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Abstract 15 

The increasing occurrence of natural disaster events and related damages have led to a 16 

growing demand for models that predict financial loss. Although considerable research has 17 

studied the financial losses related to natural disaster events, and has found significant 18 

predictors, there has not yet been a comprehensive study that addresses the relationship 19 

among the vulnerabilities, natural disasters, and economic losses of the individual buildings. 20 

This study identified hurricanes and their vulnerability indicators in order to establish a metric 21 

to predict the related financial loss. We identify hurricane-prone areas by imaging the spatial 22 

distribution of the losses and vulnerabilities. This study utilized a Geographical Information 23 

System (GIS) to combine and produce spatial data, as well as a multiple linear regression 24 

method, to establish a hurricane damage prediction model. As the dependent variable, we 25 

utilized the following ratio to predict the real pecuniary loss: the value of the Texas 26 

Windstorm Insurance Association (TWIA) claim payout divided by the appraised values of 27 

the buildings. As independent variables, we selected the hurricane indicators and vulnerability 28 

indicators of the built environment and the geographical features. The developed statistical 29 
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model and results can be used as important guidelines by insurance companies, government 1 

agencies, and emergency planners for predicting hurricane damage.  2 

 3 

1 Introduction 4 

1.1 Necessity of hurricane damage prediction 5 

The occurrence of natural disasters has been rising exponentially in the United States (Cutter 6 

and Emrich, 2005). In addition, population explosions in seaside provinces and the sudden 7 

expansion of citieshas magnified the risk in those areas (Pielke and Landsea, 1998; Koks et 8 

al., 2012). In general, meteorological disasters, such as cyclones, deluges, and hurricanes, 9 

impactour communities more frequently and critically than any other kind of natural disaster 10 

(Cutter and Emrich, 2005). Moreover, among the meteorological disasters, hurricanes are the 11 

most critical and cause the most losses to humankind; therefore, studying hurricanes is crucial 12 

in predicting natural disaster damage (Cutter and Emrich, 2005). 13 

Our society is vulnerable to the effects from hurricanes. To reduce the damages from 14 

hurricanes, it is imperative to research previous hurricanes in order to assess those damages. 15 

Increasing natural disasters and the demands of hurricane damage prediction have motivated 16 

the development of methods to predict hurricane damage. Predicting hurricane damage is a 17 

complicated issue, because there is a lack of dependable data and appropriate analyzing 18 

methods (Boissonnade and Ulrich, 1995; Colle et al., 2008; Lin et al., 2010). Thus, more 19 

reliable and methodical research needs to be conducted to provide more accurate loss 20 

predictions. 21 

In order to advance predictive models, this research comprehensively considers both 22 

hurricane indicators and vulnerability indicators of the built environment and geographical 23 

features, which provide a foundation for hurricane damage prediction. This research used 24 

Texas Windstorm Insurance Association (TWIA) claim payout records of commercial 25 

buildings from Hurricane Ike. 26 

 27 
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1.2 Research objectives and methods 1 

This research addresses the following questions: 1) How are hurricane damages estimated? 2) 2 

What geographical and built environment vulnerabilities and hurricane indicators are 3 

significant in terms of hurricane damage, and what is the relationship between them? and 3) 4 

Which Texas county is the most vulnerable to hurricanes? 5 

This research used theTexas Windstorm Insurance Association (TWIA) claim payout records 6 

of commercial buildings from Hurricane Ike to identify hurricane and vulnerability predictors, 7 

establish a metric to predict the financial losses of hurricanes, and image the spatial 8 

distribution of the loss and vulnerabilities to identify hurricane-prone areas. This damage 9 

function will determine if the developed models are verifiable; additionally, this function will 10 

calculate the significant relationships among economic losses (i.e., insured loss payments), 11 

vulnerability indicators, and hurricane indicators. This model and findings may together 12 

become one of the most useful and vital references for hurricane damage prediction for public 13 

works, as well as other entities such as government agencies, emergency planners, and 14 

insurance companies. For instance, insurance companies may be able to adjust their policies 15 

to follow the indicators, and therefore enjoy more profit. This model should become an 16 

important guideline to be used by government agencies and local emergency planners who 17 

need to identify the exact relationship between hurricanes and vulnerability indicators. 18 

This research was conducted as described in the following process (Figure 1). First, we used 19 

the ArcGIS address locator to overlap the TWIA claim payout properties onto the study areas. 20 

The Geographic Coordinate System was GCS_North_American_1983 and the Datum was 21 

D_North_American_1983. Next, we randomly chose our sample commercial buildings and 22 

identified each building’s appraised values. Then the building environment vulnerabilities, 23 

geographical vulnerabilities, and hurricane indicators were mapped and joined using the Join 24 

Data function in ArcGIS. Lastly, a regression model was established and interpreted.   25 

 26 

1.3 Texas windstorm insurance association and hurricane Ike 27 

Hurricane Ike was a fatal disaster. It started on 1 September 2008 and lasted until 14 28 

September 2008. During that time, the storm had deadly effects reaching as far as Cuba, the 29 

Bahamas, Florida, Louisiana, and Texas. Hurricane Ike produced severe rainfall and winds, 30 

which also generated critical waves and surges. These effects created significant financial 31 
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losses and fatalities (Kennedy et al., 2010). Hurricane Ike was the third most costly hurricane 1 

to hit the United States after hurricanes Katrina and Sandy. 2 

The total assessed financial damages were nearly $24.9 billion, and there were twenty 3 

fatalities in Texas, Arkansas, and Louisiana (Berg 2009). In particular, Galveston Island and 4 

the Bolivar Peninsula of Texas were directly hit and had critical property damage resulting 5 

from the waves and storm surges. 6 

The Texas Windstorm Insurance Association (TWIA) was founded to guard the fatality and 7 

property insurance policy holders in Texas from unanticipated wind storms and hail. This 8 

Association consists of wind storm and hail insurance companies, which cover fatality and 9 

property insurance in the counties of Texas, gathering insurance premiums and paying related 10 

claims. 11 

 12 

2 Data collection and management  13 

2.1 Dependent variable 14 

The observational units in this research are the insured claim payouts from TWIA, of the 15 

appraised commercial buildings hit by Hurricane Ike. The raw data was included; street 16 

address (number, street, city, zip code), commercial property damage loss($) (the TWIA 17 

payout associated with hurricane Ike), TWIA payout date (the date TWIA paid for the 18 

property damage loss). Private properties was not included due to the policy of the TWIA. 19 

Hurricane Ike hit on 13 September 2008 in Texas. The spatial distribution of the TWIA 20 

property claim payouts is shown in Figure 2. The overall amount of claim payouts per county 21 

and the number of claim payout records per county are shown in Table 1. The records were 22 

collected from 17 August 2008 to 22 February 2012. 23 

As shown in Table 1, the damages were happened through Texas coastal counties. Galveston, 24 

Jefferson, Brazoria, and Chamber had most damage from Hurricane Ike. Especially, 25 

Galveston was most damaged in terms of the number of claims and the dollar amount of 26 

damage. 27 

In this research, a random sample of 500 commercial buildings was selected from all of the 28 

damage records. The sample size can be determined when the sample population was 5,000 29 
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with a ±5% precision level, a 95% confidence level, and the sample size is larger than 370 1 

(Israel 1992). 2 
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2.2 Explanatory variables 4 

2.2.1 Hurricane Indicators 5 

Several hurricanes occur throughout the United States every year, destroying private property 6 

and infrastructure. Several hurricane indicators may play a key role indetermining damage. 7 

For instance, wind parameters are significant hurricane indicators, as they are directly related 8 

to damages and surges. 9 

The Hurricane Research Division (HRD) real-time hurricane wind analysis system (H*Wind) 10 

was produced by of the National Oceanic and Atmospheric Administration (NOAA) in order 11 

to combine hurricane observation systems. During hurricanes, the HRD gauges wind 12 

parameters from every weather center for a four to six hour interval. After collecting the 13 

gauged data, such as the direction steadiness, speed, duration, and direction of maximum 14 

sustained wind, these data are then combined to create a wind swath map (Dunion et al., 15 

2003; Powell and Houston, 1998; Powell et al., 2010). Then, wind analysis is employed to 16 

determine the hurricane's intensity and to analyze the hurricane’s winds. This data consists of 17 

shape files in a Geographical Information System (GIS), and imaged and gridded data. Using 18 

the swath map, investigators can not only determine the wind parameters but are also able to 19 

assess hurricane damage (Dunion et al., 2003; Powell and Houston, 1998; Powell et al., 1998).  20 

Figure 3 presents the swath map of Hurricane Ike, which is made up of grids. These grids 21 

show the longitude and latitude information and the measurements of wind parameters, such 22 

as the direction steadiness, speed, duration, and direction of maximum sustained wind. With 23 

these data, researchers can create maps for their desired area, time, and hurricane, and can 24 

examine the wind and hurricane damage (Burton, 2010; Powell et al., 1998).  25 

In addition, the side of a hurricane can act as a key indicator in determining hurricane damage. 26 

Properties that are located on the left side of a hurricane path typically have less damage than 27 

properties located on the right side of a hurricane path in the Northern Hemisphere (Keim et 28 

al., 2007; Noel et al., 1995). The reason for this is that a hurricane’s forward movement and 29 

counter clockwise rotation interact with each other, which generates different wind directions 30 
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and intensities on either side of the hurricane. The two different actions of hurricanes, 1 

counterclockwise rotation and forward movement, are combined in the right side of 2 

hurricanes and then the right side has broader and stronger winds.  Conversely, properties on 3 

the left side of a hurricane path are less prone to losses. Conversely, properties on the right 4 

side of a hurricane path are less prone to losses. As a result, this hurricane indicator could 5 

play a prominent role in determining damage. Therefore, the H*Wind analysis and the side of 6 

the hurricane path should both be considered when predicting hurricane damage. 7 

 8 

2.2.2 Built Environment Vulnerability Indicators 9 

The insurer should evaluate the insured built environment to measure the vulnerability in 10 

order to assess the possible loss. The vulnerability of a built environment is determined by the 11 

intensity of exposure to natural disasters and the magnitude of loss (Khanduri and Morrow, 12 

2003). On a large scale, water infrastructures (e.g., dams, dikes, and seawalls) built in 13 

hurricane and flood vulnerable areas can act to protect people and property (Brody et al., 14 

2008). On a smaller scale, the building features (e.g., the building floor area and age), are the 15 

essential elements of exposure to natural disasters (Chock, 2005; Dehring and Halek, 2006; 16 

Highfield et al., 2010; Khanduri and Morrow, 2003). Dehring and Halek (2006) utilized the 17 

building floor area to measure hurricane damage from Hurricane Charley. They examined 18 

residential properties in Lee County and showed that as the building floor area increased, so 19 

did the hurricane loss (Dehring and Halek 2006). Highfield et al. (2010) utilized the 20 

buildings’ ages to measure the hurricane damage from Hurricane Ike. They studied residential 21 

properties in Galveston Island and the Bolivar Peninsula, revealing that as building age 22 

increased, so did the hurricane damage (Highfield et al., 2010). These studies argue that the 23 

features of each building determine the intensity of vulnerability, as each feature corresponds 24 

to the intensity of exposure and the combination of all features determines the intensity of 25 

vulnerability (Chock, 2005). Therefore, measuring the built environment’s vulnerability is 26 

significant in quantifying potential hurricane damage. Both the building floor area and 27 

building age should be taken into consideration as built environment vulnerability indicators 28 

when predicting hurricane damage. 29 

 30 
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2.2.3 Geographical Vulnerability Indicators 1 

Geographical vulnerabilities are essential features of natural disaster exposure and vary by 2 

location (Cutter, 1996). For example, the Federal Emergency Management Agency (FEMA) 3 

generated the FEMA Q3 Flood Data to help identify flood risk. FEMA labeled flood zones on 4 

the basis of flood risk, and each labeled zone presents the amount of latent flood risk (Fulton 5 

County, 2012; Howard and Scott, 2005). Based on the flood records, there are three flood 6 

zones. Zone A has a 1%, or higher possibility of floods occurring. Zone X500 predicts a 0.2-7 

1% possibility of flooding. Zone X has a 0.2% or less possibility of flood events. Floods can 8 

happen anywhere; however, the FEMA Q3 Flood Data makes it possible to identify flood 9 

prone areas. 10 

The National Weather Service defined hurricane surge zones on a scale from one to five in 11 

order to identify hurricane prone areas. The zones are categorized based on surge height and 12 

sustained wind speed (Table 2). The scaled zones are expected to have an effect on the 13 

defined surge height and wind speed (Division of Emergency Management, 2003). Each 14 

scaled area shows not only the hurricane risk, but also the geographical vulnerability of the 15 

scaled area. 16 

The distance from a property to a body of water acts a significant factor in determining the 17 

geographical vulnerability. Highfield et al. (2010) used the distance from a property to a body 18 

of water as a measure of hurricane damage. They examined the damaged residential 19 

properties in the Bolivar Peninsula and Galveston Island and revealed that as the distance 20 

from water increased, the hurricane damage decreased (Highfield et al., 2010). This implies 21 

that properties near water are more vulnerable than properties located farther away from water. 22 

Thus, assessing geographical vulnerability is crucial when measuring the hurricane damage. 23 

In this study we thus consider, FEMA Flood Zones, Hurricane Surge Zones, and distance 24 

from water for predicting hurricane damage. Table 3 shows the all variables used in this study.  25 

 26 

3  Regression model 27 

In this research, a statistical model was created to predict the hurricane damage of commercial 28 

buildings, specifically related to Hurricane Ike. The purpose of this model is to predict the 29 

percentage of damages in the building properties. The dependent variable is the ratio ($/$) of 30 

the value of the TWIA claim payout (in $) divided by the appraised values of the buildings (in 31 
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$) (Equation 1). The ratio can be predicted by the independent variables, as shown in 1 

Equation (2). 2 

)
)(

)(
(

SvalueappraisedBuilding

SpayoutclaimTWIA
Ratio         (1) 3 

Ratio = β0 + β1 · Wind_Speed + β2 · Side_Right + β3 · Age + β4 · Area + β5 · FEMA_Zones 4 

 + β6 · Surge_Zones + β7 · Dist_Shore                                                 (2) 5 

where β0 is a constant; β1 is the slope of the maximum sustained wind speed (Wind_Speed); β2 6 

is the slope of the right side (Side_Right); β3 is the slope of the building age (Age); β4 is the 7 

slope of the building floor area (Area); β5 is the slope of the FEMA flood zones 8 

(FEMA_Zones); β6 is the slope of the hurricane surge zones (Surge_Zones); and β7 is the 9 

slope of the distance from the property centroid to the shoreline (Dist_Shore). Side_Right is 10 

the right side of the hurricane track in which, a value of 1 indicates a building located on the 11 

right side of the hurricane track and a value of 0 indicates a building located on the left side of 12 

the hurricane track. The FEMA flood zones are as follows: 0 is an unregistered zone, 1 is a 13 

property on the FEMA flood zone X, 2 is a property on the FEMA flood zone X500, 3 is a 14 

property on the FEMA flood zone A. 15 

 16 

4 Results 17 

This research used a Geographical Information System (GIS) to combine and produce spatial 18 

data. The foundational layer was the TWIA claim payouts, and the hurricane indicators, 19 

building environment vulnerability indicators, and geographical vulnerability indicators were 20 

joined to the TWIA claim payouts using the Join Data function in ArcGIS to integrate the 21 

dependent variable and the independent variables. 22 

 23 

4.1 Descriptive analysis 24 

The descriptive statistics for the dependent and independent variables are detailed in Table 4. 25 

The mean and median were used to examine the data’s central tendencies. The standard 26 

deviations show the spread of the samples. The quartiles represent the data dispersion, and the 27 

skewness and kurtosis reveal the shape of the distribution. For the skewness values, the 28 

distribution of the ratio is markedly skewed to the right, since the value of 3.00 is higher than 29 
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0, which implies that the distribution is positively skewed. In compliance with the value of the 1 

kurtosis, the distribution of the ratio has sharper and higher peaks than a normal distribution, 2 

since the value of 13.32 is higher than 3, which indicates that the data is not normally 3 

distributed. 4 

 5 

4.2 Correlation between ratio and variables  6 

A Pearson Correlation analysiswas conducted to examine the ratio and the continuous 7 

variables (Table 5). The building floor area is the only variable that has an insignificant 8 

relationship to the ratio. The other variables (i.e., max. sustained wind speed, building age, 9 

and distance from the property centroid to shoreline) have significant relationships with the 10 

ratio. The max. wind speed and building age have positive sign of the coefficients. It defines 11 

the indicators have positive correlation with ratio. On the other hand,  the building area and 12 

distance from the property centroid to shoreline have negative sign of the coefficients. It 13 

indicates the indicators have negative correlation with ratio. 14 

Table 6 shows the results of our correlation analysis with the ratio and ordinal variables. 15 

Spearman's rho correlation analysis was adopted to examine the ordinal variables. The right 16 

side of the hurricane track is the only variable that has an insignificant relationship with the 17 

ratio. The FEMA flood zones and hurricane surge zones both have significant relationships 18 

with the ratio. The FEMA flood zones and the right side of the hurricane track have positive 19 

sign of the coefficients. It defines the indicators have positive correlation with ratio. On the 20 

other hand, the hurricane surge zones has negative sign of the coefficients. It indicates the 21 

indicators have negative correlation with ratio. 22 

 23 

4.3 Analytic for residuals and transformation 24 

The Kolmogorov-Smirnov value was used to exam the normality of the residuals. The P-25 

value of 0.000 was smaller than 0.05, which implies that the residuals are not normally 26 

distributed (Table 7). Furthermore, the histogram of the standardized residuals and the Q-Q 27 

plot also show that the residuals of initial model are not normally distributed (Figures 4a and 28 

b). Figure 5 displays the residuals plot. This plot shows the constant variance of the residuals, 29 

verifying that the residual plot has a pattern, implying that the residuals are not randomly 30 
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distributed. Therefore, the test and diagnostic of the residuals prove that the dependent 1 

variable requires a transformation. 2 

Therefore, the ratio was transformed by a natural log as follows: 3 

)
)(

)(Pr
(

SValueApparaisedBuilding

SLossDamageopertyTWIA
LogRatiodTransforme      (3) 4 

Followingthe log transformation of the ratio (Table 8), the Kolmogorov-Smirnov value has a 5 

P-value of 0.200, which verifies that the residuals ofthe transformed ratioare normally 6 

distributed. In addition, the Q-Q plot and the histogram of the standardized residuals also 7 

indicate that the residuals of the transformed ratio are normally distributed (Figure 6). Figure 8 

7 displays the residuals plot to exam the homoscedasticity. The residuals are randomly 9 

distributed, without any tendencies. This implies that the variance of the residuals is constant. 10 

To obtain the best-fit regression model, we utilized the backward elimination method. The 11 

summary of the transformed ratio regression modelis shown in Table 7. The model is 12 

statistically significant, which means there is a linear relationship between the dependent 13 

variable and the independent variables. Therefore, the multiple linear regression model can be 14 

used to predict the transformed ratio. The adjusted R2 value is 0.337, which indicates that 15 

approximately 34% of the variability in the transformed dependent variable can be explained 16 

with the significant predictors (i.e., the right side of the hurricane track, building age, 17 

hurricane surge zones, and distance from the property centroid to shoreline). 18 

Table 9 shows the summary of the coefficients for the original and transformed ratio 19 

regression model. In the transformed model, the four significant predictors, the right side of 20 

the hurricane track, the building’s age, the hurricane surge zone, and the distance from the 21 

property centroid to the shoreline, were identified and used to predict the transformed ratio. 22 

The FEMA flood zones, maximum sustained wind speed, and building floor area were 23 

eliminated, because their P-values were higher than 0.10. The range of the Variance Inflation 24 

Factor (VIF) was from 1.022 to 2.180. These values imply that there is no multicollinearity 25 

among the independent variables, which confirms that there is no correlation between the 26 

independent variables. 27 

The standardized coefficients, also called beta coefficients, employed to reveal which 28 

independent variables had more effect on the ratio when the variables are various units. When 29 

considering the values of the coefficients, the ranking used is as follows: (1) building age, (2) 30 

hurricane surge zone, (3) right side of the hurricane track,  31 
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According to the unstandardized coefficients, a multiple linear regression model was 1 

established with four significant predictors to predict the transformed ratio, as shown in 2 

Equations (4) and (5). The models are able to describe approximately 34% variability of the 3 

transformed ratio. 4 

)6605.8(_(

))112.0(_()010.0()200.0_(167.1)(Pr




EShoreDist

ZonesSurgeAgeRightSideRatioedictedLog5 

                    (4) 6 

e
EShoreDistZonesSurgeAgeRightSide

Ratioedicted
))6605.8(_())112.0(_()010.0()200.0_(167.1

Pr


                         7 

                                                                                                                      (5) 8 
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5 Discussion  10 

This research used the appraised commercial building’s claim payouts from the Texas 11 

Windstorm Insurance Association (TWIA) for damages caused by Hurricane Ike in Texas. 12 

The range of the observational unit was from 17 August 2008 to 22 February 2012. The ratio 13 

model is statistically significant. This proves that the independent variables are able to predict 14 

the ratio. The adjusted R2 value of 0.337 indicates that 33.7% of the variability in the 15 

transformed ratio can be described by the significant predictors. The P-values show that four 16 

variables are significant: the right side of the hurricane track, the building age, the hurricane 17 

surge zone, and the distance from the property centroid to the shoreline. The variables of 18 

maximum sustained wind speed, FEMA flood zone, and building floor area were excluded 19 

because of their high P-values. Based on the values of the coefficients, the significant 20 

variables were also used to measure the magnitude of the dependent variable; therefore, the 21 

ratio can be measured using the prediction model in Equation (4). 22 

In this model, the right side of the hurricane path and the ratio showed a positive relationship, 23 

meaning that the ratio increased when properties were located on the right-hand side of the 24 

hurricane path. This finding supports previous research, which found that properties located 25 

on the right-hand side of a hurricane path generally receive more losses than ones located on 26 

the left-hand side of the hurricane path (Keim et al., 2007; Noel et al., 1995), and verifies that 27 

this particular variable is a significantpredictor for forecasting hurricane damage. Building 28 

age and the ratio also have a positive relationship, where the ratio increases with increasing 29 

building age. This is in accordance with previous research that found that building age is a 30 
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critical predictor for forecasting hurricane damage (Highfield et al., 2010).There is a negative 1 

relationship between hurricane surge zones and the ratio that decreases as the hurricane surge 2 

zone number increases. This shows that hurricane surge zones are also a significant predictor. 3 

The distance from the property centroid to the shoreline and the ratio also have a negative 4 

relationship. The ratio decreases if the distance increases. This is also in agreement with 5 

previous research arguing that distance from water is correlated to hurricane damage and is a 6 

critical predictor for forecasting hurricane damage (Highfield et al., 2010).  7 

 8 

6 Conclusions 9 

Due to the increasing frequency and intensity of natural disaster events and the resulting 10 

damages, the demand for predicting the related financial losses has been growing. There has 11 

been a considerable amount of work that has studied the financial loss from natural disasters 12 

and has found significant predictors; however, there has yet been no study that has addressed 13 

the relationship between the vulnerabilities, natural disasters, and economic losses of 14 

individual buildings in a comprehensive way. This study identified the vulnerability 15 

predictors for hurricanes, establishing a metric to predict the financial losses from hurricanes. 16 

As the dependent variable, we used the ratio ofthe value of the Texas Windstorm Insurance 17 

Association’s (TWIA) claim payout divided by the appraised values of the buildings to 18 

predict the real pecuniary loss, to determine the actual amounts, and to find significant 19 

predictors. As independent variables, we choose the hurricane indicators, built environment 20 

vulnerability indicators, and geographical vulnerability.  21 

The developed statistical model and results form an important guideline for insurance 22 

companies and emergency planners when predicting hurricane damage. For instance, 23 

following our indicators, insurance companies can adjust and reconsider their policies for 24 

increased profits. Using our model, government agencies and emergency planners can 25 

identify hurricanes and the built environment and geographic vulnerability indicators, and 26 

then evaluate the effects of each factor with respect to hurricane risk for improved hurricane 27 

damage predictions. It is possible that, at a later date, other states will be able to identify the 28 

significant relationships between the indicators and predicting hurricane damage. Through 29 

developed statistical models, it is possible that other states may at some point be able to 30 

identify the significant relationships among the indicators in order to assess their own possible 31 

hurricane losses. The vulnerability indicators included in this study will help to identify 32 
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building environment and geographic vulnerabilities, as well as evaluate the effect of each 1 

factor with respect to damage from hurricanes in order to mitigate perceived danger. 2 

Additionally, the significant hurricane indicators will help to improve hurricane damage 3 

prediction and also would help to build other damage functions by the indicators. Moreover, 4 

the damage function might have reduce uncertainties of the modeling tools, since we 5 

statistically investigated real damage records. However, the damage function would be 6 

limited in mega hurricane like Hurricane Ike, since we investigated only a mega hurricane. 7 

 8 

7 Recommendations 9 

This research only addressed appraised commercial buildings in Texas and therefore these 10 

results may or may not apply to residential buildings. Future research should address 11 

residential buildings using the same predictors. Moreover, only the damages causing by 12 

Hurricane Ike were taken into account in this research. Future research should investigate 13 

more diverse levels of hurricanes. 14 

Furthermore, the established method and predictors of this research can be applied to other 15 

hurricane affected states, such as Louisiana, South Carolina, Alabama, North Carolina, and 16 

Florida, to predict the financial losses from hurricanes. The value of the adjusted R2 is 0.337, 17 

which indicates the rest of the variability in the dataisdescribed by unknown predictors. 18 

Accordingly, it could be valuable to determine other potential predictors and add them to the 19 

model. 20 
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Table 1. TWIA claim payout per county 1 

County 
No. of Claim Payouts Total Claim Payouts 

No. % $ % 
Galveston 1,807 43.54 255M 56.68 
Jefferson 1,218 29.35 104M 23.14 
Brazoria 597 14.39 46M 10.42 

Chambers 470 11.33 39M 8.82 
Harris 45 1.08 4M 0.92 

Matagorda 9 0.22 0.036M 0.01 
Liberty 2 0.05 0.067M 0.01 
Nueces 2 0.05 0.005M 0.00 
Total 4,150 100 450M 100 

2 
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Table 2. Description of Hurricane Surge Zone 1 

Hurricane Surge Zone Surge Height (ft) Wind Speed (mph) 
5 4 - 5 74 - 95 
4 6 - 8 96 - 110 
3 9 - 12 111 - 129 
2 13 - 18 130 - 156 
1 > 18 > 157 
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 Table 3. Variables Description 1 

Variable Variable Name Description Previous Studies Source 

Dependent 

TWIA 
Texas Windstorm Association 
claim payouts for property 
damage from Hurricane Ike ($) 

- 
Texas Wind Insurance Association 
(http://www.twia.org/) 

Building appraised value 
Appraised value of building ($) 
(Based on 2008 roll) 

- 
• Galveston County Appraisal District 
(http://www.galvestoncad.org/) 
• Jefferson County Appraisal District 
(http://www.jcad.org/) 
• Brazoria County Appraisal District 
(www.brazoriacad.org/) 
• Chambers County Appraisal District 
(www.chamberscad.org/) 
• Harris County Appraisal District 
(www.hcad.org/) 
• Matagorda County Appraisal District 
(www.matagorda-cad.org/) 
• Liberty County Appraisal District 
(http://www.libertycad.com/) 
• Nueces County Appraisal 
District(www.nuecenet/) 

Independent 

Building age 
Building age 
(Based on 2008 roll) 

• Highfield et al (2010) 

Building floor area 
Building floor area (m2) 
(Based on 2008 roll) 

• Dehring and Halek (2006) 

Max. sustained wind speed 
Max. sustained wind speed  from the 
grid of Hurricane Ike surface wind 
analysis (m/s) 

• Burton (2010) 
• Dunion et al. (2003)  
• Powell and Houston (1998)
• Powell et al. (1998) 

Atlantic Oceanographic and Meteorological 
Laboratory 
(http://www.aoml.noaa.gov/hrd/Storm_pages
/ike2008/wind.html) 

Side of the hurricane track right side of the hurricane track 
• Keim et al. (2007) 
• Neol et al. (1995) 

FEMA Q3 FEMA digital Q3 flood data - 
Texas Natural Resources Information 
System (http://www.tnris.org/) 

Rate of hurricane surge zone Rate of hurricane surge zone (1~5) - 
Coastal Communities Planning Atlas 
Mapping Service 
(http://coastalatlas.tamu.edu/) 

Distance from shoreline Distance from shoreline (m) • Highfield et al (2010) 
Calculated by using the Near Analysis 
function of ArcGIS. 
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Table 4. Descriptive Statistics 1 

 

Dependent 
Variables 

Independent Variables 

Ratio 
($/$) 

Max. Sustained 
Wind Speed 

(m/s) 

Right side of the 
hurricane track

Building 
Age 

Building 
Floor Area
(100 m2)

Appraised value 
of building 
($10,000) 

FEMA Flood 
Zones 

Hurricane 
Surge 
Zones 

Distance from 
Shoreline 
(1,000m) 

N 500 500 500 500 500 500 500 500 500
Mean 0.10 36.17 - 34.32 3.64 15.03 - - 4.49

Median 0.07 36.00 - 35.00 2.81 11.85 - - 0.88
Std. Deviation 0.11 2.11 - 18.00 2.68 11.72 - - 6.64

Percentiles 
25 0.04 34.84 0.00 23.00 1.90 7.23 1.00 3.00 0.37
75 0.12 36.74 1.00 47.00 4.55 18.82 3.00 3.75 6.03

Skewness 3.00 0.23 1.13 .45 1.83 1.83 -0.07 -0.05 1.64
Kurtosis 13.32 0.76 -0.72 1.32 3.89 3.99 -1.58 0.04 1.49
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Table 5. Results of Pearson Correlation Analysis for Continuous Variable Used in Regression 1 

 
Ratio 
($/$) 

Wind_Speed 
(m/s) 

Age 
Area 
 (m2) 

Dist_Shore 
(m) 

Ratio 
($/$) 

Pearson Correlation 1 .126** .316** -.061 -.171**

Sig. (2-tailed)  .005 .000 .173 .000
Wind_Speed 

(m/s) 
Pearson Correlation .126** 1 .040 -.057 -.183**

Sig. (2-tailed) .005  .375 .199 .000

Age 
Pearson Correlation .316** .040 1 -.123** -.062
Sig. (2-tailed) .000 .375  .006 .167

Area 
(m2) 

Pearson Correlation -.061 -.057 -.123** 1 .044
Sig. (2-tailed) .173 .199 .006  .322

Dist_Shore 
(m) 

Pearson Correlation -.171** -.183** -.062 .044 1
Sig. (2-tailed) .000 .000 .167 .322  

 ** Correlation is significant at the 0.01 level (2-tailed). 2 
       3 

 4 

5 
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Table 6. Results of Spearman Correlation Analysis for Ordinal Variables Used in Regression 1 

 
Ratio 
($/$) 

FEMA_Zones Surge_Zones Side_Right 

 Ratio 
($/$) 

Spearman's rho Correlation 1.000 .153** -.342** .066
Sig. (2-tailed) . .001 .000 .140

FEMA_Zones 
Spearman's rho Correlation .153** 1.000 -.521** -.243**

Sig. (2-tailed) .001 . .000 .000

Surge_Zones 
Spearman's rho Correlation -.342** -.521** 1.000 .071

Sig. (2-tailed) .000 .000 . .114

Side_Right 
Spearman's rho Correlation .066 -.243** .071 1.000

Sig. (2-tailed) .140 .000 .114 .
           ** Correlation is significant at the 0.01 level (2-tailed). 2 

 3 

4 
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Table 7. Test of Normality for Regression Models 1 

 
Kolmogorov-Smirnov Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 
Ratio .218 500 .000 .698 500 .000

Log_Ratio .028 500 .200 .996 500 .323

 2 

3 
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Table 8. Summary of the Transformed Ratio Model 1 

Model Sum of Squares Df Mean Square F Sig. R2 Adj-R2 
Regression 26.089 4 6.522 64.471 .000 .343 .337 
Residual 50.078 495 .101     

Total 76.168 499      

1.  Predictors: (Constant), Dist_Shore, Age, Side_Right, Surge_Zones 2 
2. Dependent Variable: Log_Ratio 3 

 4 

5 
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Table 9. Coefficients of Original and Transformed Ratio Regression Model 1 

 Content β Std. Error Beta Sig. VIF 

Original  
Model 

Constant -1.347 .276  .000  
Hurricane Indicators 
Right side of hurricane track .185 .041 .206 .000 1.545 
Built Environment Vulnerability Indicators
Building age .010 .001 .440 .000 1.042 
Geographical Vulnerability Indicators
Hurricane surge zones -.119 .019 -.323 .000 1.907 
Distance from shoreline -2.701E-6 .000 -.151 .006 2.226 

Transformed 
Model 

 

Constant -1.167 .055  .000  
Hurricane Indicators 
Right side of hurricane track .200 .039 .223 .000 1.438 
Built Environment Vulnerability Indicators
Building age .010 .001 .441 .000 1.022 
Geographical Vulnerability Indicators
Hurricane surge zones -.112 .017 -.305 .000 1.685 
Distance from shoreline -8.605E-6 .000 -.146 .007 2.180 

2 
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Figure 1. Research Methodology 3 
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Figure 2. Distribution of TWIA claim payouts 3 
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Figure 3. H*wind swath of hurricane Ike for Texas showing the maximum sustained wind 3 

speed over the duration of the hurricane 4 

5 
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(a)                                                            (b) 1 

 2 

Figure 4. Q-Q plot and histogram of residuals for the initial ratio regression model 3 
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Figure 5. Residuals plot for the initial ratio regression model 3 
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(a)                                                         (b) 2 

Figure 6. Q-Q plot and histogram of residuals for the transformed ratio regression model 3 
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Figure 7. Residuals plot for the transformed ratio regression model 3 


