

1 **Event-adjusted evaluation of weather and climate extremes**

2

3 **M. Müller^{1,2} and M. Kaspar¹**

4 [1]{ Institute of Atmospheric Physics, Academy of Sciences, Prague, Czech Republic}

5 [2]{ Charles University, Faculty of Science, Prague, Czech Republic}

6 Correspondence to: M. Müller (muller@ufa.cas.cz)

7

8 **Abstract**

9 After an overview of existing methods, we present a novel method of “event-adjusted”
10 evaluation of extremeness of weather and climate events. It is based on optimization of both
11 the considered area and the time duration for every event. The method consists of three steps:
12 (i) estimation of return periods of a representative variable at individual sites, performed
13 separately for various time windows; (ii) spatial interpolation of the point return period data;
14 and (iii) searching the area and the time window in which the extremeness of the event was
15 maximum. The extremeness is quantified as the common logarithm of the spatial geometric
16 mean of the return periods multiplied by the radius of a circle of the same area as the one over
17 which the geometric mean is taken. The maximum product is referred to as the Weather
18 Extremity Index (WEI). The method is demonstrated by two precipitation events that affected
19 the Czech Republic in May and in August 2010. The WEI is generally applicable regardless
20 of the studied phenomenon (heavy rains, heat waves, windstorms, etc.). This fact makes it
21 possible to study both weather and climate extremes more precisely from the viewpoint of
22 possible recent and future changes in their frequency, seasonal distribution, and circulation
23 conditions accompanying them.

24

25 **1 Introduction**

26 Weather and climate extremes have long been the focus of atmospheric sciences because of
27 their significant social and economic impacts (Cutter et al., 2008). This effort has even
28 increased during recent decades in the context of discussions of climate change impacts
29 (Beniston and Stephenson, 2004). Already in the 1980s, Wigley (1988; reprinted in 2009)

Odstraněno: averaging of return period values from individual pixels and optimization of the considered area and the time window.

Odstraněno: The optimization is enabled by multiplication of the common logarithm of the geometric mean of return periods by the radius of a circle area equivalent to the considered area.

1 showed that even a small shift in the mean and variance of a climate variable might lead to a
2 strong shift in the frequency of respective weather and climate extremes. Since this time,
3 many studies have focused on the analysis of past and possible future trends in extremes (e.g.,
4 Alexander et al., 2006; Klein Tank et al., 2006). Katz (2010) noted that not only the frequency
5 but also the magnitude of extreme events should be considered in this type of study. The
6 reason is that detected trends in more extreme events can be more (or less) significant than
7 trends in moderate extreme events (Hegerl et al., 2004).

8 A similarly large group of papers is concerned with meteorological causes of weather and
9 climate extremes (e.g., Homar et al., 2007; Lupikasza, 2010). As in the above-mentioned type
10 of study, the authors often select a group of extreme events and avoid quantifying their
11 extremeness. However, considering all events as “equally extreme” can thwart discovering
12 substantial differences in causes between more and less extreme events (Müller and Kaspar,
13 2010).

14 Obviously, one of the crucial challenges to authors of both presented types of studies is the
15 correct selection of extreme events and evaluation of their extremeness. Our research is
16 motivated by the fact that the selection method can substantially influence the results of a
17 study (Visser, Petersen, 2012). In accordance with Diaz and Murnane (2008), we differentiate
18 between short-term weather events (e.g., heavy rainfall) and longer-lived climate events (e.g.,
19 extra wet season). We focus mainly on weather extremes in the present study. The
20 extremeness of climate events can be evaluated by similar methods when only the type of
21 input data makes the difference (e.g., daily and monthly sums for weather and climate
22 extremes, respectively). After a brief overview of the generally used methods (Sect. 2), we
23 present two weather events (Sect. 3) and demonstrate a novel method of event-adjusted
24 extremity evaluation (Sect. 4), which is generally applicable regardless of the type of event.
25 We lastly compare this method with other methods and discuss the benefits and limits of the
26 proposed method (Sect. 5).

27

28 **2 Approaches to weather extremity evaluation**

29 There is no unified method of defining extreme weather events and quantifying their
30 extremeness because “extreme events are generally easy to recognize but difficult to define”
31 (Stephenson, 2008, p. 12). The main reason is that the events can vary in terms of short-term
32 intensity, duration, areal extent, socio-economic impacts, etc. Beniston et al. (2007)

1 summarized three characteristics that are generally used to identify weather (climate) events
2 as extreme: (i) rarity, (ii) intensity, and (iii) severity (amount of socio-economic losses or
3 number of casualties). Subsequently, the definition criteria of extreme events also vary as they
4 reflect these aspects.

5 The concept of severity is useful in many applications, for example, in insurance (Mills,
6 2005). If we carefully consider aspects of inflation, population and property growth, their
7 redistribution, etc., we can study possible trends (e.g., Balling, Cerveny, 2003; Bouwer,
8 2011). The aspect of severity can also be very useful in branches in which we need to take
9 into account extremeness in both the driver and the response, such as in ecology (Smith,
10 2011). Nevertheless, severity always includes not only hazard but also other factors of the risk
11 – exposure and vulnerability – which are not related to natural processes (Stephenson, 2008).
12 Therefore, this measure cannot reasonably be used for evaluation of the extremeness of
13 weather events if we, for example, compare it with the extremity of causal circulation
14 conditions (Cavazos, 1999). For such research, aspects of rarity or intensity (often correlated)
15 seem to be more suitable. Both can be evaluated using data either from individual sites (Sect.
16 2.1) or from the entire affected area (Sect. 2.2).

17 **2.1 Point evaluation of extremeness of weather events**

18 The most popular approach to the extremeness evaluation of weather events is based on
19 quantifying the intensity of a variable at individual sites and on comparing the values with a
20 fixed threshold. For example, precipitation can be considered to be “extreme” if the total
21 reaches 50 mm or more at a site during 24 hours (probability of exceeding this threshold
22 belongs to ensemble prediction system products prescribed by WMO, 1992). Extreme events
23 are then defined as peaks over the threshold and if needed, ordered with respect to the
24 magnitude of the variable. This works if we study a single time series. In contrast, if extreme
25 events are collected from various sites, this approach does not reflect the differences in
26 climate among the sites. In the above-mentioned example, the daily total of 50 mm can be
27 rather frequent at a site, whereas it is very rare at another one (in Fig. 1, there are 29 days with
28 daily totals $R_d \geq 50$ mm in the mountain site Churanov, but only 7 days in Prague).
29 Subsequently, the set of such defined extreme events would be mainly composed of those
30 from exposed sites (~ mountain gauges); this fact can substantially influence our inferences
31 from the analysis of the dataset.

1 Considering the rarity of measured values, the set of block maxima obviously also cannot be
2 identified with the complete set of extreme events because extreme events are not equally
3 distributed in time (in Fig. 1, for example, even the fourth highest daily total in 2002 was
4 higher than the annual maximum in the next year in Churanov). Therefore, thresholds are
5 used when studying the rarity of weather as well; nevertheless, thresholds are based on the
6 empirical distribution of the variable at the given site (Stephenson, 2008). They can be
7 defined most easily as quantiles (e.g., Zhang et al., 2011). The set of extreme events then
8 comprises an equal number of events from all sites (in Fig. 1, there are 18 events at both sites
9 if the threshold is set to 99.9 %). However, the values of the quantiles reflect only the ranking
10 of the totals within the dataset rather than real differences among the values (in Fig. 1, for
11 example, the difference between the second and the third highest total is much larger than
12 between the third and the fourth one in Churanov; however, the difference between respective
13 quantiles is constant). We therefore need to search for a more sophisticated method of
14 standardization for station data (Beirlant et al., 2004).

15 One possible method is to divide actual values by the annual mean or better by the average
16 annual maximum of the representative variable. Using this procedure, we obtain
17 dimensionless (standardized) values that enable us to combine extremes from various sites (in
18 Fig. 1, there are 28 and 25 days with totals higher than the average annual maximum daily
19 total in Churanov and in Prague, respectively). Though standardized values from gauges with
20 different means can be rather similar, the method distinctively favors gauges with a higher
21 variability in the studied variable. Moreover, events with different durations cannot be
22 compared this way because the variability depends, among other things, on the considered
23 length of the events.

24 A more accurate frequency analysis of extreme events results in return period estimates (see
25 Sect. 4.1 for more details). They reflect the statistical distribution of extreme values and,
26 moreover, they are generally applicable and comparable regardless of, for example, the
27 accumulation period of precipitation (Ramos et al., 2005) and even of the type of studied
28 weather extremes. Hydrologists construct Intensity–Duration–Frequency (IDF) curves that
29 make it possible to estimate return periods of observed rainfall intensities over a range of
30 durations (Chow et al., 1988). This implies that this method already reflects the aspect of
31 duration that is further discussed along with the spatial aspect in Sect. 2.2.

1 It must be noted that the concept of return periods can only be applied under the assumption
2 of stationarity of the climate (Katz, 2010). In a nonstationary climate, return periods do not
3 represent the actual probability of occurrence of a value. Nevertheless, they still can be
4 utilized to compare various events from the viewpoint of weather extremity (see Sect. 4).

5 **2.2 Regional evaluation of the extremeness of weather events**

6 In fact, a weather event always affects at least a small area. Obviously, the extremeness of an
7 event increases with the affected area. Though carefully evaluated, data from the only
8 meteorological gauge (in contrast to the hydrological one) do not distinguish large events
9 from only local episodes. Moreover, events also differ in their duration. As a result, more
10 sophisticated methods of evaluating weather extremes need to reflect not only the magnitude
11 of a variable at a site but also both the spatial and temporal aspects – most importantly, the
12 extent and duration of the event, respectively. This challenge corresponds with one of [the](#)
13 methodological issues addressed at the WCRP workshop in Paris, September 2010: the
14 requirement of an “enhanced emphasis ... on spatio-temporal scales of extreme events”
15 (Zolina et al., 2011, p. 17).

16 The temporal aspect of weather extremes is considered more frequently. For instance, not
17 only maximum daily precipitation totals but also 5-day totals belong to standard indices of
18 weather extremes (Frich et al., 2002). However, duration of the events can be very variable.
19 Biondi et al. (2005) therefore quantified past climatic episodes in terms of two random
20 variables, i.e., duration and magnitude, and calculated conditional probabilities of exceeding
21 both of them. Nevertheless, the extremity of weather is also influenced by the fluctuation of
22 the variable during the event. Begueria et al. (2009) partly took account of this fact; they used
23 declustering of daily precipitation totals for distinguishing individual precipitation events and
24 characterized them by not only magnitude and duration but also by peak intensity.

25 The spatial aspect of weather extremity can be considered by using the areal average of a
26 variable (rather than individual point measurements). Nevertheless, this method does not
27 reflect variability within the affected area. Moreover, when calculated within a fixed region
28 (an administrative unit, a catchment, etc.), the areal average disadvantages events that are
29 violent but affect only a part of the region. The extremeness of an event depends thus on the
30 extent of the considered region (Konrad, 2001).

1 Ren et al. (2012) recently tried to combine both aspects together and identified regional
2 extreme events as a string of daily impacted areas. They applied distinct thresholds to daily
3 data to tailor the considered areas and time period to the real extent and duration of the event.
4 This method seems to be promising; however, it is very threshold-sensitive. At this point, we
5 need to address a crucial issue in the evaluation of weather extremity: the limits of both the
6 affected area and the time period are “fuzzy” (not rigorous). Obviously, most weather
7 extremes gradually intensify at the beginning (and they weaken later), and their central parts
8 are surrounded by less seriously affected areas. Should only the center of the event (both from
9 the spatial and temporal perspective) with a high magnitude of the variable be taken into
10 account or should less extreme peripheries also be considered?

11 This problem can be partly solved by visualization tools, as follows. Andreadis et al. (2005)
12 and more recently Sheffield et al. (2009) studied extreme droughts in the U.S. and from a
13 global perspective, respectively. For each extent of the considered area, they determined the
14 highest recorded average drought index. To demonstrate the relationship between the mean
15 severity of drought and the size of the considered area, the authors adopted Depth-Area-
16 Duration (DAD) curves (Nicks and Igo, 1980) for which they replaced rainfall depth by
17 normalized severity of drought. Several Severity-Area-Duration (SAD) curves were
18 combined, one for each considered time window.

19 Another example of the graphical approach to weather extremity evaluation is the
20 visualization of heavy rainfalls by severity graphs and diagrams suggested by Ramos et al.
21 (2005). (The term “severity” is used by them with a different meaning than by Beniston et al.,
22 2007.) These visualization tools are based on two concepts: IDF curves (see Sect. 2.1) and
23 Areal Reduction Factors (ARFs), which were recently reviewed by Svensson and Jones
24 (2010). Ramos et al. (2005) assumed ARFs to be independent of the return period and
25 applicable over the entire (rather small) area of their interest. For each rain gauge, severity
26 graphs depict return periods of maximum rainfall intensities for gradually increasing rainfall
27 duration. They make it possible to compare different events because they show the variety of
28 return periods among rain gauges and among rainfall durations. Severity diagrams are even
29 more complex; they also include the spatial aspect of extreme events and indicate the possible
30 simultaneous occurrence of extreme point rainfall in time.

31 SAD curves and mainly severity diagrams are great tools for conducting a complex analysis
32 of weather and climate events. However, because of their graphical character, they cannot

Odstraněno: ies

Odstraněno: of

Odstraněno: for

1 readily be used for a “synthesis” – an unambiguous evaluation and comparison of the
2 extremeness of events. At this point, we suggest a method of “event-adjusted” evaluation that
3 is based on optimization of both the considered area and the time duration for every event
4 (Sect. 4).

5

6 **3 Reference events and data**

7 The proposed method of weather extremity evaluation is demonstrated by two precipitation
8 events that affected Central Europe in 2010. We used daily precipitation totals from the whole
9 territory of the Czech Republic (measured by the Czech Hydrometeorological Institute). Apart
10 from daily totals, 2-day and 3-day totals were also calculated by the classical moving-window
11 procedure. We also show selected daily totals from neighboring countries in Fig. 2: from
12 Slovakia (Slovak Hydrometeorological Institute), Poland (Institute of Meteorology and Water
13 Management), and Germany (German Weather Service). Unfortunately, the external data
14 could not be analyzed in terms of their extremeness because we do not know the parameters
15 of the statistical distribution of the precipitation totals for the foreign gauges. Therefore, the
16 analysis of the extremeness of the events is limited by the state border of the Czech Republic.

17 **3.1 May 2010 event**

18 Flooding occurred in the eastern part of Central Europe in the second half of May 2010. The
19 antecedent saturation of the region was high due to rains that occurred at the beginning of the
20 month (Daňhelka and Šercl, 2011). Extra-heavy rains that reached their maximum on 16 May
21 were associated with a cyclone passing from the Mediterranean northeastward, which became
22 nearly stationary over the Ukraine for several days. The highest precipitation totals were
23 recorded in the western sector of the cyclone at the state border between the Czech Republic,
24 Slovakia, and Poland. Subsequently, the water stages were even higher than those during the
25 catastrophic flood in July 1997 in some regions, mainly in the upper reaches of the Vistula
26 River in Poland (Bissolli et al., 2011). In the Czech Republic, peak flows reached return
27 periods of more than 50 years at some gauges. Moreover, because heavy precipitation fell
28 over the Flysch Outer Western Carpathians, which are susceptible to landslides, the storm
29 also had geomorphologic impacts. More than 150 mostly small landslides originated only in
30 the eastern part of the Czech Republic, including a kilometer-long rockslide along the
31 southern slope of Mt. Girová, the Beskydy Mts. (Panek et al., 2011).

1 **3.2 August 2010 event**

2 During the first decade of August 2010, flooding occurred in many rivers over the western
3 part of the Czech Republic, with high return periods concentrated in a rather small region at
4 the state border between the Czech Republic, Germany, and Poland (Fig. 2). Heavy rains
5 reaching their maximum on 7 August were more concentrated in time than they were in May.
6 They were associated with a rather shallow cyclone passing from the Mediterranean to the
7 north. The most affected river basins were Lausitzer Neisse (a left-sided tributary of Oder)
8 and the neighboring right-sided tributaries of Elbe (Müller and Walther, 2011). The water
9 levels were the highest ever recorded at some smaller streams. Moreover, the flood caused the
10 Niedów Dam on the river Witka to break.

11

12 **4 Event-adjusted evaluation of weather extremity**

13 The proposed method of weather extremity evaluation consists of three steps presented in the
14 following sections. We first evaluate the rarity of a representative meteorological variable at
15 individual sites (Sect. 4.1). Despite the procedure used by Ramos et al. (2005) and other
16 authors, we do not transform the detected point return periods into the areal ones (Sect. 2.2).
17 Instead of this process, we interpolate the point return period data in space so that we can
18 estimate a point return period in every pixel of the studied area (Sect. 4.2). We lastly
19 accumulate return periods from individual pixels and look for the optimal area and time
20 period in which the proposed measure of extremity was the highest (Sect. 4.3).

Odstraněno: 1

21 **4.1 Point evaluation of weather extremity**

22 As we have already discussed in Sect. 2.1, return periods are likely the most accurate
23 instrument for quantifying the rarity of measured data at individual sites because they reflect
24 the shape of the statistical distribution of data. The first step of the proposed methodology is a
25 standard estimation of return periods of a representative variable at individual sites.
26 Nevertheless, the estimation is performed separately for various time windows. In our case
27 studies, return periods of daily, 2-day, and 3-day precipitation totals were assessed using the
28 Generalized Extreme Value (GEV) distribution (Hosking and Wallis, 1997) because it was
29 found to represent a suitable model for precipitation extremes in most regions of the Czech
30 Republic (Kyselý and Picek, 2007). The GEV distribution was applied as the parametric
31 model for annual maxima of precipitation totals. Parameters of the GEV distribution were

Odstraněno: (when, respectively)

1 estimated by means of the L-moment algorithm (Hosking and Wallis, 1997) and the regional
2 frequency analysis – region-of-influence (ROI) method (Burn, 1990). The ROI method
3 employs ‘homogenous regions’, in which all regional data, weighted by a dissimilarity
4 measure, are used for estimating parameters of the distribution of extremes at the site of
5 interest. The advantage of the ROI method compared with the local analysis is that sampling
6 variations in the estimates of model parameters and high quantiles may be substantially
7 reduced, and the inference becomes more robust. Most recently, this fact was confirmed also
8 for the August 2010 reference event (Kyselý et al., 2013).

Odstraněno: (Kyselý et al., 2011)

9 The application of the ROI method allowed us to utilize data from more than 600 rain gauges
10 from the Czech Republic with daily data series of at least 20 years and to consider the
11 estimates of return periods up to 1000 years. In fact, so high a value did not occur either in
12 May or in August 2010. However, the maximum return period reached at an individual gauge
13 does not reflect the spatial aspect of weather extremity, as demonstrated in the following
14 sections.

15 **4.2 Spatial interpolation of return period data**

16 Ramos et al. (2005) stated that attributing a single return period to a storm event observed
17 over a given area is not straightforward because the severity of a storm varies depending on
18 the considered space and time integration scales. Nevertheless, we decided to solve the
19 problem in a different way than they did, namely, by the interpolation of point return periods
20 into a regular grid. Our motivation is to avoid the uncertainty regarding ARF (see Sect. 2.2).

21 A common procedure involves the interpolation of statistical distribution parameters from
22 individual gauges (Ceresetti et al., 2012). However, we were confronted with a different task:
23 interpolation of return period values. When searching for a proper interpolation method, we
24 excluded all standard methods because of the exponential nature of the GEV distribution that
25 the return period values are derived from (see discussion in Sect. 5). We therefore first
26 transformed return periods into their common logarithms. We then interpolated the logarithms
27 by linear kriging into a regular grid with a horizontal resolution of 1 km. Lastly, the
28 interpolated data were reconverted into return period values using the inverse logarithmic
29 transformation. The procedure is repeated for all considered time windows.

30 The results for our reference events are depicted in Fig. 3. Despite the similarities in
31 maximum daily totals (Fig. 2), the respective return periods were substantially higher in

1 August than in May. The events were mostly similar regarding return periods of 3-day totals
2 because of the shorter duration of the August precipitation event. While precipitation fell in
3 the mountain region that is prone to heavy, long-lasting rains in May (Kyselý and Picek,
4 2007), the August event also affected regions where heavy rains are rare.

5 **4.3 Optimization of the considered area and the time window**

6 We stated in Sect. 4.1 that the maximum return period reached at an individual gauge does not
7 reflect the spatial aspect of weather extremity. However, neither does the average within the
8 whole Czech Republic because heavy rains usually affect only a part of the territory, as was
9 the case both in May and in August 2010 (Fig. 2). Moreover, the events hit different regions
10 with different extents, so their extremeness cannot readily be evaluated within a unified area.
11 We therefore study a unique area for each weather event.

Odstraněno: search for

12 Obviously, the considered area has to comprise the region where the studied phenomenon
13 reached the highest extremeness. The area does not have to be compact because of, e.g., the
14 role of topography (see Fig. 2). Thus, we sort grid pixels with respect to return period values
15 in descending order (Fig. 4) and average the pixels with the highest values. Because of the
16 above mentioned exponential nature of the GEV distribution, we calculate the spatial
17 geometric (instead of arithmetic) mean of return periods [yr]

Odstraněno: ,

Odstraněno: , and search for the optimal affected area

$$18 G_{ta} = \sqrt[n]{\prod_{i=1}^n N_{ti}} . \quad (1)$$

Odstraněno: $G_{ta} = \sqrt[a]{\prod_{i=1}^n N_{ti}}$.
 (1)¶

Odstraněno: a is the area consisting of

19 where N_{ti} is the return period of the studied variable in a grid point i and a time period t and n
20 is the number of considered grid points each representing 1 km^2 . The problem is that the mean
21 return period continuously decreases with the extending area (Fig. 5). How does one
22 recognize the edge that delimits the optimal area? Moreover, how does one select the optimal
23 duration of the event when the curves intersect each other (meaning the optimal duration
24 changes with the size of the considered area)? The classical approach is to fix subjectively the
25 time window (e.g., 3 days) and either the considered return periods (e.g., by the threshold $N =$
26 10 yr) or the extent of the considered area (e.g., $n = 1000$). We search an alternative way by
27 adjusting the thresholds to the actual event.

Odstraněno: The problem can be solved

Odstraněno: using fixed thresholds

Odstraněno: or

Odstraněno: , as presented below

28 Our proposal is based on the assumption that the most extreme event has to be both intense
29 (rare) and large. Lower extremeness of other events can be due to the decrease in the intensity
30 (rarity) and/or the spatial extent of an event. As a result, a proper extremity index should be a

1 product of a measure of rarity and of a measure of the spatial extent in our opinion. Regarding
 2 the first factor, we use $\log(G_{ta})$ instead of pure G_{ta} because of the exponential nature of return
 3 periods. If the second factor of the product was simply the area (a), the product would
 4 increase continuously because $\log(G_{ta})$ decreases with much lower rate than a increases.
 5 Obviously, the spatial extent should be considered with a smaller weight which should be
 6 balanced with $\log(G_{ta})$ having a linear nature. We have chosen a simple and reasonable way
 7 how to reduce the weight of a : the square root which represents the length. The main reason is
 8 that this approach enables to delimit objectively the affected area, as presented below.

9 We proposed the following variable E_{ta} [log(yr)*km]:

10
$$E_{ta} = \log(G_{ta})R = \frac{\sum_{i=1}^n \log(N_{ti})}{n} \frac{\sqrt{a}}{\sqrt{\pi}}. \quad (2)$$

11 which is defined by a product of $\log(G_{ta})$ and of the radius R of a circle of the same area (a) as
 12 the one over which G_{ta} is taken. Alternatively, $\log(G_{ta})$ can be simply computed also as the
 13 arithmetic mean of common logarithms of return periods. Unlike G_{ta} (Fig. 5), E_{ta} increases
 14 initially as we accumulate the pixels with high return periods. However, once the return
 15 periods are not high enough in the additional accumulated pixels, the value of E_{ta} starts to
 16 decrease. This occurs when the decrease in the return periods is more significant than the
 17 increase in the accumulated area (Fig. 6). The tipping point of the curve is the focus of our
 18 interest because the maximum of E_{ta} characterizes the extremeness of the phenomenon within
 19 the time period t . This point represents the inflection point of the curve in Fig. 5; at this point,
 20 the decrease in the mean extremeness represented by $\log(G_{ta})$ becomes more significant than
 21 the increase in the area represented by R .

22 We lastly choose the time period for which E_{ta} reached its maximum during the event. We
 23 call this value the Weather Extremity Index (WEI) because it represents the searched
 24 extremeness of the event. Its unit is $\log(\text{yr})\text{km}$. Now, we can also define the affected area a ,
 25 the duration t , and the respective geometric mean of return periods G_{ta} complying with the
 26 relation $E_{ta} = \text{WEI}$.

27 Any weather or climate event can be evaluated by the WEI and by related characteristics. The
 28 comparison of the two studied precipitation events is demonstrated by diagrams in Fig. 7. The
 29 main difference is that the affected area a was much larger (within the Czech Republic) in
 30 August. However, $\log(G_{ta})$ was slightly lower because compared with May, a larger part of

Odstraněno: $E_{ta} = \log(G_{ta})R = \frac{\sum_{i=1}^n \log(N_{ti})}{n} \frac{\sqrt{a}}{\sqrt{\pi}}$ (2)¶

Odstraněno: of a circle area equivalent to the considered area (R)

Odstraněno: It follows from Eq. (2) that

1 the affected area was characterized by rains with relatively low return periods in August (see
2 also Fig. 3). Both events were rated as 2-day events; nevertheless, the difference between 2-
3 day and 3-day values of E_{ta} was negligible in May.

4

5 Discussion

6 In the couple of presented examples, we used daily precipitation totals when evaluating the
7 extremeness of heavy rain events. To evaluate longer events properly, we estimated return
8 periods of totals accumulated during two and three days (even longer time windows can be
9 studied). In contrast, a precipitation event can last less than one day. Obviously, it would be
10 better to use short-term precipitation intensities and their return periods (3-hours, 6-hours,
11 etc.). However, the density and length of their data series are not sufficient for these purposes.
12 As a result, it should be taken into account that the extremeness of such events (usually
13 produced by convective storms) can be slightly underestimated by the WEI because they are
14 compared by the same tool with events when precipitation actually fell the whole day. For
15 example, return periods of 6-hour totals would be higher than if they are evaluated as 1-day
16 totals. In future we plan to employ also return periods of short-term precipitation intensities,
17 using temporal statistical downscaling of daily totals.

Odstraněno: W

18 The estimation of return periods at gauges is method-sensitive, which can increase the
19 uncertainty of the extremity evaluation. We applied the GEV distribution; parameters were
20 estimated by means of the L-moment algorithm. The distribution of precipitation extremes is
21 usually heavy-tailed. If not, return period estimates can reach unrealistically high values. We
22 therefore decided to restrict the estimates up to 1000 years. We also used the ROI method,
23 making the results more robust. Even if a less sophisticated method was used, the influence of
24 this type of uncertainty is substantially reduced in our methodology because rather than mere
25 values of return periods, we use their common logarithms.

26 An additional step in the suggested methodology is the interpolation of point values of return
27 periods into a regular grid. We do not estimate return periods of areal precipitation totals. On
28 the other hand, this approach prevents us from increasing the uncertainty by interpolation both
29 precipitation totals and GEV parameters. Again, the interpolation method can influence the
30 acquired results. Because the spatial distribution of return period values does not fully
31 correspond with the respective totals, methods used for precipitation interpolation cannot
32 reasonably be applied in this case. A strong emphasis should be placed on the finding that if

1 return periods are interpolated, it is necessary to reflect their nonlinear dependence on the
2 totals. We decided to interpolate common logarithms; our reasoning can be demonstrated by
3 the following example (Fig. 8).

4 Consider two gauges at the distance of 8 km, having the same parameters of the GEV
5 distribution. Gauge A measured a daily total of 35.6 mm, which corresponds to the return
6 period of 2 years; gauge B measured 100 mm (return period of 100 years). The application of
7 linear interpolation of the return period values leads to an increase in the return period by the
8 value of 12.25 years per 1 km in the line from gauge A to gauge B. As a result, corresponding
9 precipitation totals increase much more rapidly in the vicinity of gauge A than B. In fact, we
10 could expect a linear increase in precipitation between A and B, which is satisfied when
11 logarithms of return period values are interpolated.

12 The final step of our methodology optimizes the considered area and the time window for
13 every studied event. Even if the area is divided into several parts or if days with heavy rains
14 are separated by a slightly drier episode, they are considered as a whole due to the
15 accumulated effect of precipitation. We aggregate grid pixels with high return period values
16 and compute their geometric mean within the given area. The optimization is enabled by
17 multiplication of the common logarithm of the geometric mean by the radius of an equivalent
18 circle area. We find the product E_{ta} of these two factors well balanced because both are linear
19 in nature. As a result, E_{ta} increases with increasing a only as long as pixels with high return
20 periods are added. This shape of the E_{ta} curve enables to optimize the considered area
21 objectively and to compare a weather (climate) extreme with other events.

Odstraněno: Both the logarithm of the mean return period and the radius of the area

Odstraněno: variables

Odstraněno: their

Odstraněno: , so they should have a comparable weight; thus, their simple product seems to be a proper variable for the evaluation of weather or climate extremes.

Odstraněno: seems

Odstraněno: to be

Odstraněno: ,

Odstraněno: , because our study was limited to the Czech Republic

Odstraněno: .

Odstraněno: Regarding the events without spatial limitations, precipitation affected a much larger area in Poland in May

Odstraněno: in press

22 In Table 1, the values of the WEI are compared with other characteristics of extremity that
23 were discussed in Sect. 2. Except from the maximum daily total at a site, the August event
24 was more extreme in the Czech Republic with respect to all other characteristics, including the
25 WEI. It corresponds with the hydrological response which was also more extreme in August
26 when return periods of peak flows overcame 100 years at some rivers in northern Bohemia
27 (Kaspar et al., 2013).

28 Nevertheless, the WEI can be applied regardless the type of weather (climate) extremes. It
29 reflects both the spatial and the temporal aspects of the studied event. Unlike classical
30 indicies, the WEI is not threshold-dependent in terms of the considered area and the applied
31 time window. As a result, it enables to compare extremeness of rather heterogenous events.

1 **6 Conclusions**

2 The suggested methodology takes into account both the spatial and the temporal aspects of
3 weather and climate extremes and is generally applicable regardless of the studied
4 phenomenon (heavy rains, heat waves, cold spells, windstorms, etc.). The only condition is
5 that the phenomenon is quantified by a proper variable (precipitation totals, daily temperature
6 maxima and minima, etc.). The methodology reflects spatial differences in the climatology of
7 the variable; return periods are therefore utilized rather than mere values of the variable. The
8 evaluation of extremeness is “event-adjusted”, which means that it is based on optimization of
9 both the considered area and time duration for every event. The suggested WEI makes it
10 possible to evaluate weather and climate extremes quantitatively. As a result, extremes can be
11 studied more precisely from the viewpoint of possible recent and future changes in their
12 frequency, seasonal distribution, circulation conditions accompanying them, etc.

13 The WEI can be computed within any region of interest (for example, administrative units).

14 We demonstrated the methodology within the territory of the Czech Republic and prepare
15 several papers regarding temperature, precipitation, and wind extremes in the Czech territory.

Odstraněno: applied

16 Nevertheless, both presented precipitation events affected also neighboring countries. The
17 events could be evaluated also as a whole if respective data were at our disposal. Furthermore,
18 if the WEI of a precipitation event is computed within individual catchments, values of the
19 WEI can be easily compared with runoff extremeness so it makes it possible to study
20 relationships between extremeness of precipitation events and of subsequent floods.

Odstraněno: ity

Odstraněno: ity

Odstraněno: extremity

21 There is one more aspect of weather and climate extremes which was not discussed in the
22 presented paper. We can consider not only the spatial differences in climatology of the
23 studied phenomenon but also the temporal ones. For example, heavy rains are concentrated in
24 summer in the Czech Republic (Tolasz et al., 2007). If we define extremes as the events that
25 are the most different from seasonally normal conditions, they can occur during the whole
26 year. In addition, if properly selected, they should be randomly and to a certain extent evenly
27 distributed within the annual cycle. We would like to focus on these issues in our next
28 research.

29

30 **Acknowledgements**

1 The research presented in this study is supported by the Czech Science Foundation under the
2 project GACR P209/11/1990. Precipitation data were provided by the Czech
3 Hydrometeorological Institute for research purposes. *We would also like to thank J. Kyselý*
4 and L. Gaál from the Institute of Atmospheric Physics in Prague for implementing the ROI
5 method.

6

1 **References**

- 2 Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G.,
3 Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F. Tagipour, A., Rupa Kumar, K.,
4 Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Brunet, M.
5 Taylor, M., New, M., Zhai, P., Rusticucci, M., and Vazquez-Aguirre, J. L.: Global observed
6 changes in daily climate extremes of temperature and precipitation, *J. Geophys. Res.*, 111,
7 D05109, doi:10.1029/2005JD006290, 2006.
- 8 Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., and Lettenmaier, D. P.:
9 Twentieth-century drought in the conterminous United States, *J. Hydrometeor.*, 6, 985-1001,
10 2005.
- 11 Balling, R. C. and Cerveny, R. S.: Compilation and discussion of trends in severe storms in
12 the United States: Popular perception v. climate reality, *Nat. Hazards*, 29, 103-112, 2003.
- 13 Begueria, S., Vicente-Serrano, S. M., Lopez-Moreno, J. I., and Garcia-Ruiz, J. M.: Annual
14 and seasonal mapping of peak intensity, magnitude and duration of extreme precipitation
15 events across a climatic gradient, northeast Spain, *Int. J. Climatol.*, 29, 1759-1779, 2009.
- 16 Beirlant, J., Goegebeur, Y., Teugels, J., and Segers, J.: *Statistics of Extremes: Theory and*
17 *Applications*, John Wiley & Sons, Chichester, 2004.
- 18 Beniston, M. and Stephenson, D. B.: Extreme climatic events and their evolution under
19 changing climatic conditions, *Glob. Planet. Change*, 44, 1-9, 2004.
- 20 Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A. T., Frei, C., Goyette, S.,
21 Halsnaes, K., Holt, T., Jylha, K., Koffi, B., Palutikof, J., Scholl, R., Semmler, T., and Woth,
22 K.: Future extreme events in European climate: an exploration of regional climate model
23 projections, *Clim. Change*, 81, 71-95, 2007.
- 24 Biondi, F., Kozubowski, T. J., and Panorska, A. K.: A new model for quantifying climate
25 episodes, *Int. J. Climatol.*, 25, 1253-1264, 2005.
- 26 Bissolli, P., Friedrich, K., Rapp, J., and Ziese, M.: Flooding in eastern central Europe in May
27 2010 - reasons, evolution and climatological assessment, *Weather*, 66, 147-153, 2011.
- 28 Bouwer, L. M.: Have disaster losses increased due to anthropogenic climate change? *B. Am.*
29 *Meteorol. Soc.*, 92, 39-45, 2011.

- 1 Burn, D. H.: Evaluation of regional flood frequency analysis with a region of influence
2 approach, *Water Resour. Res.*, 26, 2257-2265, 1990.
- 3 Cavazos, T.: Large-scale circulation anomalies conducive to extreme precipitation events and
4 derivation of daily rainfall in northeastern Mexico and southeastern Texas, *J. Clim.*, 12, 1506-
5 1523, 1999.
- 6 Ceresetti, D., Ursu, E., Carreau, J., Carreau, J., Anquetin, S., Creutin, J. D., Gardes, L.,
7 Girard, S., and Molinie, G.: Evaluation of classical spatial-analysis schemes of extreme
8 rainfall, *Nat. Hazards Earth Syst. Sci.*, 12, 3229-3240, 2012.
- 9 Chow, V. T., Maidment, D., and Mays, L. M.: *Applied Hydrology*, McGraw-Hill Book Co.,
10 New York, 1988.
- 11 Cutter, S. L., Gall, M., and Emrich, C. T.: Toward a comprehensive loss inventory of weather
12 and climate hazards, in: *Climate extremes and society*, Diaz, H. F. and Murnane, R. J. (Eds.),
13 Cambridge University Press, New York, 279-295, doi:10.1017/CBO9780511535840.017,
14 2008.
- 15 Danhelka, J. and Sercl, P.: Floods in the Czech Republic in 2010. *Meteorologicke zpravy*, 64,
16 4-9 (in Czech, with an English abstract), 2011.
- 17 Diaz, H. F. and Murnane, R. J.: The significance of weather and climate extremes to society:
18 an introduction, in: *Climate extremes and society*, Diaz, H. F. and Murnane, R. J. (Eds.),
19 Cambridge University Press, New York, 1-7, doi:10.1017/CBO9780511535840.003, 2008.
- 20 Hegerl, G. C., Zwies, F. W., Stott, P. A., and Kharin, V. V.: Detectability of anthropogenic
21 changes in annual temperature and precipitation extremes, *J. Clim.*, 17, 3683-3700, 2004.
- 22 Homar, V., Jansa, A., Campins, J., Genoves, A., and Ramis, C.: Towards a systematic
23 climatology of sensitivities of Mediterranean high impact weather: a contribution based on
24 intense cyclones, *Nat. Hazards Earth Syst. Sci.*, 7, 445-454, 2007.
- 25 Hosking, J. R. M. and Wallis, J. R.: *Regional frequency analysis: an approach based on L-*
26 *moments*, Cambridge University Press, New York, 1997.
- 27 Kaspar, M., Müller, M., and Pecho, J.: Comparison of meteorological conditions during May
28 and August 2010 floods in Central Europe, *AUC Geographica*, 48, 27-34, 2013.
- 29 Katz, R.W.: Statistics of extremes in climate change, *Clim. Change*, 100, 71-76, 2010.

- 1 Klein Tank, A. M. G., Peterson, T. C., Quadir, D. A., Dorji, S., Zou, X., Tang, H., Santhosh,
2 Joshi, U. R., Jaswal, A. K., Kolli, R. K., Sikder, A. B., Deshpande, N. R., Revadekar, J.
3 V., Yeleuova, K. Vandashova, S., Faleyeva, M. Gomboluudev, P., Budhathoki, K. P.,
4 Hussain, A., Afzaal, M., Chandrapala, L., Anvar, H., Amanmurad, D., Asanova, V. S., Jones,
5 P. D., New, M. G., and Spektorman, T.: Changes in daily temperature and precipitation
6 extremes in central and south Asia, *J. Geophys. Res.*, 111, D16105, doi:
7 10.1029/2005JD006316, 2006.
- 8 Konrad, C. E.: The most extreme precipitation events over the Eastern United States from
9 1950 to 1996: considerations of scale, *J. Hydrometeor.*, 2, 309-325, 2001.
- 10 Kyselý, J., Gaal, L., Picek, J., and Schindler, M.: Return periods of the August 2010 heavy
11 precipitation in northern Bohemia (Czech Republic) in present climate and under climate
12 change, *J. Water Clim. Chang.*, 4, 265-286, doi:10.2166/wcc.2013.051, 2013.
- 13 Kyselý, J. and Picek, J.: Regional growth curves and improved design value estimates of
14 extreme precipitation events in the Czech Republic, *Clim. Research*, 33, 243-255, 2007.
- 15 Lupikasza, E.: Relationships between occurrence of high precipitation and atmospheric
16 circulation in Poland using different classifications of circulation types, *Phys. Chem. Earth*,
17 35, 448-455, 2010.
- 18 Mills, E.: Insurance in a climate of change, *Science*, 309, 1040-1044,
19 doi:10.1126/science.1112121, 2005.
- 20 Müller, M. and Kaspar, M.: Quantitative aspect in circulation type classifications – an
21 example based on evaluation of moisture flux anomalies, *Phys. Chem. Earth*, 35, 484-490,
22 2010.
- 23 Müller, U. and Walther, P.: The Neisse Flood 2010 – Analysis and Consequences,
24 *Wasserwirtschaft*, 101, 10-14 (in German), 2011.
- 25 Nicks, A. D. and Igo, F. A.: A depth-area-duration model of storm rainfall in the Southern
26 Great Plains, *Water Resour. Res.*, 16, 939-945, 1980.
- 27 Panek, T., Brazdil, R., Klimes, J. Smolkova, V., Hradecky, J., and Zahradnicek, P.: Rainfall-
28 induced landslide event of May 2010 in the eastern part of the Czech Republic, *Landslides*, 8,
29 507-516, 2011.

Odstraněno: Kyselý, J., Gaal, L., and Picek, J.: Comparison of regional and at-site approaches to modelling probabilities of heavy precipitation, *Int. J. Climatol.*, 31, 1457-1472, 2011.¶

Odstraněno: in press

- 1 Ramos, M. H., Creutin, J. D., and Leblois, E.: Visualization of storm severity, *J. Hydrol.*, 315,
2 295-307, 2005.
- 3 Ren, F. M., Cui, D. L., Gong, Z. Q., Wang, Y. J., Zou, X. K., Li, Y. P., Wang, S. G., and
4 Wang, X. L.: An objective identification technique for regional extreme events, *J. Clim.*, 25,
5 7015-7027, 2012.
- 6 Sheffield, J., Andreadis, K. M., Wood, E. F., and Lettenmaier, D. P.: Global and continental
7 drought in the second half of the twentieth century: Severity-area-duration analysis and
8 temporal variability of large-scale events, *J. Clim.*, 22, 1962-1981, 2009.
- 9 Smith, M. D.: An ecological perspective on extreme climatic events: a synthetic definition
10 and framework to guide future research, *J. Ecol.*, 99, 656-663, doi:10.1111/j.1365-
11 2745.2011.01798.x, 2011.
- 12 Stephenson, D. B.: Definition, diagnosis, and origin of extreme weather and climate events,
13 in: *Climate extremes and society*, Diaz, H. F. and Murnane, R. J. (Eds.), Cambridge
14 University Press, New York, 11-23, doi:10.1017/CBO9780511535840.004, 2008.
- 15 Svensson, C. and Jones, D. A.: Review of methods for deriving areal reduction factors, *J.*
16 *Flood Risk Manag.*, 3, 232-245, 2010.
- 17 Tolasz, R., Mikova, T., Valeranova, A., and Vozenilek, V. (Eds.): *Climate atlas of Czechia*,
18 Czech Hydrometeorological Institute, Prague, Czech Republic, 2007.
- 19 Visser, H. and Petersen, A. C.: Inferences on weather extremes and weather-related disasters:
20 a review of statistical methods, *Clim. Past*, 8, 265-286, 2012.
- 21 Wigley, T. M. L.: The effect of changing climate on the frequency of absolute extreme events,
22 *Clim. Change*, 97, 67-76, 2009. Reprinted from *Climate Monitor*, 17, 44-55, 1988.
- 23 WMO: *Manual on the global data-processing system*, World Meteorological Organization,
24 Geneva, , 1992.
- 25 Zhang, X. B., Alexander, L., Hegerl, G. C., Jones, P, Klein Tank, A., Peterson, T. C., Trewin,
26 B, and Zwiers, F. W.: Indices for monitoring changes in extremes based on daily temperature
27 and precipitation data. *Wiley Interdiscip. Rev.-Clim. Chang.*, 2, 851-870, 2011.
- 28 Zolina, O., Demuth, S., Detemmerman, V., Gulev, S., Gutowski, W., Klein Tank, A.,
29 Stephenson, D., Stewart, R. Trenberth, K., and Zwiers, F.: WCRP (GEWEX/CLIVAR) and
30 UNESCO (IHP) metrics and methodologies of estimation of extreme climate events

1 workshop, WCRP Informal/Series Report 9/2011, available at [http://www.wcrp-](http://www.wcrp-climate.org/documents/Report_9_2011_Paris.pdf)
2 [climate.org/documents/Report_9_2011_Paris.pdf](http://www.wcrp-climate.org/documents/Report_9_2011_Paris.pdf) (last access: 2 February 2013), 2011.

3

1 Table 1. Comparison of reference events by characteristics discussed in Sect. 2 and by the
 2 WEI: maximum daily precipitation total at a site (MaxR_d); maximum ratio of MaxR_d to the
 3 average annual maximum daily total at a site ($\text{MaxR}_d/\text{Avg}[\text{max}_a\text{R}_d]$); maximum return period
 4 of a daily precipitation total at a site (MaxN); maximum mean daily precipitation total within
 5 the Czech Republic (MeanR_d); Weather Extremity Index (WEI). The values only represent the
 6 territory of the Czech Republic.

Characteristic [unit]	May		August	
	Value	Station / region	Value	Station / region
MaxR_d [mm]	179.8	Třinec	179.0	Hejnice
$\text{MaxR}_d/\text{Avg}(\text{max}_a\text{R}_d)$	3.04	Třinec	3.37	Mařenice
MaxN [yr]	160	Třinec	284	Mařenice
MeanR_d [mm]	7.6	Czechia	21.7	Czechia
WEI [log (yr) km]	42.39	4325 km^2	78.98	17302 km^2

7

1 Figure 1. Four highest daily precipitation totals per year during 1961–2010 in Prague-Ruzyne
2 (364 m above sea level) and in Churanov (a peak in Šumava Mts. with altitude of 1118 m).
3 Annual maxima are interconnected by thin lines. The thresholds discussed in the text are
4 depicted by horizontal lines: precipitation total of 50 mm (1), quantiles 99.9 % in Prague-
5 Ruzyne (2) and in Churanov (3), average annual maxima in Prague-Ruzyne (4) and in
6 Churanov (5), precipitation totals corresponding to the return period of 2 years in Prague-
7 Ruzyne (6) and in Churanov (7).

8

9 Figure 2. Daily precipitation totals in May 2010 and in August 2010 (the right and the left part
10 of the figure, respectively). The state border of the Czech Republic is depicted by the black
11 line.

12

13 Figure 3. Return periods of precipitation totals in May 2010 and in August 2010 (the right and
14 the left part of the figure, respectively), interpolated into the 1-km grid. Each event is
15 represented by a 1-day, 2-day, and 3-day period with maximum return periods. The optimized
16 areas affected in the given time period (see Sect. 4.3) are depicted by orange lines. Colors of
17 circles correspond with Figs. 4, 5, 6, and 7.

18

19 Figure 4. The distribution of return periods of precipitation totals in individual grid pixels
20 during reference events.

21

22 Figure 5. Changes in geometric means of ordered return periods of precipitation totals in Fig.
23 4 as a function of increasing area.

24

25 Figure 6. Changes in E_{ta} values with the increasing extent of the considered area. The values
26 of the WEI and the respective areas are depicted by arrows.

27

28 Figure 7. Demonstration of E_{ta} and WEI values as products of $\log(G_{ta})$ (the common
29 logarithm of the geometric mean of return periods) and R (radius of the circle area equivalent

1 to the considered area a). Units are as follows: R [km], a [km^2], G_{ta} [yr], E_{ta} and WEI
2 [$\log(\text{yr})\text{km}$].

3

4 Figure 8. Precipitation totals (P) between two gauges, calculated from differently interpolated
5 return period values (N): (1) linear interpolation of return periods; (2) linear interpolation of
6 common logarithms of return periods.