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Reply to review by anonymous Reviewer 2

We thank the reviewer for his/her extensive and thoughtful review. Below, we address
the issues raised in the review, and outline changes that we made in our manuscript.
On the following pages, the comments are written in boldface, followed by our replies
in standard text style, and manuscript revisions in "...".
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1. The study aims at providing a framework for the assessment of the impact of
sample size on landslide susceptibility maps (LSM) using quantitative methods
and some new approaches. However, the hypotheses and methods are tested
against a very limited target, represented by 2 very small study areas where a
very high homogeneity in physical settings can be expected (a proof of such
homogeneity could be the fact that using only 81 samples the authors attain an
overall ROC AUC = 0.87, see e.g. Page 31 – rows 23-25). How can conclusions
drawn from this very specific domain be translated to larger geomorphological
contexts? Areas smaller than 10-20 km2 are not the usual target for LSM due
to the fact that direct field survey and detail scale analysis (including field tests
and deterministic modeling) are still possible with reasonable costs (see e.g.
Berti and Simoni, 2010 JGR, 115). Most of the basic assumptions of the paper
(such e.g. the sampling distance, the factor autocorrelation and so on) are
influenced by this choice. A much larger area of study (e.g. > 100 km2 at least)
would be needed to discuss the actual effects of sample size on LSM, an area
where the relative importance of susceptibility factors could vary due to the
presence of different types of movements, settings and so on.

We acknowledge that the small size of the study area, and its homogeneity lead to
optimistic validation results.
In reply also to comments of the first reviewer, we have added some thoughts in the
validation section:
"The different performance of the ZBT model in the LT area and vice versa is an
interesting fact. This could be caused by different characteristics of the study areas
(different range, spatial and statistical distribution of geofactor values); the two neigh-
bouring areas, however, are regarded as very similar and homogeneous. Heckmann
and Becht (2009) investigated the transferability of a debris flow susceptibility model
among different study areas and reported that the predictive power of models is largely
independent of the degree of similarity of training and test area; their model approach
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(certainty factor), however, strongly differs from logistic regression. Besides computa-
tional and conceptual differences, continuous geofactors such as slope are classified
using the same scheme in all study areas. Conversely, in our study, a different range
of geofactors in training and test areas could lead to different coefficients and different
model performance due to extrapolation. Another reason for the different performance
could be the different debris flow density. In order to determine the controls of model
performance, future research will have to use a larger number of different study areas
with different debris flow densities. The methodological framework for the assessment
of model variability and performance proposed here is considered useful for such
investigations."

Furthermore, the small size of our study area and its characteristic settings naturally
affect the transferability of our model and to some degree also the generality of our
conclusions. Our aim, however, was to present a methodological framework (as also
noticed by the reviewer: "...aims at providing a framework") rather than a transferable
general model. On the one hand, we think it is plausible to expect that, irrespective
of study area size, the sample-dependence of model composition (i.e. the number
and type of geofactors remaining in the model after stepwise factor selection) will
decrease, and there will be a sample size beyond which this sample-dependence will
change only marginally. On the other hand, we cannot deny that things are possibly
different in large, heterogeneous study areas. Therefore, we have re-formulated our
conclusions and/or added remarks on the generality of the findings where applicable:

"While the typical scale of application of landslide susceptibility models is in the
order of (many) tens to thousands of square kilometers, our study took place in
a comparatively small study area. Considering the small size and the associated
homogeneity of our study area with respect to the statistical and spatial distribution
of geofactors, we add a note of caution to the interpretation of our findings. First, we
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expect the necessary sample size to be larger in more heterogeneous areas, and we
expect a larger variability of model selection and model coefficients. One possibility
of dealing with large, heterogeneous study areas has recently been proposed by
Petschko et al. (2012) who partition their study area in sub-areas based on lithological
properties that are related to landslide activity. Second, the assessment of spatial
autocorrelation from variograms of the geofactors is much less straightforward in
larger, heterogenous areas. For example, different ranges of autocorrelation could
exist for the same geofactor in different (sub-)regions of the study area, which calls
into question the existence of a single sample size (and the associated average
distance between sample points) below which the autocorrelation issue is mitigated.
However, we are confident that our observation of a local minimum or plateau in model
diversity will apply also at larger spatial scales (see, for example, Hjort and Marmion,
2008; Guns and Vanacker, 2012). Moreover, we uphold the general recommendation
to investigate, through repeated sampling with different sample sizes, the behaviour
of parameter selection in order to explore a suitable (small) sample size that both
minimises sample dependence and facilitates a robust parameter selection."

Another comment from our side: The study by Brenning (2005, NHESS) that is
cited multiple times, both in our study and in the reviewer comments, uses a study
area of 11 km2, so we feel that the small size of our study area has to be discussed,
but is not prohibitive for our purposes.

The fact that this study only concerns debris flows does not exempt the authors
to consider the practical fact that, actually, LSM application must be performed
in most cases without any a-priori knowledge of active processes or at least
without any possibility of discriminating different ensembles of environmental
settings to perform limited-extent mapping. In this context, sampling for model
calibration should also encompass the problem of statistical significance in
different non-homogeneous areas with implications that are not negligible for
the aim of the paper.
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We strongly believe that knowledge of the (potentially active) processes, and/or
focusing on specific types of landslides is essential for LSM tasks. Mass movements
as different as rockfall, shallow and deep-seated landslides, slope- and torrent-bed
type debris flows etc. are extremely unlikely to be predictable by the same model, as
they occur under very different circumstances (for example, you can see that from the
very different spatial distribution and appearance of their initiation zones). There are
even differences within one type of mass movements: Wichmann et al., (2002), for
example, show that a susceptibility model used for the prediction of slope-type debris
flows is completely unable to do so for torrent-bed type debris flows. Finally, two
sub-types of slope-type debris flows can be distinguished based on the mechanism of
initiation (c.f. Zimmermann et al., 1997), and it cannot be taken for granted that one
model can account for even these comparatively small differences. Our study area
features almost exclusively slope-types debris flows of the second type (rockslope-
talus-contact, progressive erosion etc.), as described in the study area section.
In large heterogeneous study areas, however, we contend that creating the inventory
(the limited-extent-mapping addressed by the reviewer) is difficult, however it can be
guided by having a look at aerial photos, landcover maps etc where applicable. It is
clear that in large and heterogeneous settings larger sample sizes will be required
in order to represent the diversity of the whole study area. One strategy for large
areas has been recently proposed by Petschko et al. (2013, NHESSD) who separate
sub-areas of their large study area based on groups of similar lithology. Due to the
favourable homogeneity of our study area, we did not have to deal with such problems,
however we clearly understand the need to critically appraise and to understate the
generality of our conclusions. For modification of our discussion see above.

2 All the analysis and results are influenced by the impact of proportion between
event and non-event pixels selected for the calibration process. That is well
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discussed in the manuscript and this is also one of a very few papers that
directly raise the issue and propose a solution. However, there is no accounting
for “false negatives” in the study. We all know that landslide inventories are
highly affected by missed landslides, which have not been recognized due to
the absence of visible effects at the scale of mapping. This loss of information,
due to the normal processes of geomorphic and environmental slope evolution
after failure, is especially important for shallow landslides (such as the debris
flows considered in the study) whose scars have a very low persistence in time.
How the presence of such missed positives influences the results of analysis?
Usually, one way of reducing the noise introduced by false positives would be
to increase sampling dimension but, instead, this study seem to reveal that no
gain is obtained by using larger samples. How is this conclusion influenced by
the hidden presence of missed old debris scars within the non-event samples?
How can this be translated (see also note 1) to larger areas where this problem
could even be worse?

Morphological traces of debris flow initiation are visible very well, both on orthophotos
(that have a ground resolution of 20 cm in our case) and on shaded relief representa-
tions of high-resolution DEMs (1m in our case). The slope-type debris flows we solely
investigate here take place in an area where essentially no human impact takes place
(such as ploughing in case of shallow slides in an agricultural area, c.f. Bell et al. 2012,
Geografiska Annaler A 94.1, pp. 135-156) that could effectively remove the traces
of debris flow initiation. Moreover, we argue that debris flow activity in environments
like our study area tends to persist once it has started (because a newly formed
incision forces convergence of overland flow, and because debris flows appear to be
transport-limited) for a long time (until either sediment storage is depleted or slope
gradient has become too low for debris flow initiation). The problem of overlooking
debris flow events is, from our experience, more related to the deposits than to the
initiation zones (because the former in many cases progressively and quickly change
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their colour due to weathering, or are covered by more recent deposits). Last but not
least, a good LSM is expected to indicate susceptibility at the site of former landslides
even if the corresponding event was not part of the training dataset (provided that the
topography has not changed towards more stable conditions). We have included some
text on false negatives in the inventory section of the methods chapter:

"Guzzetti et al. (2012) discuss the importance of landslide inventory maps and report
on advantages, limitations and new methodological developments. With respect to
susceptibility mapping, the quality of the underlying inventory is a limiting factor for
the reliability of predictive models (Ardizzone et al., 2002). While fresh landslides are
readily detected, post-event modifications such as human impact (e.g. ploughing),
landcover change, erosion and landslide reactivation etc. can hamper the identification
of landslides and thus jeopardise the completeness of the inventory (Bell et al.,
2012, e.g., analyse persistence and change of landslide morphology depending on
age). For debris flows in our study area, however, we argue that the risk of false
negatives (i.e. the risk of an incomplete inventory due to overlooked debris flow scars)
is small: The activity of debris flows tends to persist once it has started, because
an incision enhances and sustains the convergence of surfcace runoff. Due to the
transport-limited conditions of debris flow initiation in our study area, this is supposed
to hold for a long time, until either sediment storage is depleted or slope gradient has
become too low. Conversely, debris flow deposits are frequently modified by renewed
activity, and less pronounced depositional lobes can loose contrast on aerial photos
due to progressive weathering. Additionally, human activities that could potentially
modify the appearance of debris flow scars are completely absent in the relevant
regions of our study area."

3 There is, throughout the paper, a diffuse contradiction: in the methodology
part (and somewhere else as well) you report that step-wise model selection
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(or, I would say, factor selection since you always use one GLM model) is
not appropriate for testing theory and to draw conclusions on the physical
significance of single factors with respect to debris flows. In several other parts
(mainly results and discussion) you nevertheless use this step-wise selection
results to make hypotheses on the role of susceptibility factors.

On the one hand, it was not our aim to rank geofactors with respect to their relative
physical importance and discuss the implications of the specific ranking. We only
state that certain factors form part of most models, and compare this selection to other
studies.

On the other, we understand that the assertion that step-wise model selection (which
is, by the way, common terminology in statistics) was inappropriate for theory testing
may cause undue confusion and is not too relevant for the aims of our paper. The
complete quote by Menard reads “...there appears to be general agreement that the
use of computer-controlled stepwise procedures to select variables is inappropriate for
theory-testing because it capitalizes on random variations in the data, and produces
results that tend to be idiosyncratic and difficult to replicate in any sample other than
the sample in which they originally were obtained”. In our paper, we are dealing with
such sample dependence (which we aim to minimise). Therefore, studies applying
stepwise variable selection on the basis of only one single or too few samples run two
risks with respect to sample dependence: i) variable selection and ii) model spatial
structure and performance. Menard later reserves that stepwise selection may be
appropriate for purely predictive research (where “there is no concern with causality,
only with identifying a model, including a set of predictors, that provides accurate
predictions of some phenomenon”) and explorative research (where “there may be a
concern with theory construction, when the phenomenon is so new or so little studied
that existing ‘theory’ amounts to little more than empirically unsupported hunches
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about explanations for the phenomenon.”). In different LSMs published, there is some
agreement on some important factors, however the relative role of the factors is not
the same everywhere, and may vary spatiotemporally.

Facing the fact that the relative role of factors is indeed part of many studies, and
stressing once more that the main focus of our paper is not the investigation of pre-
dictors, we decided to remove this possibly confusing statement. The corresponding
paragraph now reads:
"(...) The results of stepwise logistic regression have often been used to rank the con-
trolling factors by importance (e.g. vandenEeckhaut et al.,2006). While we assume that
the methodological framework of our study would also be suitable for the assessment
of sample size effects in such investigations (Guns and Vanacker, 2012, e.g., suggest
a "robust detection of controlling factors" based on repeated sampling and stepwise
model selection), the latter are not the aim of our present study. (...)"

4 Furthermore, basically, I wonder why would you choose to perform all these
preliminary analyses on sampling dimension and factor selection to reach
an overall performance (AUC=0.8-0.9) similar to those found by many other
authors without recurring to it if you are also unable to use the results of factor
selection to draw some interesting conclusions on the physical processes
actually producing debris flows? Please clarify this point.

What we intended to tackle were the issues of i) model “stability”, i.e. the dependence
of model results on the single sample that many studies still rely on and ii) sample
(in-)dependence. Independence of observations is an important prerequisite for the
statistical method of log. regression (the parameters are fit using a maximum likelihood
approach; for the likelihood function, probabilities for the pixels that belong to the
sample are multiplied, which is only admitted under the assumption of stochastic inde-
pendence, p. 2739 in the original manuscript). Our results indicate that the violation of
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statistical assumptions does not appear to affect model quality in terms of predictive
capacity evaluated using the AUC (with the restriction: “in our study area”). However,
the violation is known to produce false significance estimates (see Brenning, 2005,
NHESS, p.857) that might negatively affect significance-based parameter selection
(used e.g. in van den Eeckhaut, 2006, NHESS). Then, similarly, the selection-based
interpretation of the relative importance of geofactors (which is not so much the aim
of our paper, but common practise and also advocated by the reviewer) would be
compromised.

We decided to clarify our intentions in more detail, especially with reference to
autocorrelation in the non-event sample (section "why the sample must not be too
large":

"Atkinson and Massari (2011) explain that (spatial) autocorrelation of the geofactors
causes the model residuals to be spatially autocorrelated (which is not acceptable as
model residuals have to be uncorrelated), and that this may lead to "incoherent signif-
icance estimates for the parameters" (see also Brenning, 2005). Consequently, such
incoherent estimates compromise both significance-based model selection and the as-
sessment of parameter importance that is based on the latter."
"(...) In some instances, the risk of autocorrelation is dealt with for "events" only, as ge-
ofactors tend to be homogeneous (and consequently strongly autocorrelated) on land-
slide terrain (Atkinson and Massari, 2011). However, the independence assumption
refers to all observations of the dependent variable (Hosmer and Lemeshow, 2000), in
our case to the occurrence and non-occurrence of debris flow initiation. As the geofac-
tors used as independent variables are supposed to be associated with the dependent
variable, we argue that the degree of autocorrelation of these geofactors should be
accounted for in the sampling procedure. In order to mitigate the issue of spatial auto-
correlation, (...)"
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Another, somewhat minor, conceptual issue: in the introduction it is not clear
what are the novel aspects proposed by the paper with respect to recent
similar works such as e.g. Brenning (2005) who already attempted sample size
sensitivity analysis. Please add some more explanation here.

Perhaps the most important novel aspect is the strategy to minimise (not prevent)
autocorrelation in both the “event” and “non-event” pixels. While several studies recog-
nise the autocorrelation issue for the “event” sample (e.g. by taking one pixel for each
landslide within the inventory), this has not been applied to the “non-event” fraction.
Brenning (2005, NHESS) and Atkinson (2011, Geomorphology 130, pp 55-64) follow
the strategy of including spatial autocorrelation in the regression (autologistic models).

Another novelty is the number of replications. Brenning (2005), for example, uses
50 replications, while we use 1000 on the grounds of a much higher stability of the
results. With only 100 replications, visible differences appeared when comparing two
diversity diagrams (Fig. 4) – this suggests that only 25-50 replications are not enough
to achieve stable results. However, the required number of replications depends on
data characteristics and can probably not be generalised.
Modified/added:
"We analyse model diversity by repeating the stepwise model selection with 1000
independent samples of a given sample size. Such a high number of replications
is novel compared to existing studies that employ multiple samples; we chose the
number of 1000 because we noticed in first experiments that the model diversity
assessment was too unstable with a lower number of replications (e.g. between 25
and 50 in the studies of Brenning, 2005; Begueria, 2006, Guns and Vanacker, 2012)."

Another novel aspect is the quantification of model variability (as one expression of
sample dependence) using indices from information theory and ecology (biodiversity
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assessment). This is an alternative for the recently proposed "thematic consistency"
index (Petschko et al., 2013); the latter uses variable-selection frequencies in model
replications and is based on the Gini impurity index.
Modified/added:
"Therefore, we propose the "model diversity" as a measure of model quality in terms
of reproducibility; similarly, Petschko et al. (2013) recently proposed a "thematic
consistency" index that uses variable-selection frequencies in model replications and
is based on the Gini impurity index."

A minor novelty is that we use only DEM-related parameters (prerequisite: availability
of high-res and high-quality DEM), which is admittedly facilitated by the absence of
significant vegetation cover in the relevant parts of the study areas.
A note concerning this was already contained in the original manuscript: "Although
geological and landcover maps were available, we tried to use only geofactors that
can be derived from (high-quality) digital elevation models (DEM) in order to test the
feasibility of DEM-based modeling (such high-quality DEMs are increasingly available
for large parts of the world)."

5. The authors test model stability against random sampling after selecting the
optimal sample size. This comes a little bit too late in the paper, in my opinion.
Why not try to understand which is the impact of local mapping heterogeneities
at different sample sizes? I would think that, the smaller the sample, the larger
the impact of outliers on the model calibration should be. Your results seem
to contradict this quite common belief. But you only perform random tests
for 1 sample size. For example, how errors in the estimation of local DEM
elevation influence the results of your analysis? The origin of the data (LiDAR
acquisitions) usually implies high precision but high frequency of local errors,
especially on mountain topography.
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We are not sure what the reviewer meant with "testing model stability against random
sampling AFTER selecting the optimal sample size”. In order to find the optimal
sample size (that sample size i. above which model diversity does not decrease
considerably any more, and ii. for which the expected distance between neighbouring
pixels in the sample is above the autocorrelation range of as many geofactors as
possible) we conducted random sampling (1000 random samples for each of more
than 15 different sample sizes) and related the measured model diversity to sample
size. In observing that model diversity (and hence, sample dependence) decrease
for larger n (fig. 4), we find both our working hypothesis (page 2750 lines 11ff) and
the “common belief” addressed by the reviewer (which we do share) confirmed, not
contradicted (given that a low model diversity/sample dependence implies a low
sensitivity to “outliers”).

Then, having identified the optimal sample size, we take 100 random samples of that
size to generate 100 models (and the corresponding susceptibility maps, figs. 5,6,7),
and for model validation (fig.8). We did that not only for the optimal sample size, but
also for n=81, according to a “standard” recommendation of a 1:1 ratio of event and
non-event units (fig. 8).

Autocorrelation. The authors rise here a very important issue that concerns
almost all LSMs published so far. Their approach of using average variogram
range as the limiting inter-distance for sampling (as similarly proposed by
Brenning, 2005) is very understandable and should become common practice in
environmental analysis.
However, I believe that the whole geostatistical issue is in general treated with
too much superficiality in the manuscript. In particular, I have two doubts
regarding the specific case which I hope the authors will be able to clarify:
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a. Many of the commonly used variables (factors) influencing landslides
are not continuous in space and cannot be treated as random space functions
(or fields). Very clear examples are geology and land cover, whose spatial
representation (also for mapping constrains) is that of areal objects with prop-
erties which are constant within polygons and suddenly vary when a polygon
boundary is crossed. Due to the very nature of DEMs, this also applies (even
though only partially) to elevation data and their derivatives (slope and so on)
who are always measured (or computed) over finite spatial domains (pixels
of pixel clusters). This implies the existence of very specific and complex
spatial autocorrelation patterns that cannot be captured by simple pixel-based
variogram analysis. A corollary of this is that strong spatial asymmetries are
present in geological and geomorphological data, which in most of the cases
would render a simple representation of average range completely useless. I
believe the solution of taking the lowest range for staying on the safe side is not
the right solution here.

We agree with the reviewer that some of the variables cannot be treated as fields.
Geology, however, is not included in our model (though we contend that it must be
included in a model for a larger, more heterogeneous area). Landcover is not included
as well, except the binary variable “rough class” which is computed from slope and
roughness (Fig. 2 shows the variogram of roughness, not of the categorical variable
used in the model). While we would like to stick to the “simple” variogram-based
estimation of autocorrelation range in our paper (in a small, homogeneous area), we
agree that different analyses have to be used in larger, more heterogeneous settings.
For example, a large study area should be subdivided, for example based on lithology
(see Petschko et al., 2013 NHESSD), landuse, climate, or combinations of such
“large-scale” factors, and autocorrelation analyses should be conducted for each of
the subareas.
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A note of caution has been added to the discussion (see also above):
"Second, the assessment of spatial autocorrelation from variograms of the geofactors
is much less straightforward in larger, heterogenous areas. For example, different
ranges of autocorrelation could exist for the same geofactor in different (sub-)regions of
the study area, which calls into question the existence of a single sample size (and the
associated average distance between sample points) below which the autocorrelation
issue is mitigated."
The sentence before the one cited here contains a reference to Petschko et al. and
their approach to subdividing a large heterogeneous study area in more homogeneous
subareas.

Furthermore, we are not suggesting to choose that non-event sample size which leads
to an average distance just within the lowest autocorrelation range in order to stay on
the safe side. In terms of sample sizes, this is a “bottom up” approach in that we start
with small sample sizes (with associated low reproducibility, high sample dependence,
high sensitivity to outliers and inability to represent the variability geofactors with in
the study area) and aim at reaching either a plateau or a local minimum of model
diversity, ideally before we come into the autocorrelation range of any geofactor. We
assume that the smaller the sample size (and the larger the average distance between
observations), the more geofactors will be uncorrelated, and the smaller the risk of
violating the assumption of independent observations. However, if the autocorrelation
ranges of only few parameters are crossed, we have to accept that as inevitable with
respect to sample dependence.

b. The authors discuss autocorrelation and its physical meaning in the land-
scape as a possible negative influence on factor selection due to lack of sample
independence. The problem is, that the authors modify the (already artifact)
autocorrelation properties of the factors by arbitrarily averaging some of them to
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different scales. It is clear, and I agree on that, that slope curvature calculated at
the 1 m pixel scale has no relationship with debris flow initiation. However, why
use 5 m aggregation and not e.g. 10 m or 2 m? This choice clearly influences
the variogram analysis. I would be grateful if the authors could clarify this point
and how they think this influences their analysis and conclusions.

We agree that the degree of smoothing will influence the issue of autocorrelation.
In our study, we have not rigorously checked several possible radii of smoothing
filters (which would be an interesting study on its own). The reason why we used
a radius of 10 m (not 5) is the (coarse) estimation of the “typical” scale of channels
within the rock faces and talus cones that are both prone to and indicative of debris
flow activity. With a larger window, topography is smoothed too much as to indicate
locations of concentrated flow; moreover, radii of profile curvature become too large,
for example, to represent the boundary of rockface and talus). While we wanted
to “smooth out” detail for the curvature calculation, we kept the window smaller for
the roughness calculation, as we were more interested in material properties within
smaller surroundings (for example on the sidewall of a gully rather than capturing
the medium or large-scale roughness of the gully itself). See also reply to similar
comments by the first reviewer.

In all the manuscript the authors use the diversity and the diversity indexes as
measures of model performances. While I agree on the fact that a model should
be parsimonious and that over-parametrisation is to be avoided, it is still not
clear to me why they automatically assume that low model diversity is perforce
better.

The diversity measures indicate neither model performance (this is measured by AIC
and above all by AUC) nor parsimony vs. possible over-parametrisation (the indices
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do not measure the number of parameters in the models). If a model with many
parameters appears as the “best” (in terms of AIC) in the vast majority of the 1000
simulations, the diversity/selection stability will be low, and we would conclude that
in this case the dependence on the specific sample is low. That also has to do with
reproducibility (if we agree that a sample size leading to very different results for two
different samples of the same area jeopardizes the reproducibility and applicability of
the model). Looking at the fact that those studies that involve sampling at all mostly
take only one sample, a low diversity indicating a low sample dependence is very
important in our opinion, also with respect to “robust detection of controlling factors”
as concluded by Guns and Vanacker (2012). Hence, we address sample dependence
as a different aspect of model quality (besides predictive capacity).

Following a comment along the same lines (why the lowest diversity value corresponds
to a minimal dependence of model selection on the sample) by the first reviewer, we
added some explanation on why we take the diversity index as a measure of model
quality (in terms of reproducibility, not in terms of predictive ability):
"(...)Shannon’s Entropy has been interpreted in terms of the "average surprise a
probability distribution will evoke" (see e.g. Thomas, 1981, p.7). The result of a
stepwise selection with a sample size for which low diversity (low H) has been
measured is not expected to be surprising, because one or few species have a very
high probability of occurrence. We hypothesize that the diversity of model species,
and the degree of surprise with which we see one particular outcome of the selection
given the results of 1000 models, will reflect the sample-dependence of the stepwise
selection. Therefore, we propose the "model diversity" as a measure of model quality
in terms of reproducibility; similarly, Petschko et al. (2013) recently proposed a
"thematic consistency" index that assesses variable-selection frequencies in model
replications and is based on the Gini impurity index."
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In some conditions low diversity could also be a warning of possible overfitting
problems, especially at large sample sizes.

We assume that overfitting is of much less importance in logistic regression (see
Brenning, 2005) compared to machine-learning approaches.
We have added a reference for this statement to the text:
"Brenning(2005), however, states that overfitting is ’not a serious problem for logistic
regression’, contrary to machine-learning methods (c.f. Petschko, 2013, and refer-
ences therein)."

A very big concern: at page 29-30 row 28 to 37 you say that GLM models (and
in particular the logistic regression used in the study) generates some errors
in the susceptibility maps because “linear modeling approach is not capable
of modeling complex non-linear relationships such as the one of slope and
debris flow...”. Now, slope angle, if I am not mistaken, is one of the most
important factors resulting from your study. Why then did you choose to adopt
logistic regression in the first place? A methodology more flexible towards
nonlinearities such as machine learning non-parametric models could have
been a better choice.

It was not our aim to find out the best model approach in terms of predictive ability. If
this had been the purpose of the study, we should have conducted a multi-approach
comparative work. This has been done in a number of studies, and recent work indeed
seems to favour approaches like GAM (e.g. Hjort and Luoto, 2011, ESPL 36, pp. 363-
371) or machine learning because of their flexibility in modelling nonlinear response.
In comparative studies, however, logistic regression ranks among the best performing
approaches (e.g. Brenning, 2005, NHESS, Carrara et al. 2008, Geomorphology),
and it is definitely among the most frequent approaches used (original manuscript
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p2735 l2ff). Conversely, sample independence, which is one of the comparatively few
assumptions of GLM (but very important with reference to the maximum likelihood
parameter estimation), has rarely been addressed, and not in context with sample
size. We think that it must be possible to highlight a weak point of the method without
having to resort to another method, especially if the best-performing LSM is not the
main focus of our study.

However, we realised from this comment that we have not made it sufficiently clear in
the original manuscript that our study focuses deliberately on logistic regression be-
cause of the widespread application combined with the disregard of the independence
assumption in many if not most studies. We have made an effort to clarify this in the
introduction chapter:

"The present study has two main foci that will be developed in detail in the following
subsections. It is not the aim of our study to find out the best performing method for a
debris flow susceptibility model (comparative studies of predictive models were carried
out, for example, by Brenning(2005), Marmion et al. (2008), Carrara et al. (2008)
, Vorpahl et al. (2012); we deliberately chose logistic regression for its widespread
use, and for the relevant assumption of sample independence which we found to be
frequently neglected in previous studies. First, we explore the sensitivity of stepwise
model selection to sample size. Sections 1.1 and 1.2 will explain why the sample
size must neither be too small nor too large. Here, the main aim of the study is to
investigate if an "optimal" sampling size can be found as a compromise between
samples too small and too large. Second, we quantify the uncertainty inherent in a
stepwise modelling approach, with respect to i) the selection of geofactors, ii) model
parameters, and iii) the spatial pattern of uncertainty in the resulting susceptibility
map. This study aim will be developed in section 1.3."
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The entire analysis set could have gained in clarity had the authors introduced,
among the geofactors, also a dummy (completely random) parameter to act as
a benchmark. The latter should have resulted as discarded in all model species
so as to ensure that the metrics used to measure diversity and performances
were correctly working in the model tests

We acknowledge that such a strategy may be of much value in machine learning
approaches (see e.g. Catani et al., 2013, NHESSD), but is in our opinion not trans-
ferable to logistic regression. Specifically, listing a “non-sense” candidate variable (i.e.
a variable which is known NOT to have any relationship with the observed process)
would constitute an intentional mis-specification of the model (one of the assumptions
of GLM is that “no irrelevant predictors of the dependent variable are included in the
analysis” ; Menard 2002, p.5).

There are several sentences in the manuscript that are not clear and difficult to
understand (and also many small grammar errors and typos). The readability
of the manuscript would gain a lot from a careful English spelling and grammar
revision.
We have checked the manuscript and applied some changes that we think improve
readability (e.g. splitting long sentences etc). Moreover, we hope that the copy-editing
process will further improve the readability if need be.

MINOR CORRECTIONS
1. (all manuscript) It would be useful for improving readability and comprehen-
sion, to present sample size not only in frequency terms (n) but also in relative
areal extent. For example, how large is the proportion of the area sampled (over
the total) for n=81? And for n=350?
Although commonly absolute sample sizes are considered more important than
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relative ones, we now report additionally the relative sample sizes (% of study area)
where applicable, e.g.
"In this study, when we speak of sample size, we always address a sample of
"non-events", i.e. a sample of raster cells without debris flow initiation. (...) Besides
the non-event sample size, the relative sample size (i.e. the areal extent of the total
sample divided by the size of the study area) will be reported."
"We analyse model diversity by repeating the stepwise model selection with 1000
independent samples of a given sample size. Sample size varies between 50 and
5000 non-event raster cells; together with the sample of n=81 initiation areas in the
ZBT area, the samples cover between 0.02 and 0.68 percent of the study area (ZBT)."
The percentage appears to be very small, but look at the following example: With
a relative sample size of 0.01, one out of 100 raster cells would be selected, which
would be on average one out of a 10x10 cells area, which equals 50x50 m (2500 m2),
which is already smaller or close to the autocorrelation range of several geofactors.

2. Page 3 – row 11-14: the sentence is not clear, please rephrase
The (spatial) probability of occurrence of an event forms an important factor of the
hazard term in quantitative risk assessment, although for a complete formulation
one also needs to consider the temporal probability and the magnitude–frequency
relationship of events (Guzzetti et al., 2006).

3. Page 3 – row 22: please add some more recent literature here
We added 5 references here (Glade and Crozier 2004, Brenning 2005, Huabin et al.
2005, Luoto and Hjort 2005, Carrara et al. 2008).

4. Page 5 – row2: as far as I know, the first important applications of ANN to
LSM studies are those by Lee et al (2004, Env.Geol.) and Erminni et al. (2005,
Geomorphology)
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We thank the reviewer for his/her suggestions, and we have included them in the text.
We used Lee et al., 2003, ESP&L as an earlier reference than Lee et al. 2004.

5. Page 8 – row 11-14: the sentence is not clear, please rephrase
We were not 100% sure which sentence was meant here; p. 8 has one sentence
from row 12 to 15 which we slightly rephrased: “In order to limit the sample size and
to mitigate the rare-events issue (see below), the literature suggests different ratios
of event:non-event sample sizes, mostly without justifying the particular choice of this
ratio. Instead of merely adopting one of these suggestions (which generally range
from 1:1 to 1:10), our paper aims at an empirical analysis of sample dependence and
performance of the susceptibility model as a function of sample size.”

6. Page 11 – row 23-26: a recent example that you may refer to and cite here
is probably Catani et al., (2013,NHESS Discussions Online) which has recently
been out. The authors perform some tests which are quite similar to those
presented in your study.

While we took the opportunity of explaining the issue in more detail and give some
logistic regression-related references, we found that the approaches used in our study
and in Catani et al. are too different to relate to here. The new, slightly extended
paragraph reads:
"This is important because in the majority of studies employing sampling for model
calculation, only one sample is taken, and no account is given of uncertainty beyond
the standard errors of the parameters. On the other hand, most studies involving
repeat sampling (e.g. Brenning 2005, Begueria 2006, van den Eeckhaut et al. 2010,
Guns and Vanacker, 2012) concentrate on the set of geofactors, the parameters
and the predictive ability of the models, and do not investigate how this affects the
spatial distribution of susceptibility. Only rarely has the spatial distribution of model
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uncertainty been addressed using multiple replication approaches (e.g. Guzzetti et al.
2006, Luoto et al. 2010, Petschko et al. 2013 NHESSD)."

7. Page 15: you did not discuss the problem of noise introduced in the DEM by
the presence of low standing vegetation. You say that the areas are not much
vegetated but on the other hand (Tab. 1) you say that almost 20-25% has some
patchy, shrub and woodland cover that could potentially introduce errors of an
order of magnitude compatible to the DEM local differences. Such errors are
known to occur even after LAS data filtering through last-impulse selection.

We agree that the DEM may contain noise in presence of even low-standing vegeta-
tion. This would affect presumably the calculation of roughness (and the classification
in bedload and sediment that is based on roughness and slope). The classification,
however, appears to be reasonably good. Moreover, the 20-25% of the study area
that are covered with sparse vegetation are located mostly in the lower parts of the
study area, while the debris flow initiation takes place mostly in the upper parts (at the
contact of talus slopes/cones and steep rock alls), therefore DEM uncertainty is not
supposed to seriously affect the LSM in our case study.

Page 15 – row 26: DHM5 should probably read DEM5
Yes; has been corrected.

9. Page 16 – rows 10-23: the parameter SCA is quite important in your study, but
you say it has been computed by using the multiple-direction algorithm proposed by
Freeman (1991) which is notoriously known to work only for convex shaped areas.
The same algorithm, in concave areas (such as channels and hollows for debris flow
initiation) always underestimate flow accumulation because it does not account for
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convergence prevalence. A different algorithm should thus be used for concave areas.

We accept that the reviewer challenges the use of the MFD algorithm. The assertion
that it only works for convex shaped areas, however, is too strong and too restrictive in
our opinion. From our experience, the described disadvantages of the MFD algorithm
appear above all in larger valleys with channel systems that can be much wider than
one raster cell. Here, the MFD algorithm models flow divergence that is not expected
to exist in reality. The debris flow initiation areas in our study area, however, are
located on steep slopes, partially in deeply incised, narrow channels where unrealistic
divergence is either widely absent or only of very limited extent. We are confident that
the algorithm is not grossly inappropriate, forcing us to switch algorithms and conduct
the whole analysis again. Therefore, we chose to stick to the procedure as described
in the paper (and used, for example, by Begueria, 2006, Geomorphology). Please
note also that the calculation of flow accumulation in many other papers is either not
specified with respect to the algorithm used, or the D8 algorithm is taken (which,
conversely, is not appropriate on steep slopes where D8 causes unrealistic parallel
flow paths).
By the way: SAGA GIS would offer the possibility to switch to the D8 algorithm where
specified thresholds (of flow accumulation, or of convergence) are exceeded

10. Page 18 – row 28 and Page 19 - rows 1-3: I personally do not agree with
this sentence which is in my opinion very strong and contradicts most of
the published literature on LSM. I would advise the authors to use a different
argument or to sustain the present one with strong proofs.
The sentence has been deleted in order to avoid confusion; it was considered not too
relevant for the aims of our paper (see reply to major comment nr. 3)

11 Page 22 – rows 8-9: this is not necessarily so. Points separated by distances
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shorter than the range can still have very different values and be not autocorre-
lated
We agree. We have contended that our approach does not really guarantee inde-
pendence because, by minimising the sample size, the AVERAGE distance between
sample pixels is maximised (so close neighbours can always be part of a sample;
page 2752 line 16ff). Then, the statement of the reviewer is in favour of our approach;
the variogram analysis reports an average of all point pairs, so close neighbours
can indeed be very different, and not all close neighbours within the sample cause a
sample dependence issue.

12. Page 24 – rows 7-8: after devoting a lot of space to the problems of factor
collinearity it is not contradictory that you propose the combined SCA*Slope
factor?
With multicollinearity, we have taken up an issue that is dealt with in a number of LSM
publications. Looking at the literature, collinearity and correlation are sometimes used
synonymously, although a correlated pair of variables is not necessarily collinear. The
"sensu stricto" definition of collinearity refers to a strong linear relationship between
factors in a regression, where one factor could be determined from another (or others),
and where we cannot differentiate the factors with respect to their influence on the
target variable: Consider three geofactors x1, x2, x3 so that x1 can be expressed with
the help of two real parameters β2 and β3 as x1 = β2x2 + β3x3. In case of the stream
power index (see next comment), x1 = x2 ∗ x3, i.e. x1 is not a linear combination of x2

and x3. Hence, the interaction term SCA*Slope is not supposed to be collinear sensu
stricto with SCA or Slope: SCA*Slope cannot be determined from only one of the two
interacting factors (what would be the case if the SCA*Slope was collinear with either
SCA or Slope).

13. Page 25 – row 2 and also Page 24 – rows 10-23: the combined parameter
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SCA*Slope is better known as distributed (or discrete) stream power index and
has been early used and proposed by Bagnold (1966) for rivers and then by
Moore at al. (1991) and Seidl and Dietrich, (1992) for slopes. Please add some
refs.

We thank the reviewer for this information. We now refer to SCA*Slope as the stream
power index rather than referring to the CIT index, and we’ve added the suggested
references:
"These findings are consistent with previous work on (slope type) debris flow sus-
ceptibility: Heckmann and Becht (2009) and Wichmann et al. (2009), for example,
use slope, landcover, and a variable called the CIT index (Montgomery and Foufoula-
Georgiou, 1993). The latter is calculated as the specific catchment area times the
squared tangent of slope. The interaction term slope*SCA used in our study can be
interpreted physically (mathematically, it is the product of the two geofactors) as the
compound topographic index indicating stream power (catchment area and slope as
proxies for the abundance and energy of surface runoff, Moore et al., 1991)(...)"

14 Page 32 –row 21: not clear, spelling error?
There was indeed a spelling error ("if" instead of "it") that we have now corrected.

15. Figure 3 : could this figure be compressed into one single plot to improve
readability in comparing different geofactors?
We have implemented this suggestion.

Interactive comment on Nat. Hazards Earth Syst. Sci. Discuss., 1, 2731, 2013.
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