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Abstract 12 

In the last few decades, the development of Geographical Information Systems (GIS) 13 

technology has provided a method for the evaluation of landslide susceptibility and 14 

hazard. Slope units were found to be appropriate for the fundamental morphological 15 

elements in landslide susceptibility evaluation. Following the DEM construction in a 16 

loess area susceptible to landslides, the direct-reverse DEM technology was employed 17 

to generate 216 slope units in the studied area. After a detailed investigation, the 18 

landslide inventory was mapped in which 39 landslides, including paleo-landslides, 19 

old landslides and recent landslides, were present. Of the 216 slope units, 123 20 

involved landslides. To analyze the mechanism of these landslides, six environmental 21 

factors were selected to evaluate landslide occurrence: slope angle, aspect, the height 22 

and shape of the slope, distance to rivers and human activities. These factors were 23 

extracted in terms of the slope unit within the ArcGIS software. The spatial analysis 24 

demonstrates that most of the landslides are located on convex slopes at an elevation 25 

of 101-150 m with slope angles from 136°-225° and 41°-60°.  Landslide occurrence 26 
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was then checked according to these environmental factors using an artificial neural 27 

network with back propagation, optimized by genetic algorithms. A dataset of 120 28 

slope units was chosen for training the neural network model, i.e., 80 units with 29 

landslide presence and 40 units without landslide presence. The parameters of genetic 30 

algorithms and neural networks were then set: population size of 100, crossover 31 

probability of 0.65, mutation probability of 0.01, momentum factor of 0.60, learning 32 

rate of 0.7, max learning number of 10000, and target error of 0.000001. After training 33 

on the datasets, the susceptibility of landslides was mapped for the land-use plan and 34 

hazard mitigation. Comparing the susceptibility map with landslide inventory, it was 35 

noted that the prediction accuracy of landslide occurrence is 93.02%, whereas units 36 

without landslide occurrence are predicted with an accuracy of 81.13%. To sum up, 37 

the verification shows satisfactory agreement with an accuracy of 86.46% between the 38 

susceptibility map and the landslide locations. In the landslide susceptibility 39 

assessment, ten new slopes were predicted to show potential for failure, which can be 40 

confirmed by the engineering geological conditions of these slopes. It was also 41 

observed that some disadvantages could be overcome in the application of the neural 42 

networks with back propagation, for example, the low convergence rate and local 43 

minimum, after the network was optimized using genetic algorithms. To conclude, 44 

neural networks with back propagation that are optimized by genetic algorithms are 45 

an effective method to predict landslide susceptibility with high accuracy. 46 

Keywords: landslide; Geographical Information Systems; genetic algorithms; back 47 

propagation neural networks; susceptibility evaluation   48 
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1. Introduction 49 

Landslides are local phenomena occurring in different geomorphic contexts; they can 50 

be triggered by a variety of mechanisms, such as earthquakes or rainfall, and some of 51 

the causes are not yet well known. Landslides cannot be predicted accurately; 52 

however, the susceptibility of a given area to landslides can be determined and 53 

depicted using hazard zonation. Various methods have been proposed to partition 54 

landscape for the purpose of landslide hazard assessment and zonation mapping, 55 

including grid cells, terrain units, unique-condition units, slope units and topographic 56 

units (Carrara et al.,1991; van Westen, 1994; Guzzetti et al. 1999; Chung and Fabbri, 57 

2003). With respect to the landscape partitioning methods mentioned above, slope 58 

units can be resized according to the prevailing failure type and dimension, thereby 59 

partitioning a river basin into nested subdivisions: coarser for larger landslides and 60 

finer for smaller failures. Because a clear physical relationship exists between 61 

landslides and the fundamental morphological elements of a hilly or mountain region, 62 

namely, drainage and divided lines, the slope-unit technique seems appropriate for 63 

landslide susceptibility assessment. 64 

A careful review of the concepts, principles, techniques and methodologies for 65 

landslide susceptibility evaluation reveals that the most commonly used methods are 66 

geomorphological hazard mapping, analysis of landslide inventories, heuristic or 67 

index-based methods, functional, statistically based models and geotechnical or 68 

physically based models (Guzzetti et al. 1999; Wang et al. 2005; Fell et al., 2008). 69 

Recently, probabilistic models such as frequency ratio and logistic regression methods 70 
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have been applied to evaluate landslide susceptibility and have been integrated with 71 

Geographical Information Systems (GIS) (Ayalew and Yamagishi, 2005; Chung, 2006; 72 

Dahal et al., 2008; Nefeslioglu, et al., 2008; Yilmaz, 2009; Bai, et al., 2010; 73 

García-Rodríguez and Malpica, 2010; Hasekiogulları and  Ercanoglu, 2012). Due to 74 

geological complexity of slopes and self-organized system, however, many variables 75 

are involved in slope stability evaluation, which display a highly nonlinear 76 

relationship with evaluation results. Under the consideration of the nonlinear 77 

characteristics of the sliding process, artificial neural networks (ANNs) have thus 78 

been introduced to produce landslide susceptibility and hazard maps (Ercanoglu and 79 

Gokceoglu, 2002; Neaupane and Achet, 2004; Catani et al., 2005; Gómez and 80 

Kavzoglu, 2005; Kanungo et al., 2006; Nefeslioglu, et al., 2008; Nefeslioglua et al., 81 

2011).  82 

The main characteristics of ANNs dealing with quantitative and qualitative indices 83 

include large-scale parallel distributed processing, continuously nonlinear dynamics, 84 

collective computation, high fault-tolerance, self-organization, self-learning and 85 

real-time treatment (Rumelhart and McClelland 1986). It is worth noting that a neural 86 

network system is a processing device, implemented as an algorithm or in hardware, 87 

whose design is inspired by the design and the function of mammalian brains; they 88 

react to training data input in such a way to alter their initial state, and they learn 89 

using unconventional algorithms. Neural networks integrated with GIS may be an 90 

effective approach when dealing with landslide hazard assessments where meaningful 91 

outcomes are difficult to achieve by means of standard mathematical models. Because 92 
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artificial neural network models are adaptive and capable of generalization, they can 93 

handle imperfect or incomplete data and can capture nonlinear and complex 94 

interactions among the several variables of a system (Ermini et al. 2005; Melchiorre et 95 

al. 2008; Lee and Pradhan. 2011).  96 

However, it was found that the slow training speed and difficulty in achieving a local 97 

minimum cannot be resolved in practical applications for the most commonly used 98 

back propagation neural networks (BPNN). To solve this problem, several methods 99 

were proposed to improve the training speed of networks, such as improving error 100 

functions and adjusting the studying rates. For this kind of solutions, the BPNN is 101 

likely to converge to a local solution, which may not be the global solution, with the 102 

random selection of initial weights. Thus, a global search algorithm was then 103 

introduced, e.g., evolutionary programming, simulated annealing or genetic 104 

algorithms (GAs). Among them, GA has mainly been used to search for the optimal 105 

solution in BPNNs due to its excellent global search ability (Holland 1975; Sexton 106 

and Gupta, 2000; Kesign, 2004; Madaeni, et al., 2010; Chen and Zeng, 2011). There 107 

are two main aspects of applying GA to BPNNs for finding global optima in complex 108 

problems: one is to optimize the weights of the network, and the other is to optimize 109 

the topological structure of the network.  110 

After an overview on landslide susceptibility using ANNs, it was noted that the 111 

weights were randomly selected and that the optimization cannot be carried out for 112 

global searching. This paper thus proposes a hybrid model of a GA and BPNN to 113 

evaluate landslide susceptibility for the optimization of weights. In this study, 114 
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landslide inventory was mapped after detailed field investigation and interpretation 115 

from high-resolution imagery. The outline of the watershed polygons was mapped as 116 

the ridge line using DEM, and reverse DEM data were used to detect the valley line. 117 

The combined DEM and reverse DEM, slope units were then mapped within a 118 

commercial software as ArcGIS (. After the definition of slope units, environmental 119 

factors were analyzed for the presence of landslide occurrence, and a hybrid of GA 120 

and BPNN was developed to evaluate landslide susceptibility. In this method, the GA 121 

was used to search for the optimal or approximately optimal connection weights and 122 

thresholds for the networks, and then, using back-propagation learning rules and 123 

training algorithms, the final weights could be adjusted.  124 

2. Study area 125 

2.1 General information 126 

The study area is the Changshougou  Valley, which is located northwest of Baoji city 127 

in Shaanxi Province (Fig. 1). The elevation is approximately 600-700 m a.s.l., and the 128 

relative relief exceeds 100-350 m over the Changshougou  valley. In this area, three 129 

main geomorphological units may be distinguished: dissected loess plateau (yuan), 130 

loess hills (mao), and loess ridges (liang). The lithology of the strata in these units is 131 

mainly Neogene argillites and fluvial deposits consisting of clayey silts and gravels 132 

and Quaternary loess. Due to the erosion of the Pliocene lacustrine basin by stream 133 

systems and the reactivation of folds and faults, a very unstable base was formed for 134 

the extensive Quaternary loess deposits, which acts as the underlying cause of the 135 

loess instability. Loess is known as a “problem soil”; although it can sustain nearly 136 
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vertical slopes when dry, it is susceptible to catastrophic failure on reaching certain 137 

critical moisture contents.  138 

 139 

Fig. 1 Geographical location of the study area marked by the red rectangle 140 

（data from Google earth） 141 

The climate of the study area is notable for Asiatic monsoons and marked seasonal 142 

shifts in dominant winds. The mean annual temperature is 12.9 °C, and the maximum 143 

is up to 41.6 °C. The mean annual precipitation reaches 679.1 mm, and almost 50% of 144 

the precipitation falls in the period from July to September.  145 

2.2 Types of landslides 146 

There are a variety of landslides present in the Changshougou  valley. The 147 
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examination of the Weihe River terraces and their overlying loess units has shown that 148 

landslides fall into three broad temporal categories, i.e., palaeo-landslides, old 149 

landslides, and recent landslides. Palaeo-landslides occurred before or during the 150 

Pleistocene. The slide masses consist of materials of Tertiary to Middle Pleistocene 151 

age, in which the late Pleistocene loess (Malan) sometimes occurs as a drape. 152 

Landslides of Late Holocene age involve materials of Late Pleistocene loess, which 153 

were developed entirely within loess. This kind of landslides was common in the 154 

study area. As a result of human activities, recent landslides were triggered or 155 

reactivated from other kinds of landslides. The principal mass movement types 156 

recognized in the study area are summarized in Table 1（Wang, et al., 2011).  157 

Table 1 Classification of landslide types in the study area 158 

Type of materials

Mixed 

Loess only 

Geometry and movement 

Flows and complex mass movements 

Large rotational mass movements 

Planar slides 

Debris flows and mudflows 

Types based on situation of the failure plane 

Bedrock-contact landslides 

Palaeosol-contact landslides 

Mixed landslides 

Landslides entirely within loess 

Age 
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Palaeo-slides 

Old slides 

Recent slides 

As can be seen in Fig. 3, there are three basic types of landslides that occur in a 159 

variety of materials based on the situation of the failure plane.  160 

 161 

Fig. 2 Representative types of slope failures in the study area 162 

3. Data preparation 163 

3.1 Landslide inventory 164 

A landslide-inventory map was prepared primarily by the interpretation of 165 

high-resolution imagery and secondarily by site investigations. As shown in Fig. 3, 39 166 

landslides in the study area are classified into three types: paleo-landslides, old 167 

landslides and recent landslides (Meng et al. 2000).  Fifty percent of landslides are 168 

old as dormant-mature, and 25% have been reactivated recently. For all of the 169 

landslides, the slope after failure averages 22.6º, with a maximum of 45º. The slope 170 
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gradients of large-scale landslides tend to be gentle, at approximately 18º, which 171 

implies that most of the paleo-landslides in the study area are stable. 172 

 173 

Fig. 3 Landslide inventory mapping in the Changshougou valley 174 
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It was also observed that the landslides are concentrated at the confluence of two 175 

streams. As described in the previous section, these landslides are attributed to the 176 

undercutting of the slopes associated with gullying. Major factors affecting the 177 

initiation of slope failure and subsequent modes of movement appear to be dependent 178 

upon the morphology, the nature and degree of weathering of the underlying bedrock, 179 

and the moisture status of the loess deposits. Numerous ancillary factors include 180 

bedrock-loess interface, slope steepness, vegetation cover, and land utilization. As 181 

already noted, the upper surface of the Neogene bedrock is often weathered and 182 

contains variable amounts of smectites. In this zone, wetting-drying results in a 183 

progressive decrease in strength that may ultimately lead to slope failure. 184 

Undercutting of the slopes along the gullies is frequent, which increases the risk of 185 

slope failure. As a result of the high relative relief, the steep slopes and the relatively 186 

uniform geological and geomorphological conditions, the landslides tend to be very 187 

large and to occur in groups.  188 

In terms of geological periods, landslides in the studied area fall into three categories: 189 

palaeo-slides, old slides, and recent slides. The most ancient landslides are not 190 

traceable in the historical records, and some recent landslides keep moving. Typically, 191 

a swarm of landslides is located at Zhuyuan village (Fig. 4), approximately 10 km 192 

north of Baoji. The landslide mass is 1000 m wide and 850 m long, with an estimated 193 

volume of 5.1×107 m3. Steeper slopes are generally over 40ºaround the crest, with 194 

forested landslide terraces. Remote-sensing interpretations and field investigations 195 

indicate a maximum vertical displacement of 150 m along the slip surface of the 196 
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landslides. The shape and slope angle of the landslide scars suggest a single, major 197 

concave surface of rupture. For these studied landslides, the failure planes occurred 198 

either along the contacts between the fluvial deposits and the Neogene argillites or 199 

partially within the bedrock. With regard to the Neogene argillite in the loess plateau, 200 

the clay minerals are dominated by illite, chlorite, smectite and kaolinite, similar to 201 

the overlying Quaternary loess (Peng and Guo 2007). This type of argillite is thus 202 

subjected to long-term softening due to saturation in the contact zone. After a point is 203 

reached, at which they are no longer able to support the overlying loess, a progressive 204 

failure occurs. The occurrence of planar slides in the study area depends on the 205 

shear-strength conditions of the failure surface and the cohesion of the materials 206 

involved, usually presented in the Malan loess and in reworked loess slope deposits.  207 

 208 

Fig. 4 View of the Zhuyuan and Lijiaquan landslides from a Quickbird image 209 
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3.2 Defining slope units  210 

In this study, a GIS-based hydrologic analysis and modeling tool, Arc Hydro, is 211 

employed to draw the dividing lines for forming slope units automatically. Arc Hydro 212 

is an ArcGIS based software geared to support water resources applications 213 

(Maidment 2002). The software provides a method for the delineation of watersheds 214 

and stream networks using digital elevation models (DEM) of land-surface terrain. In 215 

the present study, the topographic maps were used to produce DEM with a contour 216 

interval of 10 m at a scale of 10,000. Using the DEM, the outlines of the watershed 217 

polygons are topographically mapped as the ridge lines, and the reverse DEM data 218 

can be used to detect the valley lines (Xie, et al., 2003). Using the DEM grid analysis, 219 

high DEM values can be turned into low values and low DEM values to high. After 220 

these values change, the original valley line can be turned into a ridge line. 221 

Meanwhile, the valley line can also be obtained by watershed analysis of the reverse 222 

DEM data. The combined DEM and reverse DEM analyses map the slope units within 223 

the of ArcGIS in the studied area (Fig. 5).  224 
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 225 

Fig. 5 Slope units from combination of DEM and reverse DEM 226 

3.3 Selection of environmental factors 227 

In these slope units, a variety of environmental factors such as slope angle, aspect, 228 
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height and shape of slope were selected to evaluate landslide susceptibility. Two more 229 

environmental factors were selected, namely, distance to rivers and human activities. 230 

As for the distance to rives, the buffering zone was used to analyze the relationship 231 

between the distance to river and landsliding. It was shown that landslide frequency 232 

generally decreases with the increasing of the distance from drainage line increases, 233 

due to the gully erosion. In addition, the influence of human activity was analyzed 234 

under the consideration of land using on the slope area. After the detailed 235 

investigation, it is valued as 1 if the slope areas were used for vegetation, while the 236 

value is considered as 0 without any vegetation.  237 

(1)Slope angle 238 

Slope angle has a great influence on the susceptibility of a slope for landslide 239 

occurrence. As the slope angle increases, more of the load force is directed down the 240 

slope. The steeper slope, the more potential to landsliding. To quantify the relative 241 

frequency of landslides on different slope gradients, it is necessary to consider the 242 

distribution of the slope gradient categories using the available DEM dataset. Using 243 

the function of Mean in the ArcGIS Spatial Analyst model, an average slope angle 244 

was defined for each slope unit. In the study area, slope angles were categorized into 245 

six classes: 0-20°, 21°-30°, 31°-40°,41°-50°, 51°-60° and larger than 60° (Fig. 6). 246 
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 247 

Fig. 6 Thematic map of the slope angle 248 

(2) Slope height 249 

Slope height plays an important role in landslide occurrence, especially in loess areas 250 
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(Derbyshire et al., 2000). Other conditions being equal, higher slopes can increase 251 

stress values in different areas of slope, making the slopes unstable. The slope height 252 

was classified into five classes: 0-50, 51-100 m, 101-150 m, 151-200 m and 201-300 253 

m. Using Min and Max functions in the model of ArcGIS Spatial Analyst, the slope 254 

height was obtained from the difference of the minimum and maximum elevation over 255 

all the slope units. 256 
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 257 

Fig. 7 Thematic map of slope height 258 

 (3) Slope aspect 259 

Moisture retention and vegetation is mainly reflected by slope aspect, and then  260 
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influence landslide initiation, to some extent. To understand the relationship between 261 

slope aspect and landsliding, the slope aspect information was used from the Majority 262 

function within the ArcGIS. In the present study, it was categorized as 0-45, 46-90, 263 

91-135, 136-180, 181-225, 226-270, 271-325 and 326-360 (Fig. 8).  264 
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 265 

Fig. 8 Thematic map of slope aspect 266 

(4) Slope morphology 267 

It is known that water concentrates in concave topographic positions and makes the 268 
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slope susceptible to (sub) surface flow as the main hydrological triggering mechanism. 269 

According to the analysis of the relationships between the landslide occurrence and 270 

slope morphology, however, most of landslides are located in the convex topographic 271 

positions (Fig. 9). The slope morphology can be classified as plain, concave and 272 

convex in the study area.  273 
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 274 

Fig. 9 Thematic map of the slope shape 275 

4. Methods 276 

4.1 Normalization of data 277 
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Input-output data for the GA-BPNN training and testing are from a database, 278 

including slope, aspect, elevation, shape of slope, distance to river and human activity. 279 

These sets are utilized to test network modeling. As the dimension and magnitude of 280 

the original sample data are different, the input and test data should be normalized 281 

before training, i.e.,  282 

12
minmax

min 





XX

XX
T                                  (Eq. 1) 283 

where X represents the original data, Xmax and Xmin are the maximum and minimum of 284 

original data, respectively. T is the target data after normalization. 285 

4.2 GA-based BPNN 286 

The BPNN is trained by repeatedly presenting a series of input/output pattern sets to 287 

the networks. The networks gradually learn the input/output relationships of interest 288 

by adjusting the network weights to minimize the error between the actual and 289 

predicted output patterns of the training sets (Fig. 9). After the learning process is 290 

completed, the network weight coefficients cannot be changed. In this model, the 291 

usage of networks with only forward calculations is needed in pattern recognition and 292 

prediction, and the calculation can be executed very quickly. 293 

 294 
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Fig. 10 Architecture of three-layer BPNN  300 

The GA-based BPNN learning process consists of two stages (Fig. 11): employing 301 

GAs to search for the optimal or approximate optimal connection weights and 302 

thresholds for the networks and then using the back-propagation learning rules and 303 

training algorithms to adjust the final weights. The implementation procedure of the 304 

network training is programmed within Matlab using the GAs and Neural Networks 305 

Tool Boxes. 306 

 307 

Fig. 11 Framework of GA-based BPNN  308 
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In this processing, the BPNN weights and thresholds are represented as genes in a 309 

chromosome, and the global optimum is then searched for using the selection, 310 

crossover and mutation operators of the genetic algorithm. This procedure is 311 

completed by applying a BP algorithm on the GA-established initial connection 312 

weights and thresholds. If the BP network’s total mean square error is larger than the 313 

expected error, the weights and thresholds will be updated; otherwise, they are saved 314 

as initial value of the BP network training. To train the BPNN, the learning rate was 315 

adjusted to follow Eq. 2 using the momentum and the self-adapting methods, which 316 

was programmed using Matlab.  317 












elseklr

kmsekmseklr

kmsekmseklr

klr

);(

)(04.1)1();(7.0

)()1();(05.1

)1(                   (Eq. 2) 318 

where lr means adaptive learning rates, mse represents mean square errors for BPNN, 319 

and k is training time. 320 

After the initiation of weights and thresholds was formed from the BPNN training, an 321 

initial population S(0) was randomly generate, because it is not known a priori where 322 

the globally optimal strings. In GAs, each member of S(0) is a string of length that 323 

corresponds to the problem coding. From this initial population, subsequent 324 

populations, S(1), ..., S(t), ..., will be computed by employing three genetic operators 325 

of selection (reproduction), crossover and mutation. Then, the fitness score of each 326 

individual string of the current population S(t) is computed, and the strings in the 327 

current population are copied and placed in the intermediate population, which is 328 

proportional to their fitness relative to other individuals in the population. Crossover 329 
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and mutation are applied to the intermediate population for the creation of the next 330 

population. The two new strings, called as offspring, are formed by the juxtaposition 331 

of the first part of one parent and the last part of the other parent. It can continue with 332 

the calculation of population fitness until some stopping criterion applies to find final 333 

population. Subsequently, they were further adjusted under the BP learning rule to the 334 

best result, by which the landslide susceptibility can be accurately predicted. The 335 

detailed framework is shown in Fig. 12 for landslide susceptibility using GA-based 336 

BPNN. 337 

 338 

Fig. 12 Framework of landslide susceptibility using GA-based BPNN 339 

Using BPNN modeling optimized by genetic algorithms, the parameters of GAs and 340 

neural networks are set in the present study. The population size is 100; crossover 341 

probability is 0.65; mutation probability is 0.01; momentum factor is 0.60; learning 342 

rate is 0.7; max learning number is 10000; and target error is 0.000001. From a 343 
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database of 216 landslides in units of slope, 120 landslides were randomly used for 344 

training the neural network models, and 96 landslides were used for the validation of 345 

landslide susceptibility. In the analysis of susceptibility, the slope unit affected by 346 

landsliding was valued as 1, while the unit without landslides was assigned as 0.  347 

For the GA-improved BPNN, the network was trained for 488 times, and the error 348 

sum of the squares vs. the generation and fitness is shown in Figs. 13 and 14, 349 

respectively. In the figures, the blue line is the best solution trend, while the red one is 350 

the mean of the whole population. The final error is 9.96914e-007 from the 351 

relationship of the epochs and errors in Fig. 15. It can be demonstrated that the 352 

requirement was met for the BPNN training for landslide susceptibility assessment.  353 

 354 

Fig. 13 The error sum of squares vs. generation 355 
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 356 

Fig. 14 Generation vs. fitness 357 

 358 

Fig. 15 The relationship between epochs and errors 359 
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5. Results  360 

Following the process of mapping the slope units, the environmental factors can be 361 

categorized into slope, aspect, slope height, shape of slope, distance to rivers and 362 

human activities. These factors were statistically analyzed by slope units within the 363 

scope of GIS, after the construction of the geo-database. As mentioned above, the 364 

geological condition is almost the same in the study area, in which the strata in these 365 

units are mainly Neogene argillites, and the fluvial deposits consist of clayey silts and 366 

gravels and Quaternary loess. The environmental factors are analyzed by focusing on 367 

the slope parameters, such as slope angle, aspect, height and the shape of the slope.   368 

According to the statistical analysis, 36% of the slope units affected by landslides 369 

occurred on slopes with angles between 41° and 50°, and 30% were occurred on 370 

slopes with angles from 51°-60° (Fig. 16). From the analysis of the relationships 371 

between the slope height and landslide occurrence (Fig. 17), almost 45% of the 372 

landslides occurred at elevations between 101 and 150 m (Fig. 18). It was also found 373 

that 38% and 56% of landslides were toward the southeast and southwest, respectively. 374 

However, other five variables made little contribution to the landslide occurrence. In 375 

addition, it was also demonstrated that the concave terrain was more stable, after 376 

large-scale landslides were observed to have occurred in the loess areas (Fig. 19). 377 
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 378 

Fig.16 relationships between slope angle and landslide occurrence 379 
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Fig.17 relationships between slope height and landslide occurrence 381 
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Fig.18 relationships between slope aspect and landslide occurrence 384 
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Fig.19 relationships between the shape of slope and landslide occurrence 387 

After the GA-improved BPNN training, the susceptibility of landslides was predicted, 388 

as shown in Fig. 20. Comparing landslide occurrence with the susceptibility map, it 389 

was noted that the prediction accuracy of landslide occurrence is 93.02%, whereas the 390 

units without landslide occurrence is predicted with an accuracy of 81.13%. To sum 391 

up, the verification demonstrates satisfactory agreement with the accuracy of 86.46% 392 

obtained between the susceptibility map and landslide locations.  393 
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 394 

Fig. 20 Map with predicted landslide susceptibility (slopes potential to landslides 395 

in yellow) 396 

Ten slopes (in yellow in Fig. 20) were predicted to be prone to landslides. In view of 397 
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the environmental factors, most of these slopes were toward the southeast or southeast, 398 

were higher than 100 m and had slope angles greater than 43°. Furthermore, seven of 399 

the slopes were in convex topographic conditions, whereas the other slopes were 400 

located in concave topographic conditions.  401 

6. Discussions and Concluding remarks 402 

As a useful tool, which addresses a nonlinear system and is capable of response to 403 

inputs and adaptation to the environment, the most widely used BPNN is capable of 404 

evaluating landslide susceptibility at both the regional and site-specific scales (Lee et 405 

al. 2003; Neaupane and Achet 2004). The BPNN can be applied better over a wide 406 

area using non-parametric variables with large extensions. However, the BPNN is 407 

prone to falling into local extremes, and their convergence is slow. To overcome these 408 

drawbacks, a GA-based BPNN was proposed to optimize the neural network weights 409 

for landslide susceptibility assessment, and the topology was subjectively kept in 410 

three layers. In the optimization of the GA-based BPNN, the number of neurons can 411 

be decided in the hidden layer by the Kolmogorov theorem. For the training of the 412 

BPNN, the weights and thresholds were represented as genes of a chromosome, and 413 

the global optimum was then searched for using the selection, crossover and mutation 414 

operators of the genetic algorithm.  415 

During the processing of GA-BPNN, it is very important for the selection of training 416 

datasets, since the slope failure can be a combination of several environmental factors. 417 

In the present study, the training samples were randomly selected, and some of 418 

parameters were determined by experience, for example, learning rates, crossover 419 
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probability and mutation probability. To some extents, the accuracy of prediction was 420 

affected by the accurate selections of these parameters.  421 

Meanwhile, the advantages of using genetic algorithms were based on the 422 

performance of neural networks on the testing datasets, instead of only on the minimal 423 

square error in the modeling datasets. In addition, the minimal improvement of the 424 

genetic algorithms in this study occurred in the ratios between the numbers of 425 

chromosomes of a generation.  426 

In the present study, through the use of direct-reverse DEM technology, the 427 

Changshougou valley was divided into 216 slope units, of which 123 units were 428 

affected by landslides. According to the mechanism analyses of the landslides in the 429 

loess area, six environmental factors were selected to evaluate landslide occurrence, 430 

such as slope height, slope angle, aspect, shape of slope, distance to rivers, and human 431 

activities. After the spatial analysis of the environmental factors, a case study was 432 

presented for landslide susceptibility prediction using BPNN modeling optimized by 433 

genetic algorithms. From a database of 216 slopes, 120 units, including 80 with 434 

landslide presence and 40 without, were used for training the neural network models, 435 

and 96 slopes, i.e., 43 with landslide presence and 53 without landslide presence, were 436 

used for the validation of landslide susceptibility. Comparing landslide presence with 437 

a susceptibility map, it was noted that the prediction accuracy for landslide occurrence 438 

is 93.02%, whereas units without landslide occurrence could be predicted with an 439 

accuracy of 81.13%. It was also noted that 10 slopes were predicted to be prone to 440 

landslides. In view of the environmental factors, most of these slopes are toward 441 
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southeast or southeast, are at an elevation greater than 100 m, and have slope angles 442 

greater than 43°. It was also noted that seven of the slopes are in convex topographic 443 

conditions, whereas the other slopes are located in concave topographic conditions. 444 

Furthermore, the prediction of 10 slopes can be used as a general planning tool but is 445 

not intended for individual site-specific evaluations. 446 

As for the landsliding in loess areas, the six environmental factors were selected for 447 

the susceptibility of landslides using the slope units. Geological conditions is not 448 

complicated, since there are no faults and folds in the study area. All the selected 449 

factors were statistically analyzed using GIS, however, the classification was 450 

objectively determined. In fact, the large-scale landslides are composed of slope units, 451 

the deformation is thus completely different from a slope unit. Further detailed studies 452 

should be conducted for a single large-scale landslide in hazard assessment at a 453 

site-specific scale. However, the rainfall is the main trigger for the slope failure in this 454 

kind of areas, especially in northwest China. Detailed information for the landslide 455 

occurrence is needed for the evaluation of hazard, therefore, landslide mitigation can 456 

be effectively carried out in the Changshougou  Valley.  457 

To sum up, the verification indicates a satisfactory agreement, with an accuracy of 458 

86.46% between the susceptibility map and landslide locations. In this case study, it 459 

was also found that some disadvantages can be overcome in the application of BPNN, 460 

such as low convergence rates and susceptibility to local minimums, after the 461 

optimization was carried out using GAs. To conclude, GA based BPNN are an 462 

effective method to predict landslide susceptibility with high accuracy. 463 



 

 36

Acknowledgements 464 

This research was supported by funding from the Key Program of Natural Science 465 

Foundation of Hubei (2009CDA007). In addition, partial support from the Doctoral 466 

Fund from the Ministry of Education of China (20100142110059) is acknowledged. A 467 

special note of appreciation is extended to the Ministry of National Science and 468 

Technology for their funding support (2012BAK10B00). Two anonymous reviewers 469 

were greatly appreciated for their comments and suggestions. 470 

References 471 

Ayalew, L., Yamagishi, H.: The application of GIS-based logistic regression for 472 

landslide susceptibility mapping in the Kakuda-Yahiko Mountains, central Japan, 473 

Geomorphology, 65,15-31,2005. 474 

Bai, S., Lu, G.., Wang, J., Zhou, P., Ding, L.: GIS-based rare events logistic 475 

regression for landslide-susceptibility mapping of Lianyungang, China,  476 

Environmental Earth Sciences, 62, 139-149, 2011. 477 

Battiti, R.: Accelerated back propagation learning: Two optimization methods, 478 

Complex Systems, 3, 331–342, 1989. 479 

Carrara, A., Cardinali , M., Detti,R., Guzzetti, F., Pasqui,V., Reichenbach, P.: GIS 480 

techniques and statistical models in evaluating landslide hazard, Earth Surface 481 

Processes Landforms, 16,427–445, 1991. 482 

Catani, F., Casagli, N., Ermini, L. , Righini, G and  Menduni, G.: Landslide hazard 483 

and risk mapping at catchment scale in the Arno River basin, Landslides, 2, 484 

329-342, 2005. 485 



 

 37

Chen, H.Q., Zeng, Z.G.: Deformation Prediction of Landslide Based on 486 

Genetic-Simulated Annealing Algorithm and BP Neural Network. Fourth 487 

International Workshop on Advanced Computational Intelligence, Wuhan, 488 

Hubei, China; October 19-21, 2011. 489 

Chung, C.F., Fabbri, A.G.: Validation of spatial prediction models for landslide 490 

hazard mapping, Natural Hazards, 30,451-472, 2003. 491 

Chung, C.J. : Using likelihood ratio functions for modeling the conditional probability 492 

of occurrence of future landslides for risk assessment. Computer and 493 

Geosciences, 32, 1052-1068, 2006. 494 

Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., Paudyal, P.:  495 

Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya 496 

of Nepal based on weights-of-evidence, Geomorphology, 102, 496-510, 2008. 497 

Derbyshire E, Meng, X.M., Dijkstra, T.A. (eds).: Landslides in the thick loess terrain 498 

of north-west China. John Wiley, 2000. 499 

Ercanoglu, M. and Gokceoglu, C.: Assessment of landslide susceptibility for a 500 

landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach, Environ 501 

Geol 41:720-730, 2002. 502 

Ermini, L., Catani, F., Casagli, N.: Artificial Neural Networks applied to landslide 503 

susceptibility assessment, Geomorphology, 66, 327-343, 2005. 504 

Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W.Z.:  505 

Guidelines for landslide susceptibility, hazard and risk zoning for land use 506 

planning, Engineering Geology, 102, 85-98, 2008. 507 



 

 38

García-Rodríguez, M. J.  and Malpica, J. A.: Assessment of earthquake-triggered 508 

landslide susceptibility in El Salvador based on an Artificial Neural Network 509 

model, Nat. Hazards Earth Syst. Sci., 10, 1307-1315, 2010. 510 

Gómez, H., Kavzoglu, T.: Assessment of shallow landslide susceptibility using 511 

artificial neural networks in Jabonosa River Basin, Venezuela, Engineering 512 

Geology, 78, 11-27, 2005. 513 

Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P.: Landslide hazard evaluation: 514 

a review of current techniques and their application in a multi-scale study, 515 

Central Italy. Geomorphology, 31, 181-216, 1999. 516 

Hagan, M.T., Demuth, H.B., Beale, M.: Neural Network Design, PWS publishing 517 

company, a division of Thomson learning, Boston, USA, 1996. 518 

Hasekiogullar, G. D., Ercanoglu, M.: A new approach to use AHP in landslide 519 

susceptibility mapping: a case study at Yenice (Karabuk, NW Turkey), Natural 520 

Hazards, 63, 1157 - 1179, 2012. 521 

Haykin, S.: Neural Networks: A Comprehensive Foundation (2nd edition), Publisher: 522 

Prentice Hall, 1999. 523 

Kanungoa, D.P., Arorab, M.K., Sarkara, S., Guptac, R.P.A.: Comparative study of 524 

conventional, ANN black box, fuzzy and combined neural and fuzzy weighting 525 

procedures for landslide susceptibility zonation in Darjeeling Himalayas, 526 

Engineering Geology, 85, 347–366, 2006. 527 

Kesign, U.: Genetic algorithm and artificial neural network for engine optimisation of 528 

efficiency and NOx emission. Fuel, 83, 885–895, 2004. 529 



 

 39

Lee, S., Ryu, J.H., Min, K., Won, J.S.: Landslide susceptibility analysis using GIS and 530 

artificial neural network, Earth Surface Processes and Landforms, 23, 531 

1361-1376, 2003.  532 

Lee, S., Pradhan, D.: Regional landslide susceptibility analysis using 533 

back-propagation neural network model at Cameron Highland, Malaysia, 534 

Landslides, 7(1), 13-30, 2010. 535 

Madaeni, S.S., Hasankiadeh, N.T., Kurdian, A.R., Rahimpour, A.: Modeling and 536 

optimization of membrane fabrication using artificial neural network and genetic 537 

algorithm. Separation of Purification Technology, 76, 33–43, 2010. 538 

Maidment, D.: Arc Hydro: GIS for water resources. ESRI 380, New York Street, 539 

Redland, California, 2002. 540 

Melchiorre, C., Matteucci, M., Azzoni, A., Zanchi, A.: Artificial neural networks and 541 

cluster analysis in landslide susceptibility zonation, Geomorphology, 94, 542 

379-400, 2008. 543 

Meng, X.M., Dijkstra, T, D., Derbyshire, E.: Loess slope instability. In: Derbyshire E, 544 

Meng, X.M., Dijkstra, T.A. (eds). Landslides in the thick loess terrain of 545 

north-west China. John Wiley, 175-181, 2000. 546 

Mu, Y., Yu, H.Q.: Simulation of biological hydrogen production in a UASB reactor 547 

using neural network and genetic algorithm, Int. J. Hydrogen Energy, 32, 548 

3308–3314, 2007. 549 

Neaupane, K.M., Achet, S.H.:  Use of back propagation neural network for landslide 550 

monitoring: a case study in the higher Himalaya, Engineering Geology, 74, 551 



 

 40

213–226, 2004. 552 

Nefeslioglu, H. A., Gokceoglu, C., Sonmez, H.: An assessment on the use of logistic 553 

regression and artificial neural networks with different sampling strategies for 554 

the preparation of landslide susceptibility maps, Eng. Geol., 97, 171–191, 2008. 555 

Nefeslioglua, H.A., Gokceoglub, C., Sonmez, H., Gorum, T.: Medium-scale hazard 556 

mapping for shallow landslide initiation: the Buyukkoy catchment area (Cayeli, 557 

Rize, Turkey). Landslides, 8(4), 459-483, 2011. 558 

Peng, S.Z., Guo, Z.T.:  Clay mineral composition of the Tertiary red clay and the 559 

Quaternary loess-palaeosols as well as its environmental implication. Chinese J. 560 

Quaternary Science, 27, 277-285, 2007. 561 

Rumelhart, D.E., McClelland, J.L.: Parallel Distributed processing: Exploration in the 562 

Microstructure of Cognition. MIT-Press, Cambridge, MA, 1986. 563 

Saengrung, A., Abtahi, A., Zilouchian, A.: Neural network model for a commercial 564 

PEM fuel cell system, J. Power Sources, 172, 749–759, 2007. 565 

Sexton, R.S., Gupta, J.N.D.: Comparative evaluation of genetic algorithm and back 566 

propagation for training neural networks, Inform. Sciences, 129, 45–59, 2000. 567 

Van Westen, C.J.: GIS in landslide hazard zonation: a review, with examples from 568 

Andes of Colombia, In: Price, M. and Heywood, I. (eds.), Mountain 569 

Environments and Geographic Information Systems, Taylor & Francis, 570 

Basingstoke, U.K., pp135-165, 1994. 571 

Wang, H.B., Liu, G.J., Xu, W.Y., Wang, G.H.: GIS-based landslide hazard 572 

assessment: An overview. Progress in Physical Geography, 29, 548-567, 2005. 573 



 

 41

Wang, H.B., Zhou, B., Wu, S.R., Shi, J.S.: Characteristic analysis of large-scale loess 574 

landslides: a case study in Baoji City of Loess Plateau of Northwest China. 575 

Natural Hazards and Earth Sciences, 11, 1829–1837, 2011. 576 

Xie, M.W., Esaki, T., Zhou, G.Y.: GIS-based probabilistic mapping of landslide 577 

hazard using a three-dimensional deterministic model, Natural Hazards, 33, 578 

265-282, 2004. 579 

Yilmaz, Y.: An Agent Simulation Study on Conflict, Community Climate, and 580 

Innovation in Open Source Communities, International Journal of Open Source 581 

Software and Processes, 1(4), 1-25, 2009. 582 

Zhou, X.: Genetic algorithm based on new evaluation function and mutation model 583 

for training of BPNN, Tsinghua Science and Technology, 7, 28-31, 2002. 584 

 585 


