between respective 12 

quantiles is constant). We therefore need to search for a more sophisticated method of 13 

standardization for station data (Beirlant et al., 2004). 14 

One possible method is to divide actual values by the annual mean or better by the average 15 

annual maximum of the representative variable. Using this procedure, we obtain 16 

dimensionless (standardized) values that enable us to combine extremes from various sites (in 17 

Fig. 1, there are 28 and 25 days with totals higher than the average annual maximum daily 18 

total in Churanov and in Prague, respectively). Though standardized values from gauges with 19 

different means can be rather similar, the method distinctively favors gauges with a higher 20 

variability in the studied variable. Moreover, events with different durations cannot be 21 

compared this way because the variability depends, among other things, on the considered 22 

length of the events. 23 

A more accurate frequency analysis of extreme events results in return period estimates (see 24 

Sect. 4.1 for more details). They reflect the statistical distribution of extreme values and, 25 

moreover, they are generally applicable and comparable regardless of, for example, the 26 

accumulation period of precipitation (Ramos et al., 2005) and even of the type of studied 27 

weather extremes. Hydrologists construct Intensity–Duration–Frequency (IDF) curves that 28 

make it possible to estimate return periods of observed rainfall intensities over a range of 29 

durations (Chow et al., 1988). This implies that this method already reflects the aspect of 30 

duration that is further discussed along with the spatial aspect in Sect. 2.2. 31 
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It must be noted that the concept of return periods can only be applied under the assumption 1 

of stationarity of the climate (Katz, 2010). In a nonstationary climate, return periods do not 2 

represent the actual probability of occurrence of a value. Nevertheless, they still can be 3 

utilized to compare various events from the viewpoint of weather extremity (see Sect. 4). 4 

2.2 Regional evaluation of the extremeness of weather events 5 

In fact, a weather event always affects at least a small area. Obviously, the extremeness of an 6 

event increases with the affected area. Though carefully evaluated, data from the only 7 

meteorological gauge (in contrast to the hydrological one) do not distinguish large events 8 

from only local episodes. Moreover, events also differ in their duration. As a result, more 9 

sophisticated methods of evaluating weather extremes need to reflect not only the magnitude 10 

of a variable at a site but also both the spatial and temporal aspects – most importantly, the 11 

extent and duration of the event, respectively. This challenge corresponds with one of the 12 

methodological issues addressed at the WCRP workshop in Paris, September 2010: the 13 

requirement of an “enhanced emphasis ... on spatio-temporal scales of extreme events” 14 

(Zolina et al., 2011, p. 17). 15 

The temporal aspect of weather extremes is considered more frequently. For instance, not 16 

only maximum daily precipitation totals but also 5-day totals belong to standard indices of 17 

weather extremes (Frich et al., 2002). However, duration of the events can be very variable. 18 

Biondi et al. (2005) therefore quantified past climatic episodes in terms of two random 19 

variables, i.e., duration and magnitude, and calculated conditional probabilities of exceeding 20 

both of them. Nevertheless, the extremity of weather is also influenced by the fluctuation of 21 

the variable during the event. Begueria et al. (2009) partly took account of this fact; they used 22 

declustering of daily precipitation totals for distinguishing individual precipitation events and 23 

characterized them by not only magnitude and duration but also by peak intensity. 24 

The spatial aspect of weather extremity can be considered by using the areal average of a 25 

variable (rather than individual point measurements). Nevertheless, this method does not 26 

reflect variability within the affected area. Moreover, when calculated within a fixed region 27 

(an administrative unit, a catchment, etc.), the areal average disadvantages events that are 28 

violent but affect only a part of the region. The extremeness of an event depends thus on the 29 

extent of the considered region (Konrad, 2001). 30 
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Ren et al. (2012) recently tried to combine both aspects together and identified regional 1 

extreme events as a string of daily impacted areas. They applied distinct thresholds to daily 2 

data to tailor the considered areas and time period to the real extent and duration of the event. 3 

This method seems to be promising; however, it is very threshold-sensitive. At this point, we 4 

need to address a crucial issue in the evaluation of weather extremity: the limits of both the 5 

affected area and the time period are “fuzzy” (not rigorous). Obviously, most weather 6 

extremes gradually intensify at the beginning (and they weaken later), and their central parts 7 

are surrounded by less seriously affected areas. Should only the center of the event (both from 8 

the spatial and temporal perspective) with a high magnitude of the variable be taken into 9 

account or should less extreme peripheries also be considered?  10 

This problem can be partly solved by visualization tools, as follows. Andreadis et al. (2005) 11 

and more recently Sheffield et al. (2009) studied extreme droughts in the U.S. and from a 12 

global perspective, respectively. For each extent of the considered area, they determined the 13 

highest recorded average drought index. To demonstrate the relationship between the mean 14 

severity of drought and the size of the considered area, the authors adopted Depth-Area-15 

Duration (DAD) curves (Nicks and Igo, 1980) for which they replaced rainfall depth by 16 

normalized severity of drought. Several Severity-Area-Duration (SAD) curves were 17 

combined, one for each considered time window. 18 

Another example of the graphical approach to weather extremity evaluation is the 19 

visualization of heavy rainfalls by severity graphs and diagrams suggested by Ramos et al. 20 

(2005). (The term “severity” is used by them with a different meaning than by Beniston et al., 21 

2007.) These visualization tools are based on two concepts: IDF curves (see Sect. 2.1) and 22 

Areal Reduction Factors (ARFs), which were recently reviewed by Svensson and Jones 23 

(2010). Ramos et al. (2005) assumed ARFs to be independent of the return period and 24 

applicable over the entire (rather small) area of their interest. For each rain gauge, severity 25 

graphs depict return periods of maximum rainfall intensities for gradually increasing rainfall 26 

duration. They make it possible to compare different events because they show the variety of 27 

return periods among rain gauges and among rainfall durations. Severity diagrams are even 28 

more complex; they also include the spatial aspect of extreme events and indicate the possible 29 

simultaneous occurrence of extreme point rainfall in time.  30 

SAD curves and mainly severity diagrams are great tools for conducting a complex analysis 31 

of weather and climate events. However, because of their graphical character, they cannot 32 
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readily be used for a “synthesis” – an unambiguous evaluation and comparison of the 1 

extremeness of events. At this point, we suggest a method of “event-adjusted” evaluation that 2 

is based on optimization of both the considered area and the time duration for every event 3 

(Sect. 4). 4 

 5 

3 Reference events and data 6 

The proposed method of weather extremity evaluation is demonstrated by two precipitation 7 

events that affected Central Europe in 2010. We used daily precipitation totals from the whole 8 

territory of the Czech Republic (measured by the Czech Hydrometeorological Institute). Apart 9 

from daily totals, 2-day and 3-day totals were also calculated by the classical moving-window 10 

procedure. We also show selected daily totals from neighboring countries in Fig. 2: from 11 

Slovakia (Slovak Hydrometeorological Institute), Poland (Institute of Meteorology and Water 12 

Management), and Germany (German Weather Service). Unfortunately, the external data 13 

could not be analyzed in terms of their extremeness because we do not know the parameters 14 

of the statistical distribution of the precipitation totals for the foreign gauges. Therefore, the 15 

analysis of the extremeness of the events is limited by the state border of the Czech Republic. 16 

3.1 May 2010 event 17 

Flooding occurred in the eastern part of Central Europe in the second half of May 2010. The 18 

antecedent saturation of the region was high due to rains that occurred at the beginning of the 19 

month (Daňhelka and Šercl, 2011). Extra-heavy rains that reached their maximum on 16 May 20 

were associated with a cyclone passing from the Mediterranean northeastward, which became 21 

nearly stationary over the Ukraine for several days. The highest precipitation totals were 22 

recorded in the western sector of the cyclone at the state border between the Czech Republic, 23 

Slovakia, and Poland. Subsequently, the water stages were even higher than those during the 24 

catastrophic flood in July 1997 in some regions, mainly in the upper reaches of the Vistula 25 

River in Poland (Bissolli et al., 2011). In the Czech Republic, peak flows reached return 26 

periods of more than 50 years at some gauges. Moreover, because heavy precipitation fell 27 

over the Flysch Outer Western Carpathians, which are susceptible to landslides, the storm 28 

also had geomorphologic impacts. More than 150 mostly small landslides originated only in 29 

the eastern part of the Czech Republic, including a kilometer-long rockslide along the 30 

southern slope of Mt. Girová, the Beskydy Mts. (Panek et al., 2011). 31 
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3.2 August 2010 event 1 

During the first decade of August 2010, flooding occurred in many rivers over the western 2 

part of the Czech Republic, with high return periods concentrated in a rather small region at 3 

the state border between the Czech Republic, Germany, and Poland (Fig. 2). Heavy rains 4 

reaching their maximum on 7 August were more concentrated in time than they were in May. 5 

They were associated with a rather shallow cyclone passing from the Mediterranean to the 6 

north. The most affected river basins were Lausitzer Neisse (a left-sided tributary of Oder) 7 

and the neighboring right-sided tributaries of Elbe (Müller and Walther, 2011). The water 8 

levels were the highest ever recorded at some smaller streams. Moreover, the flood caused the 9 

Niedów Dam on the river Witka to break. 10 

 11 

4 Event-adjusted evaluation of weather extremity 12 

The proposed method of weather extremity evaluation consists of three steps presented in the 13 

following sections. We first evaluate the rarity of a representative meteorological variable at 14 

individual sites (Sect. 4.1). Despite the procedure used by Ramos et al. (2005) and other 15 

authors, we do not transform the detected point return periods into the areal ones (Sect. 2.2). 16 

Instead of this process, we interpolate the point return period data in space so that we can 17 

estimate a point return period in every pixel of the studied area (Sect. 4.2). We lastly 18 

accumulate return periods from individual pixels and look for the optimal area and time 19 

period in which the proposed measure of extremity was the highest (Sect. 4.3). 20 

4.1 Point evaluation of weather extremity 21 

As we have already discussed in Sect. 2.1, return periods are likely the most accurate 22 

instrument for quantifying the rarity of measured data at individual sites because they reflect 23 

the shape of the statistical distribution of data. The first step of the proposed methodology is a 24 

standard estimation of return periods of a representative variable at individual sites. 25 

Nevertheless, the estimation is performed separately for various time windows. In our case 26 

studies, return periods of daily, 2-day, and 3-day precipitation totals were assessed using the 27 

Generalized Extreme Value (GEV) distribution (Hosking and Wallis, 1997) because it was 28 

found to represent a suitable model for precipitation extremes in most regions of the Czech 29 

Republic (Kyselý and Picek, 2007). The GEV distribution was applied as the parametric 30 

model for annual maxima of precipitation totals. Parameters of the GEV distribution were 31 
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estimated by means of the L-moment algorithm (Hosking and Wallis, 1997) and the regional 1 

frequency analysis – region-of-influence (ROI) method (Burn, 1990). The ROI method 2 

employs ‘homogenous regions’, in which all regional data, weighted by a dissimilarity 3 

measure, are used for estimating parameters of the distribution of extremes at the site of 4 

interest. The advantage of the ROI method compared with the local analysis is that sampling 5 

variations in the estimates of model parameters and high quantiles may be substantially 6 

reduced, and the inference becomes more robust. Most recently, this fact was confirmed also 7 

for the August 2010 reference event (Kyselý et al., 2013).  8 

The application of the ROI method allowed us to utilize data from more than 600 rain gauges 9 

from the Czech Republic with daily data series of at least 20 years and to consider the 10 

estimates of return periods up to 1000 years. In fact, so high a value did not occur either in 11 

May or in August 2010. However, the maximum return period reached at an individual gauge 12 

does not reflect the spatial aspect of weather extremity, as demonstrated in the following 13 

sections. 14 

4.2 Spatial interpolation of return period data 15 

Ramos et al. (2005) stated that attributing a single return period to a storm event observed 16 

over a given area is not straightforward because the severity of a storm varies depending on 17 

the considered space and time integration scales. Nevertheless, we decided to solve the 18 

problem in a different way than they did, namely, by the interpolation of point return periods 19 

into a regular grid. Our motivation is to avoid the uncertainty regarding ARF (see Sect. 2.2). 20 

A common procedure involves the interpolation of statistical distribution parameters from 21 

individual gauges (Ceresetti et al., 2012). However, we were confronted with a different task: 22 

interpolation of return period values. When searching for a proper interpolation method, we 23 

excluded all standard methods because of the exponential nature of the GEV distribution that 24 

the return period values are derived from (see discussion in Sect. 5). We therefore first 25 

transformed return periods into their common logarithms. We then interpolated the logarithms 26 

by linear kriging into a regular grid with a horizontal resolution of 1 km. Lastly, the 27 

interpolated data were reconverted into return period values using the inverse logarithmic 28 

transformation. The procedure is repeated for all considered time windows. 29 

The results for our reference events are depicted in Fig. 3. Despite the similarities in 30 

maximum daily totals (Fig. 2), the respective return periods were substantially higher in 31 
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August than in May. The events were mostly similar regarding return periods of 3-day totals 1 

because of the shorter duration of the August precipitation event. While precipitation fell in 2 

the mountain region that is prone to heavy, long-lasting rains in May (Kyselý and Picek, 3 

2007), the August event also affected regions where heavy rains are rare. 4 

4.3 Optimization of the considered area and the time window 5 

We stated in Sect. 4.1 that the maximum return period reached at an individual gauge does not 6 

reflect the spatial aspect of weather extremity. However, neither does the average within the 7 

whole Czech Republic because heavy rains usually affect only a part of the territory, as was 8 

the case both in May and in August 2010 (Fig. 2). Moreover, the events hit different regions 9 

with different extents, so their extremeness cannot readily be evaluated within a unified area. 10 

We therefore study a unique area for each weather event.  11 

Obviously, the considered area has to comprise the region where the studied phenomenon 12 

reached the highest extremeness. The area does not have to be compact because of, e.g., the 13 

role of topography (see Fig. 2). Thus, we sort grid pixels with respect to return period values 14 

in descending order (Fig. 4) and average the pixels with the highest values. Because of the 15 

above mentioned exponential nature of the GEV distribution, we calculate the spatial 16 

geometric (instead of arithmetic) mean of return periods [yr]  17 

n
n

i tita NG  


1
.           (1) 18 

where Nti is the return period of the studied variable in a grid point i and a time period t and n 19 

is the number of considered grid points each representing 1 km
2
. The problem is that the mean 20 

return period continuously decreases with the extending area (Fig. 5). How does one 21 

recognize the edge that delimits the optimal area? Moreover, how does one select the optimal 22 

duration of the event when the curves intersect each other (meaning the optimal duration 23 

changes with the size of the considered area)? The classical approach is to fix subjectively the 24 

time window (e.g., 3 days) and either the considered return periods (e.g., by the threshold N = 25 

10 yr) or the extent of the considered area (e.g., n = 1000). We seach an alternative way by 26 

adjusting the thresholds to the actual event. 27 

Our proposal is based on the assumption that the most extreme event has to be both intense 28 

(rare) and large. Lower extremeness of other events can be due to the decrease in the intensity 29 

(rarity) and/or the spatial extent of an event. As a result, a proper extremity index should be a 30 
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product of a measure of rarity and of a measure of the spatial extent in our opinion. Regarding 1 

the first factor, we use log(Gta) instead of pure Gta because of the exponential nature of return 2 

periods. If the second factor of the product was simply the area (a), the product would 3 

increase continuously because log(Gta) decreases with much lower rate than a increases. 4 

Obviously, the spatial extent should be considered with a smaller weight which should be 5 

balanced with log(Gta) having a linear nature. We have chosen a simple and reasonable way 6 

how to reduce the weight of a: the square root which represents the length. The main reason is 7 

that this approach enables to delimit objectively the affected area, as presented below. 8 

We proposed the following variable Eta [log(yr)*km]: 9 

 
 



a

n

N
RGE

n

i ti

tata

  1
log

log .        (2) 10 

which is defined by a product of log(Gta) and of the radius R of a circle of the same area (a) as 11 

the one over which Gta is taken. Alternatively, log(Gta) can be simply computed also as the 12 

arithmetic mean of common logarithms of return periods. Unlike Gta (Fig. 5), Eta increases 13 

initially as we accumulate the pixels with high return periods. However, once the return 14 

periods are not high enough in the additional accumulated pixels, the value of Eta starts to 15 

decrease. This occurs when the decrease in the return periods is more significant than the 16 

increase in the accumulated area (Fig. 6). The tipping point of the curve is the focus of our 17 

interest because the maximum of Eta characterizes the extremeness of the phenomenon within 18 

the time period t. This point represents the inflection point of the curve in Fig. 5; at this point, 19 

the decrease in the mean extremeness represented by log(Gta) becomes more significant than 20 

the increase in the area represented by R. 21 

We lastly choose the time period for which Eta reached its maximum during the event. We 22 

call this value the Weather Extremity Index (WEI) because it represents the searched 23 

extremeness of the event. Its unit is log(yr)km. Now, we can also define the affected area a, 24 

the duration t, and the respective geometric mean of return periods Gta complying with the 25 

relation Eta = WEI. 26 

Any weather or climate event can be evaluated by the WEI and by related characteristics. The 27 

comparison of the two studied precipitation events is demonstrated by diagrams in Fig. 7. The 28 

main difference is that the affected area a was much larger (within the Czech Republic) in 29 

August. However, log(Gta) was slightly lower because compared with May, a larger part of 30 
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the affected area was characterized by rains with relatively low return periods in August (see 1 

also Fig. 3). Both events were rated as 2-day events; nevertheless, the difference between 2-2 

day and 3-day values of Eta was negligible in May. 3 

 4 

5 Discussion 5 

In the couple of presented examples, we used daily precipitation totals when evaluating the 6 

extremeness of heavy rain events. To evaluate longer events properly, we estimated return 7 

periods of totals accumulated during two and three days (even longer time windows can be 8 

studied). In contrast, a precipitation event can last less than one day. Obviously, it would be 9 

better to use short-term precipitation intensities and their return periods (3-hours, 6-hours, 10 

etc.). However, the density and length of their data series are not sufficient for these purposes. 11 

As a result, it should be taken into account that the extremeness of such events (usually 12 

produced by convective storms) can be slightly underestimated by the WEI because they are 13 

compared by the same tool with events when precipitation actually fell the whole day. For 14 

example, return periods of 6-hour totals would be higher than if they are evaluated as 1-day 15 

totals. In future we plan to employ also return periods of short-term precipitation intensities, 16 

using temporal statistical downscaling of daily totals. 17 

The estimation of return periods at gauges is method-sensitive, which can increase the 18 

uncertainty of the extremity evaluation. We applied the GEV distribution; parameters were 19 

estimated by means of the L-moment algorithm. The distribution of precipitation extremes is 20 

usually heavy-tailed. If not, return period estimates can reach unrealistically high values. We 21 

therefore decided to restrict the estimates up to 1000 years. We also used the ROI method, 22 

making the results more robust. Even if a less sophisticated method was used, the influence of 23 

this type of uncertainty is substantially reduced in our methodology because rather than mere 24 

values of return periods, we use their common logarithms. 25 

An additional step in the suggested methodology is the interpolation of point values of return 26 

periods into a regular grid. We do not estimate return periods of areal precipitation totals. On 27 

the other hand, this approach prevents us from increasing the uncertainty by interpolation both 28 

precipitation totals and GEV parameters. Again, the interpolation method can influence the 29 

acquired results. Because the spatial distribution of return period values does not fully 30 

correspond with the respective totals, methods used for precipitation interpolation cannot 31 

reasonably be applied in this case. A strong emphasis should be placed on the finding that if 32 
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return periods are interpolated, it is necessary to reflect their nonlinear dependence on the 1 

totals. We decided to interpolate common logarithms; our reasoning can be demonstrated by 2 

the following example (Fig. 8).  3 

Consider two gauges at the distance of 8 km, having the same parameters of the GEV 4 

distribution. Gauge A measured a daily total of 35.6 mm, which corresponds to the return 5 

period of 2 years; gauge B measured 100 mm (return period of 100 years). The application of 6 

linear interpolation of the return period values leads to an increase in the return period by the 7 

value of 12.25 years per 1 km in the line from gauge A to gauge B. As a result, corresponding 8 

precipitation totals increase much more rapidly in the vicinity of gauge A than B. In fact, we 9 

could expect a linear increase in precipitation between A and B, which is satisfied when 10 

logarithms of return period values are interpolated.  11 

The final step of our methodology optimizes the considered area and the time window for 12 

every studied event. Even if the area is divided into several parts or if days with heavy rains 13 

are separated by a slightly drier episode, they are considered as a whole due to the 14 

accumulated effect of precipitation. We aggregate grid pixels with high return period values 15 

and compute their geometric mean within the given area. The optimization is enabled by 16 

multiplication of the common logarithm of the geometric mean by the radius of an equivalent 17 

circle area. We find the product Eta of these two factors well balanced because both are linear 18 

in nature. As a result, Eta increases with increasing a only as long as pixels with high return 19 

periods are added. This shape of the Eta curve enables to optimize the considered area 20 

objectively and to compare a weather (climate) extreme with other events.  21 

In Table 1, the values of the WEI are compared with other characteristics of extremity that 22 

were discussed in Sect. 2. Except from the maximum daily total at a site, the August event 23 

was more extreme in the Czech Republic with respect to all other characteristics including the 24 

WEI. It corresponds with the hydrological response which was also more extreme in August 25 

when return periods of peak flows overcame 100 years at some rivers in northern Bohemia 26 

(Kaspar et al., 2013).  27 

Nevertheless, the WEI can be applied regardless the type of weather (climate) extremes. It 28 

reflects both the spatial and the temporal aspects of the studied event. Unlike classical 29 

indicies, the WEI is not threshold-dependent in terms of the considered area and the applied 30 

time window. As a result, it enables to compare extremeness of rather heterogenous events. 31 

 32 
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6 Conclusions 1 

The suggested methodology takes into account both the spatial and the temporal aspects of 2 

weather and climate extremes and is generally applicable regardless of the studied 3 

phenomenon (heavy rains, heat waves, cold spells, windstorms, etc.). The only condition is 4 

that the phenomenon is quantified by a proper variable (precipitation totals, daily temperature 5 

maxima and minima, etc.). The methodology reflects spatial differences in the climatology of 6 

the variable; return periods are therefore utilized rather than mere values of the variable. The 7 

evaluation of extremeness is “event-adjusted”, which means that it is based on optimization of 8 

both the considered area and time duration for every event. The suggested WEI makes it 9 

possible to evaluate weather and climate extremes quantitatively. As a result, extremes can be 10 

studied more precisely from the viewpoint of possible recent and future changes in their 11 

frequency, seasonal distribution, circulation conditions accompanying them, etc.  12 

The WEI can be computed within any region of interest (for example, administrative units). 13 

We demonstrated the methodology within the territory of the Czech Republic and prepare 14 

several papers regarding temperature, precipitation, and wind extremes in the Czech territory. 15 

Nevertheless, both presented precipitation events affected also neighboring countries. The 16 

events could be evaluated also as a whole if respective data were at our disposal. Furthermore, 17 

if the WEI of a precipitation event is computed within individual catchments, values of the 18 

WEI can be easily compared with runoff extremeness so it makes it possible to study 19 

relationships between extremeness of precipitation events and of subsequent floods. 20 

There is one more aspect of weather and climate extremes which was not discussed in the 21 

presented paper. We can consider not only the spatial differences in climatology of the 22 

studied phenomenon but also the temporal ones. For example, heavy rains are concentrated in 23 

summer in the Czech Republic (Tolasz et al., 2007). If we define extremes as the events that 24 

are the most different from seasonally normal conditions, they can occur during the whole 25 

year. In addition, if properly selected, they should be randomly and to a certain extent evenly 26 

distributed within the annual cycle. We would like to focus on these issues in our next 27 

research. 28 
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Table 1. Comparison of reference events by characteristics discussed in Sect. 2 and by the 1 

WEI: maximum daily precipitation total at a site (MaxRd); maximum ratio of MaxRd to the 2 

average annual maximum daily total at a site (MaxRd/Avg[maxaRd]); maximum return period 3 

of a daily precipitation total at a site (MaxN); maximum mean daily precipitation total within 4 

the Czech Republic (MeanRd); Weather Extremity Index (WEI). The values only represent the 5 

territory of the Czech Republic. 6 

           May           August 

Characteristic [unit] Value Station / region Value Station / region 

MaxRd [mm] 179.8 Třinec 179.0 Hejnice 

MaxRd/Avg(maxaRd) 3.04 Třinec 3.37 Mařenice 

MaxN [yr] 160 Třinec 284 Mařenice 

MeanRd [mm] 7.6 Czechia 21.7 Czechia 

WEI [log (yr) km] 42.39 4325 km
2
 78.98 17302 km

2
 

7 
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Figure 1. Four highest daily precipitation totals per year during 1961–2010 in Prague-Ruzyne 1 

(364 m above sea level) and in Churanov (a peak in Šumava Mts. with altitude of 1118 m). 2 

Annual maxima are interconnected by thin lines. The thresholds discussed in the text are 3 

depicted by horizontal lines: precipitation total of 50 mm (1), quantiles 99.9 % in Prague-4 

Ruzyne (2) and in Churanov (3), average annual maxima in Prague-Ruzyne (4) and in 5 

Churanov (5), precipitation totals corresponding to the return period of 2 years in Prague-6 

Ruzyne (6) and in Churanov (7). 7 

 8 

Figure 2. Daily precipitation totals in May 2010 and in August 2010 (the right and the left part 9 

of the figure, respectively). The state border of the Czech Republic is depicted by the black 10 

line. 11 

 12 

Figure 3. Return periods of precipitation totals in May 2010 and in August 2010 (the right and 13 

the left part of the figure, respectively), interpolated into the 1-km grid. Each event is 14 

represented by a 1-day, 2-day, and 3-day period with maximum return periods. The optimized 15 

areas affected in the given time period (see Sect. 4.3) are depicted by orange lines. Colors of 16 

circles correspond with Figs. 4, 5, 6, and 7. 17 

 18 

Figure 4. The distribution of return periods of precipitation totals in individual grid pixels 19 

during reference events. 20 

 21 

Figure 5. Changes in geometric means of ordered return periods of precipitation totals in Fig. 22 

4 as a function of increasing area. 23 

 24 

Figure 6. Changes in Eta values with the increasing extent of the considered area. The values 25 

of the WEI and the respective areas are depicted by arrows. 26 

 27 

Figure 7. Demonstration of Eta and WEI values as products of log(Gta) (the common 28 

logarithm of the geometric mean of return periods) and R (radius of the circle area equivalent 29 



 23 

to the considered area a). Units are as follows: R [km], a [km
2
], Gta [yr], Eta and WEI 1 

[log(yr)km]. 2 

 3 

Figure 8. Precipitation totals (P) between two gauges, calculated from differently interpolated 4 

return period values (N): (1) linear interpolation of return periods; (2) linear interpolation of 5 

common logarithms of return periods. 6 


