

1 Application of a hybrid model of neural networks and genetic algorithms
2 to evaluate landslide susceptibility

3
4 H. B. Wang^{1, 2}, J.W. Li¹, B. Zhou¹, Z. Q. Yuan¹, Y.P. Chen³
5

6 ¹School of Civil Engineering and Mechanics, Huazhong University of Science & Technology,
7 Wuhan 430074, P.R. China

8 ²Hubei Key Laboratory of Control Structure, Huazhong University of Science & Technology,
9 Wuhan 430074, P.R. China

10 ³Wenhua College, Huazhong University of Science & Technology, Wuhan 430074, P.R. China
11

12 Abstract

13 In the last few decades, the development of Geographical Information Systems (GIS)
14 technology has provided a method for the evaluation of landslide susceptibility and
15 hazard. Slope units were found to be appropriate for the fundamental morphological
16 elements in landslide susceptibility evaluation. Following the DEM construction in a
17 loess area susceptible to landslides, the direct-reverse DEM technology was employed
18 to generate 216 slope units in the studied area. After a detailed investigation, the
19 landslide inventory was mapped in which 39 landslides, including paleo-landslides,
20 old landslides and recent landslides, were present. Of the 216 slope units, 123
21 involved landslides. To analyze the mechanism of these landslides, six environmental
22 factors were selected to evaluate landslide occurrence: slope angle, aspect, the height
23 and shape of the slope, distance to rivers and human activities. These factors were
24 extracted in terms of the slope unit within the ArcGIS software. The spatial analysis
25 demonstrates that most of the landslides are located on convex slopes at an elevation
26 of 101-150 m with slope angles from 136°-225° and 41°-60°. Landslide occurrence

Corresponding author. *Email address:* huabin@mail.hust.edu.cn. Tel: 8627-87541954.

27 was then checked according to these environmental factors using an artificial neural
28 network with back propagation, optimized by genetic algorithms. A dataset of 120
29 slope units was chosen for training the neural network model, i.e., 80 units with
30 landslide presence and 40 units without landslide presence. The parameters of genetic
31 algorithms and neural networks were then set: population size of 100, crossover
32 probability of 0.65, mutation probability of 0.01, momentum factor of 0.60, learning
33 rate of 0.7, max learning number of 10000, and target error of 0.000001. After training
34 on the datasets, the susceptibility of landslides was mapped for the land-use plan and
35 hazard mitigation. Comparing the susceptibility map with landslide inventory, it was
36 noted that the prediction accuracy of landslide occurrence is 93.02%, whereas units
37 without landslide occurrence are predicted with an accuracy of 81.13%. To sum up,
38 the verification shows satisfactory agreement with an accuracy of 86.46% between the
39 susceptibility map and the landslide locations. In the landslide susceptibility
40 assessment, ten new slopes were predicted to show potential for failure, which can be
41 confirmed by the engineering geological conditions of these slopes. It was also
42 observed that some disadvantages could be overcome in the application of the neural
43 networks with back propagation, for example, the low convergence rate and local
44 minimum, after the network was optimized using genetic algorithms. To conclude,
45 neural networks with back propagation that are optimized by genetic algorithms are
46 an effective method to predict landslide susceptibility with high accuracy.

47 Keywords: landslide; Geographical Information Systems; genetic algorithms; back
48 propagation neural networks; susceptibility evaluation

49 **1. Introduction**

50 Landslides are local phenomena occurring in different geomorphic contexts; they can
51 be triggered by a variety of mechanisms, such as earthquakes or rainfall, and some of
52 the causes are not yet well known. Landslides cannot be predicted accurately;
53 however, the susceptibility of a given area to landslides can be determined and
54 depicted using hazard zonation. Various methods have been proposed to partition
55 landscape for the purpose of landslide hazard assessment and zonation mapping,
56 including grid cells, terrain units, unique-condition units, slope units and topographic
57 units (Carrara et al.,1991; van Westen, 1994; Guzzetti et al. 1999; Chung and Fabbri,
58 2003). With respect to the landscape partitioning methods mentioned above, slope
59 units can be resized according to the prevailing failure type and dimension, thereby
60 partitioning a river basin into nested subdivisions: coarser for larger landslides and
61 finer for smaller failures. Because a clear physical relationship exists between
62 landslides and the fundamental morphological elements of a hilly or mountain region,
63 namely, drainage and divided lines, the slope-unit technique seems appropriate for
64 landslide susceptibility assessment.

65 A careful review of the concepts, principles, techniques and methodologies for
66 landslide susceptibility evaluation reveals that the most commonly used methods are
67 geomorphological hazard mapping, analysis of landslide inventories, heuristic or
68 index-based methods, functional, statistically based models and geotechnical or
69 physically based models (Guzzetti et al. 1999; Wang et al. 2005; Fell et al., 2008).
70 Recently, probabilistic models such as frequency ratio and logistic regression methods

71 have been applied to evaluate landslide susceptibility and have been integrated with
72 Geographical Information Systems (GIS) (Ayalew and Yamagishi, 2005; Chung, 2006;
73 Dahal et al., 2008; Nefeslioglu, et al., 2008; Yilmaz, 2009; Bai, et al., 2010;
74 García-Rodríguez and Malpica, 2010; Hasekiogullari and Ercanoglu, 2012). Due to
75 geological complexity of slopes and self-organized system, however, many variables
76 are involved in slope stability evaluation, which display a highly nonlinear
77 relationship with evaluation results. Under the consideration of the nonlinear
78 characteristics of the sliding process, artificial neural networks (ANNs) have thus
79 been introduced to produce landslide susceptibility and hazard maps (Ercanoglu and
80 Gokceoglu, 2002; Neupane and Achet, 2004; Catani et al., 2005; Gómez and
81 Kavzoglu, 2005; Kanungo et al., 2006; Nefeslioglu, et al., 2008; Nefeslioglu et al.,
82 2011).

83 The main characteristics of ANNs dealing with quantitative and qualitative indices
84 include large-scale parallel distributed processing, continuously nonlinear dynamics,
85 collective computation, high fault-tolerance, self-organization, self-learning and
86 real-time treatment (Rumelhart and McClelland 1986). It is worth noting that a neural
87 network system is a processing device, implemented as an algorithm or in hardware,
88 whose design is inspired by the design and the function of mammalian brains; they
89 react to training data input in such a way to alter their initial state, and they learn
90 using unconventional algorithms. Neural networks integrated with GIS may be an
91 effective approach when dealing with landslide hazard assessments where meaningful
92 outcomes are difficult to achieve by means of standard mathematical models. Because

93 artificial neural network models are adaptive and capable of generalization, they can
94 handle imperfect or incomplete data and can capture nonlinear and complex
95 interactions among the several variables of a system (Ermini et al. 2005; Melchiorre et
96 al. 2008; Lee and Pradhan. 2011).

97 However, it was found that the slow training speed and difficulty in achieving a local
98 minimum cannot be resolved in practical applications for the most commonly used
99 back propagation neural networks (BPNN). To solve this problem, several methods
100 were proposed to improve the training speed of networks, such as improving error
101 functions and adjusting the studying rates. For this kind of solutions, the BPNN is
102 likely to converge to a local solution, which may not be the global solution, with the
103 random selection of initial weights. Thus, a global search algorithm was then
104 introduced, e.g., evolutionary programming, simulated annealing or genetic
105 algorithms (GAs). Among them, GA has mainly been used to search for the optimal
106 solution in BPNNs due to its excellent global search ability (Holland 1975; Sexton
107 and Gupta, 2000; Kesign, 2004; Madaeni, et al., 2010; Chen and Zeng, 2011). There
108 are two main aspects of applying GA to BPNNs for finding global optima in complex
109 problems: one is to optimize the weights of the network, and the other is to optimize
110 the topological structure of the network.

111 After an overview on landslide susceptibility using ANNs, it was noted that the
112 weights were randomly selected and that the optimization cannot be carried out for
113 global searching. This paper thus proposes a hybrid model of a GA and BPNN to
114 evaluate landslide susceptibility for the optimization of weights. In this study,

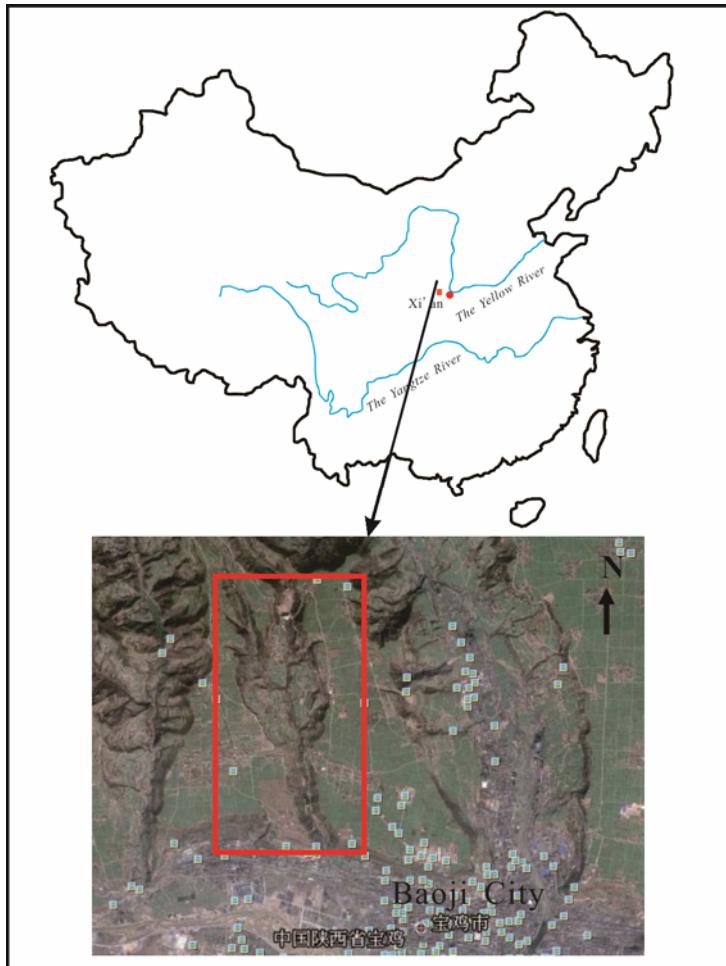
115 landslide inventory was mapped after detailed field investigation and interpretation
116 from high-resolution imagery. The outline of the watershed polygons was mapped as
117 the ridge line using DEM, and reverse DEM data were used to detect the valley line.
118 The combined DEM and reverse DEM, slope units were then mapped within a
119 commercial software as ArcGIS (. After the definition of slope units, environmental
120 factors were analyzed for the presence of landslide occurrence, and a hybrid of GA
121 and BPNN was developed to evaluate landslide susceptibility. In this method, the GA
122 was used to search for the optimal or approximately optimal connection weights and
123 thresholds for the networks, and then, using back-propagation learning rules and
124 training algorithms, the final weights could be adjusted.

125 **2. Study area**

126 2.1 General information

127 The study area is the Changshougou Valley, which is located northwest of Baoji city
128 in Shaanxi Province (Fig. 1). The elevation is approximately 600-700 m a.s.l., and the
129 relative relief exceeds 100-350 m over the Changshougou valley. In this area, three
130 main geomorphological units may be distinguished: dissected loess plateau (yuan),
131 loess hills (mao), and loess ridges (liang). The lithology of the strata in these units is
132 mainly Neogene argillites and fluvial deposits consisting of clayey silts and gravels
133 and Quaternary loess. Due to the erosion of the Pliocene lacustrine basin by stream
134 systems and the reactivation of folds and faults, a very unstable base was formed for
135 the extensive Quaternary loess deposits, which acts as the underlying cause of the
136 loess instability. Loess is known as a “problem soil”; although it can sustain nearly

137 vertical slopes when dry, it is susceptible to catastrophic failure on reaching certain
138 critical moisture contents.



139
140 **Fig. 1 Geographical location of the study area marked by the red rectangle**
141 **(data from Google earth)**

142 The climate of the study area is notable for Asiatic monsoons and marked seasonal
143 shifts in dominant winds. The mean annual temperature is 12.9 °C, and the maximum
144 is up to 41.6 °C. The mean annual precipitation reaches 679.1 mm, and almost 50% of
145 the precipitation falls in the period from July to September.

146 **2.2 Types of landslides**

147 There are a variety of landslides present in the Changshougou valley. The

148 examination of the Weihe River terraces and their overlying loess units has shown that
149 landslides fall into three broad temporal categories, i.e., palaeo-landslides, old
150 landslides, and recent landslides. Palaeo-landslides occurred before or during the
151 Pleistocene. The slide masses consist of materials of Tertiary to Middle Pleistocene
152 age, in which the late Pleistocene loess (Malan) sometimes occurs as a drape.
153 Landslides of Late Holocene age involve materials of Late Pleistocene loess, which
154 were developed entirely within loess. This kind of landslides was common in the
155 study area. As a result of human activities, recent landslides were triggered or
156 reactivated from other kinds of landslides. The principal mass movement types
157 recognized in the study area are summarized in Table 1 (Wang, et al., 2011).

158 **Table 1 Classification of landslide types in the study area**

Type of materials

Mixed

Loess only

Geometry and movement

Flows and complex mass movements

Large rotational mass movements

Planar slides

Debris flows and mudflows

Types based on situation of the failure plane

Bedrock-contact landslides

Palaeosol-contact landslides

Mixed landslides

Landslides entirely within loess

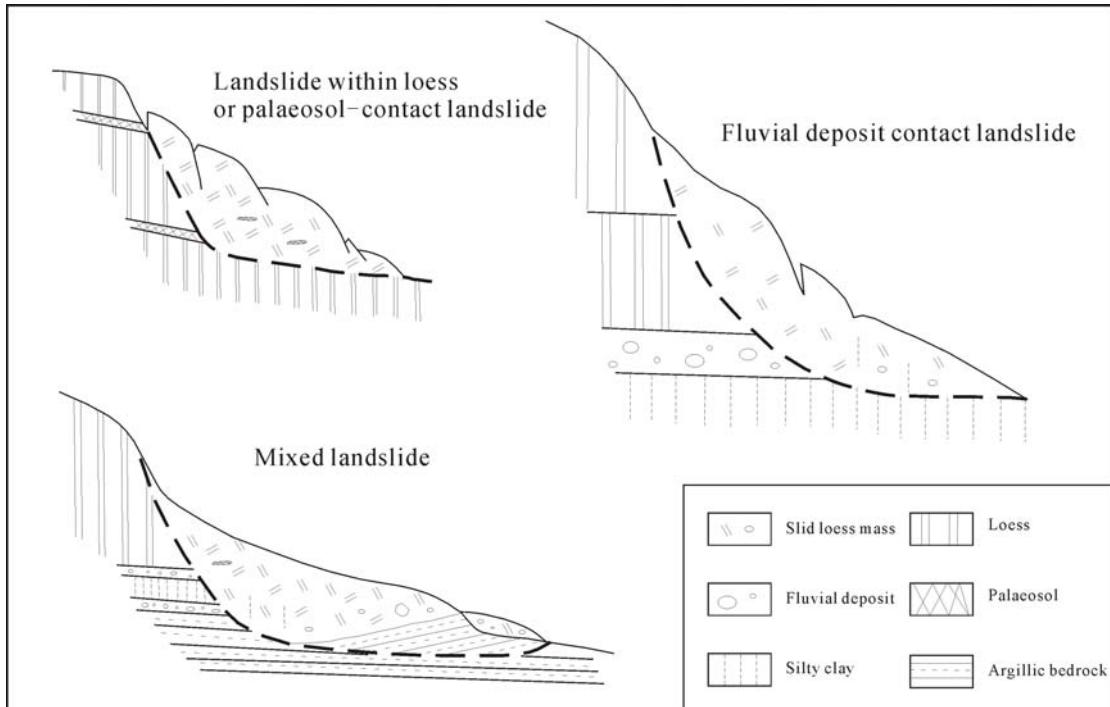
Age

Palaeo-slides

Old slides

Recent slides

159 As can be seen in Fig. 3, there are three basic types of landslides that occur in a
160 variety of materials based on the situation of the failure plane.



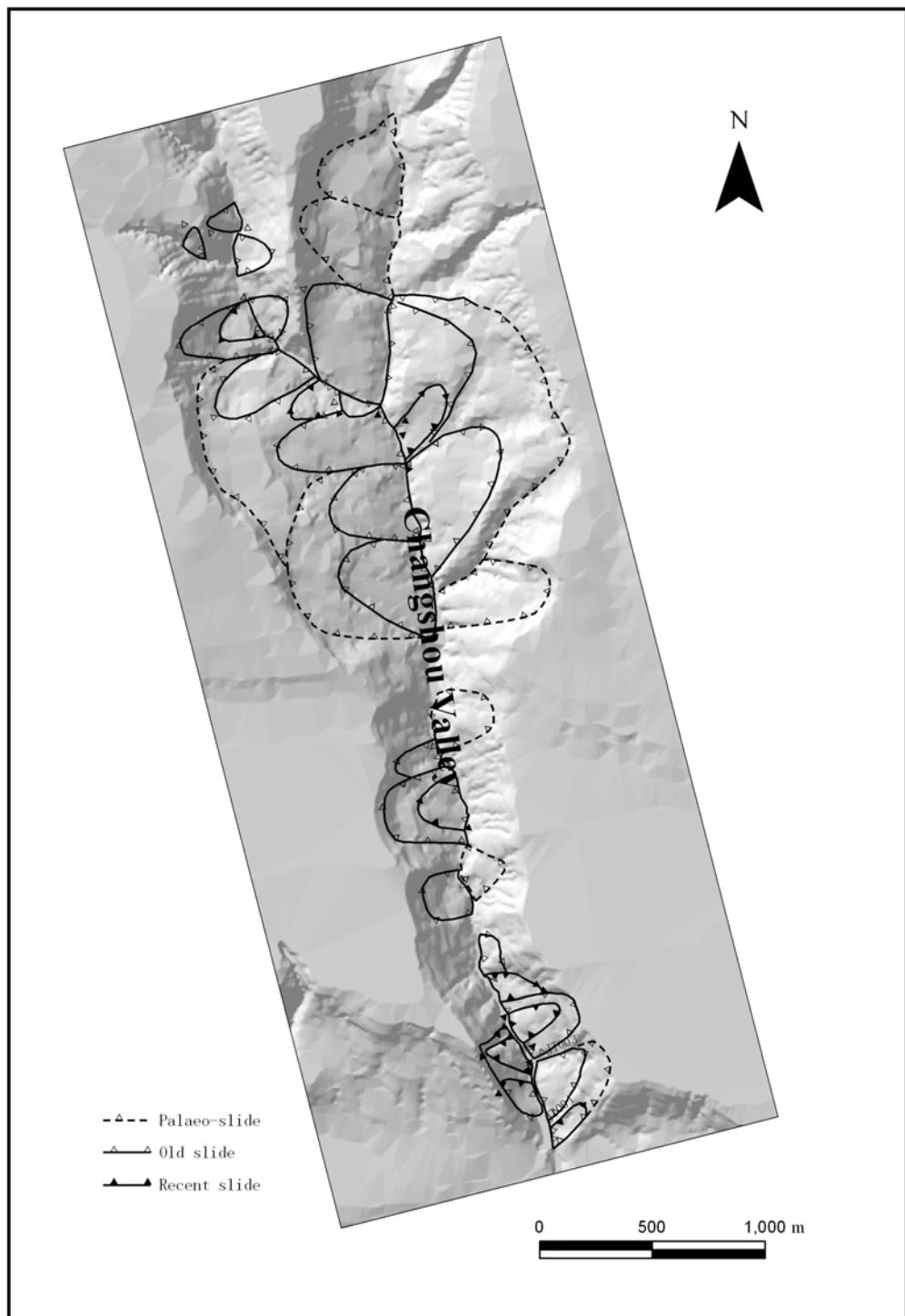
162 **Fig. 2 Representative types of slope failures in the study area**

163 **3. Data preparation**

164 **3.1 Landslide inventory**

165 A landslide-inventory map was prepared primarily by the interpretation of
166 high-resolution imagery and secondarily by site investigations. As shown in Fig. 3, 39
167 landslides in the study area are classified into three types: paleo-landslides, old
168 landslides and recent landslides (Meng et al. 2000). Fifty percent of landslides are
169 old as dormant-mature, and 25% have been reactivated recently. For all of the
170 landslides, the slope after failure averages 22.6° , with a maximum of 45° . The slope

171 gradients of large-scale landslides tend to be gentle, at approximately 18° , which
172 implies that most of the paleo-landslides in the study area are stable.



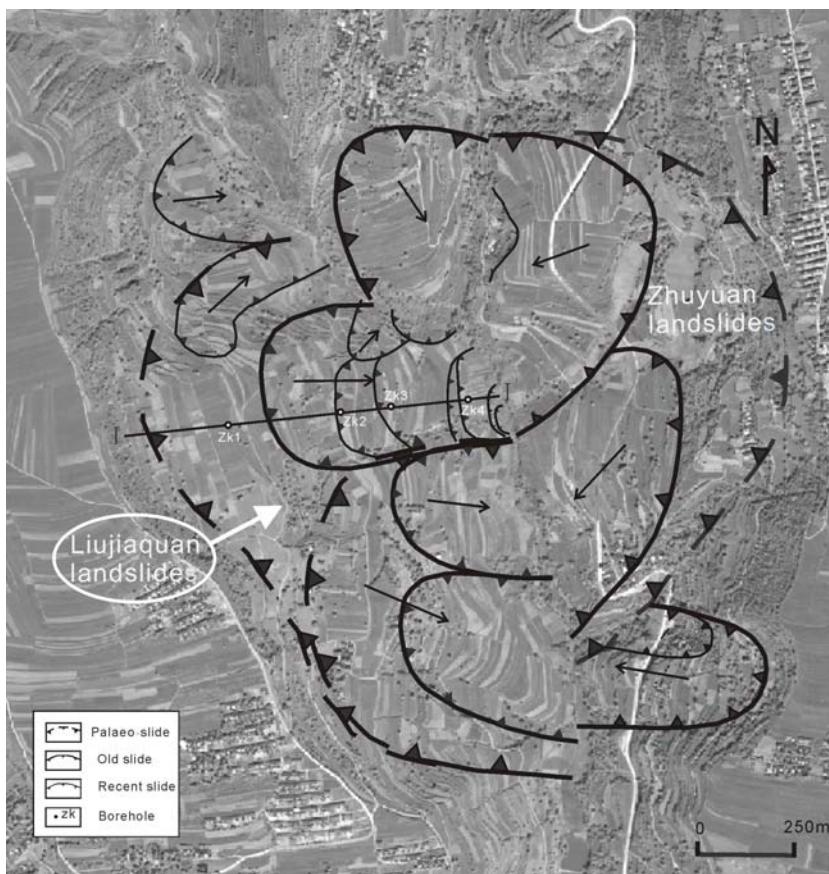
173

174 **Fig. 3 Landslide inventory mapping in the Changshougou valley**

175 It was also observed that the landslides are concentrated at the confluence of two
176 streams. As described in the previous section, these landslides are attributed to the
177 undercutting of the slopes associated with gullying. Major factors affecting the
178 initiation of slope failure and subsequent modes of movement appear to be dependent
179 upon the morphology, the nature and degree of weathering of the underlying bedrock,
180 and the moisture status of the loess deposits. Numerous ancillary factors include
181 bedrock-loess interface, slope steepness, vegetation cover, and land utilization. As
182 already noted, the upper surface of the Neogene bedrock is often weathered and
183 contains variable amounts of smectites. In this zone, wetting-drying results in a
184 progressive decrease in strength that may ultimately lead to slope failure.
185 Undercutting of the slopes along the gullies is frequent, which increases the risk of
186 slope failure. As a result of the high relative relief, the steep slopes and the relatively
187 uniform geological and geomorphological conditions, the landslides tend to be very
188 large and to occur in groups.

189 In terms of geological periods, landslides in the studied area fall into three categories:
190 palaeo-slides, old slides, and recent slides. The most ancient landslides are not
191 traceable in the historical records, and some recent landslides keep moving. Typically,
192 a swarm of landslides is located at Zhuyuan village (Fig. 4), approximately 10 km
193 north of Baoji. The landslide mass is 1000 m wide and 850 m long, with an estimated
194 volume of $5.1 \times 10^7 \text{ m}^3$. Steeper slopes are generally over 40° around the crest, with
195 forested landslide terraces. Remote-sensing interpretations and field investigations
196 indicate a maximum vertical displacement of 150 m along the slip surface of the

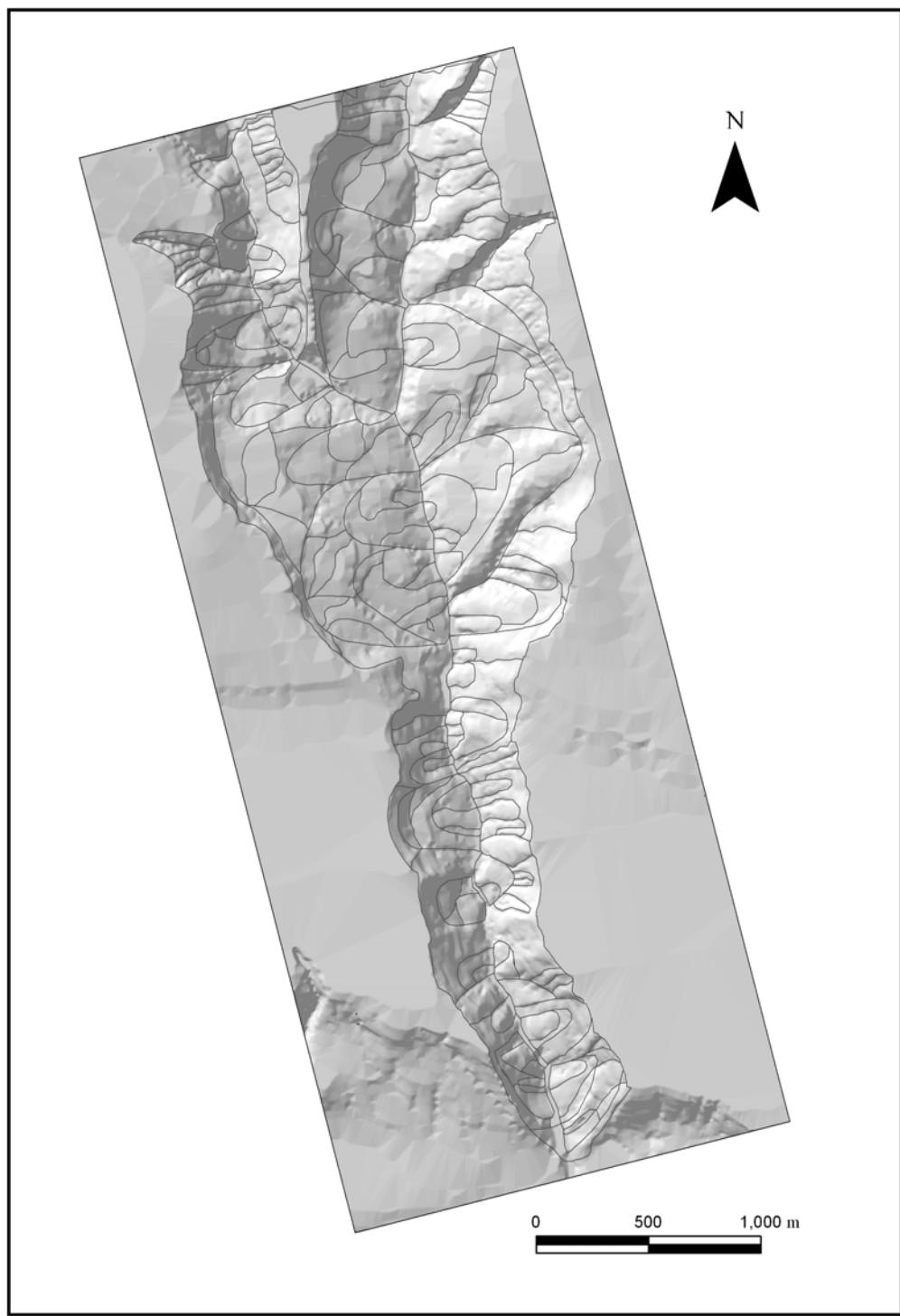
197 landslides. The shape and slope angle of the landslide scars suggest a single, major
198 concave surface of rupture. For these studied landslides, the failure planes occurred
199 either along the contacts between the fluvial deposits and the Neogene argillites or
200 partially within the bedrock. With regard to the Neogene argillite in the loess plateau,
201 the clay minerals are dominated by illite, chlorite, smectite and kaolinite, similar to
202 the overlying Quaternary loess (Peng and Guo 2007). This type of argillite is thus
203 subjected to long-term softening due to saturation in the contact zone. After a point is
204 reached, at which they are no longer able to support the overlying loess, a progressive
205 failure occurs. The occurrence of planar slides in the study area depends on the
206 shear-strength conditions of the failure surface and the cohesion of the materials
207 involved, usually presented in the Malan loess and in reworked loess slope deposits.



208
209 **Fig. 4 View of the Zhuyuan and Lijiaquan landslides from a Quickbird image**

210 3.2 Defining slope units

211 In this study, a GIS-based hydrologic analysis and modeling tool, Arc Hydro, is
212 employed to draw the dividing lines for forming slope units automatically. Arc Hydro
213 is an ArcGIS based software geared to support water resources applications
214 (Maidment 2002). The software provides a method for the delineation of watersheds
215 and stream networks using digital elevation models (DEM) of land-surface terrain. In
216 the present study, the topographic maps were used to produce DEM with a contour
217 interval of 10 m at a scale of 10,000. Using the DEM, the outlines of the watershed
218 polygons are topographically mapped as the ridge lines, and the reverse DEM data
219 can be used to detect the valley lines (Xie, et al., 2003). Using the DEM grid analysis,
220 high DEM values can be turned into low values and low DEM values to high. After
221 these values change, the original valley line can be turned into a ridge line.
222 Meanwhile, the valley line can also be obtained by watershed analysis of the reverse
223 DEM data. The combined DEM and reverse DEM analyses map the slope units within
224 the of ArcGIS in the studied area (Fig. 5).



225

226 **Fig. 5 Slope units from combination of DEM and reverse DEM**

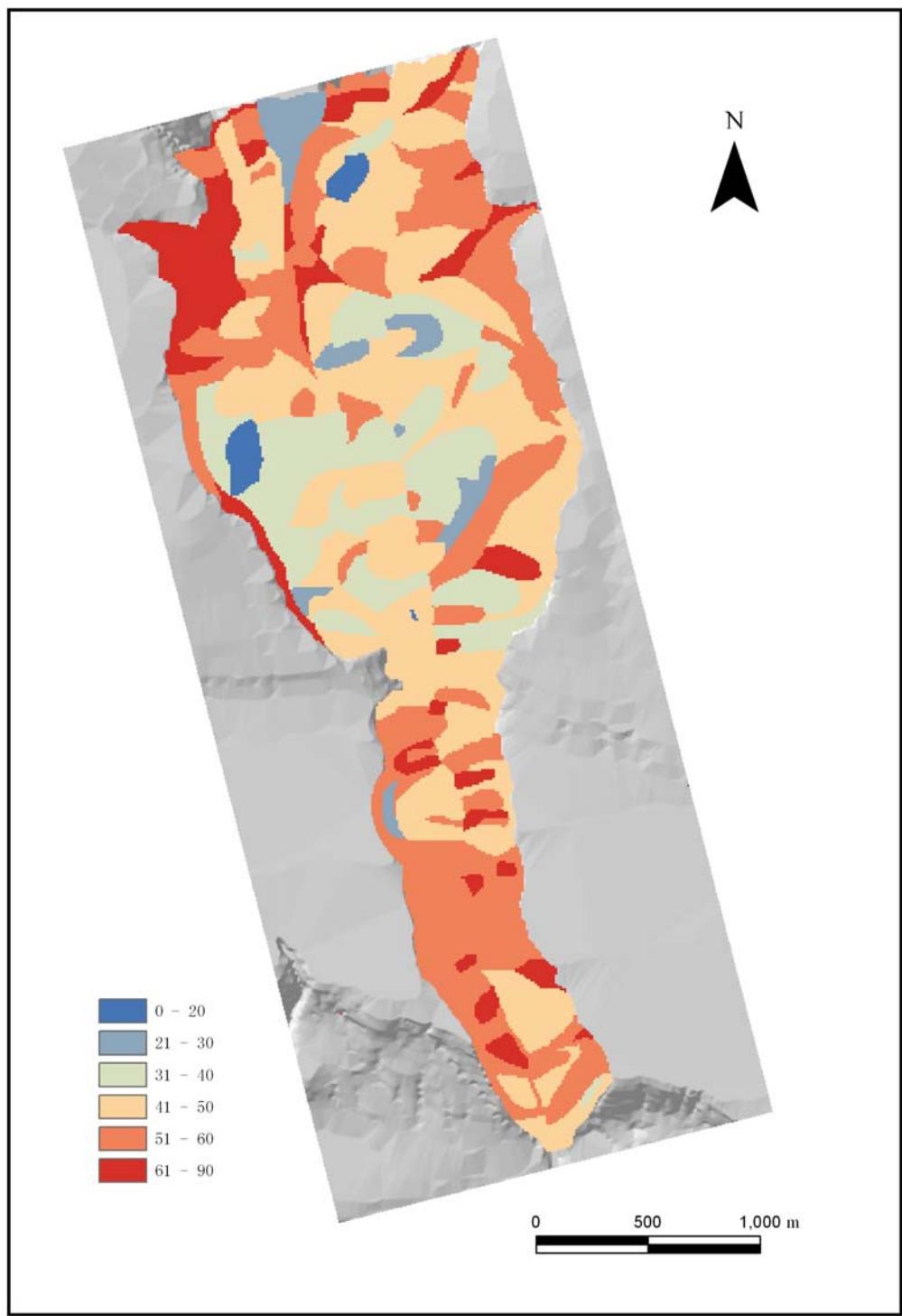
227 3.3 Selection of environmental factors

228 In these slope units, a variety of environmental factors such as slope angle, aspect,

229 height and shape of slope were selected to evaluate landslide susceptibility. Two more
230 environmental factors were selected, namely, distance to rivers and human activities.
231 As for the distance to rives, the buffering zone was used to analyze the relationship
232 between the distance to river and landsliding. It was shown that landslide frequency
233 generally decreases with the increasing of the distance from drainage line increases,
234 due to the gully erosion. In addition, the influence of human activity was analyzed
235 under the consideration of land using on the slope area. After the detailed
236 investigation, it is valued as 1 if the slope areas were used for vegetation, while the
237 value is considered as 0 without any vegetation.

238 **(1)Slope angle**

239 Slope angle has a great influence on the susceptibility of a slope for landslide
240 occurrence. As the slope angle increases, more of the load force is directed down the
241 slope. The steeper slope, the more potential to landsliding. To quantify the relative
242 frequency of landslides on different slope gradients, it is necessary to consider the
243 distribution of the slope gradient categories using the available DEM dataset. Using
244 the function of Mean in the ArcGIS Spatial Analyst model, an average slope angle
245 was defined for each slope unit. In the study area, slope angles were categorized into
246 six classes: 0-20°, 21°-30°, 31°-40°, 41°-50°, 51°-60° and larger than 60° (Fig. 6).



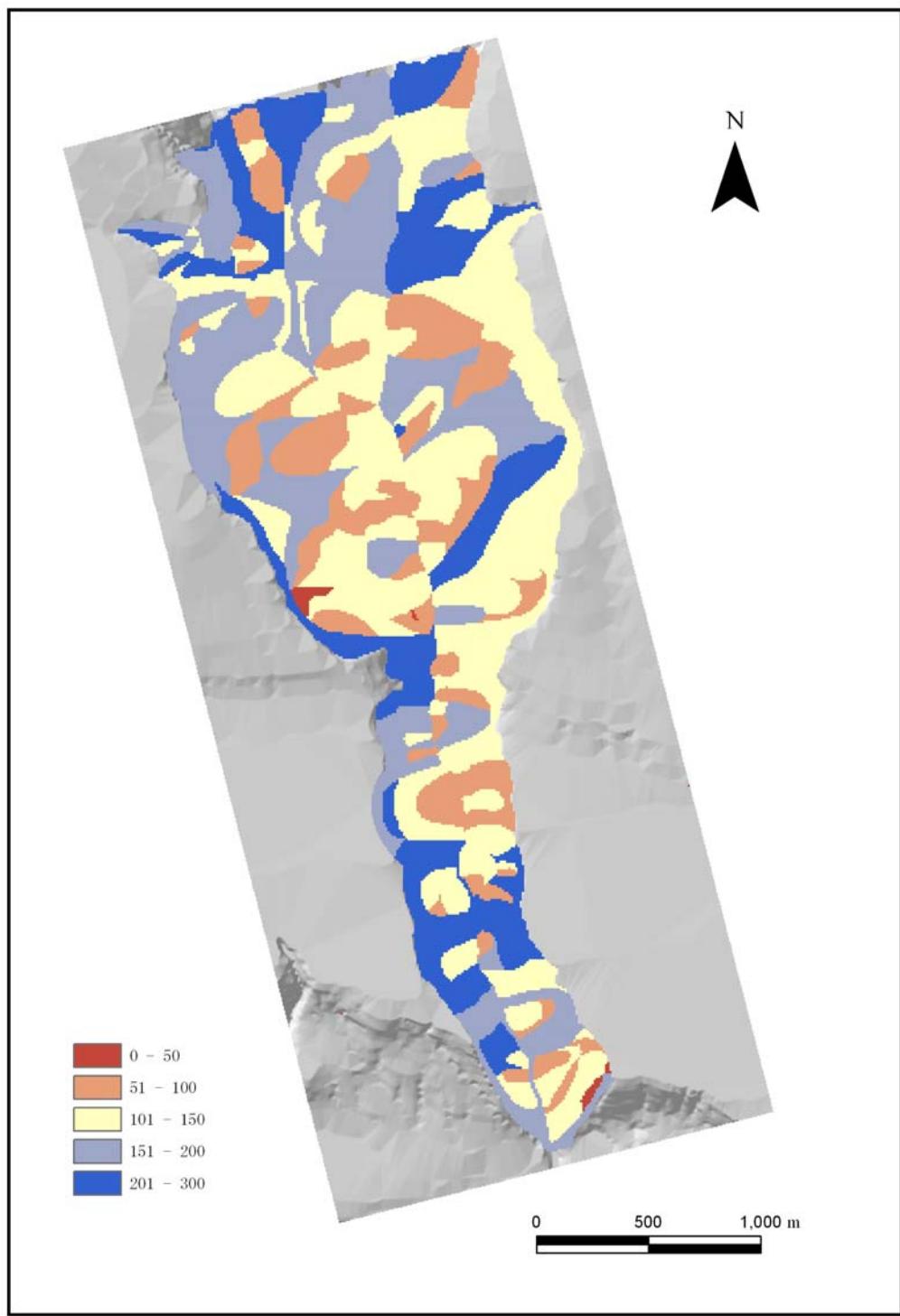
247

248 **Fig. 6 Thematic map of the slope angle**

249 **(2) Slope height**

250 Slope height plays an important role in landslide occurrence, especially in loess areas

251 (Derbyshire et al., 2000). Other conditions being equal, higher slopes can increase
252 stress values in different areas of slope, making the slopes unstable. The slope height
253 was classified into five classes: 0-50, 51-100 m, 101-150 m, 151-200 m and 201-300
254 m. Using Min and Max functions in the model of ArcGIS Spatial Analyst, the slope
255 height was obtained from the difference of the minimum and maximum elevation over
256 all the slope units.



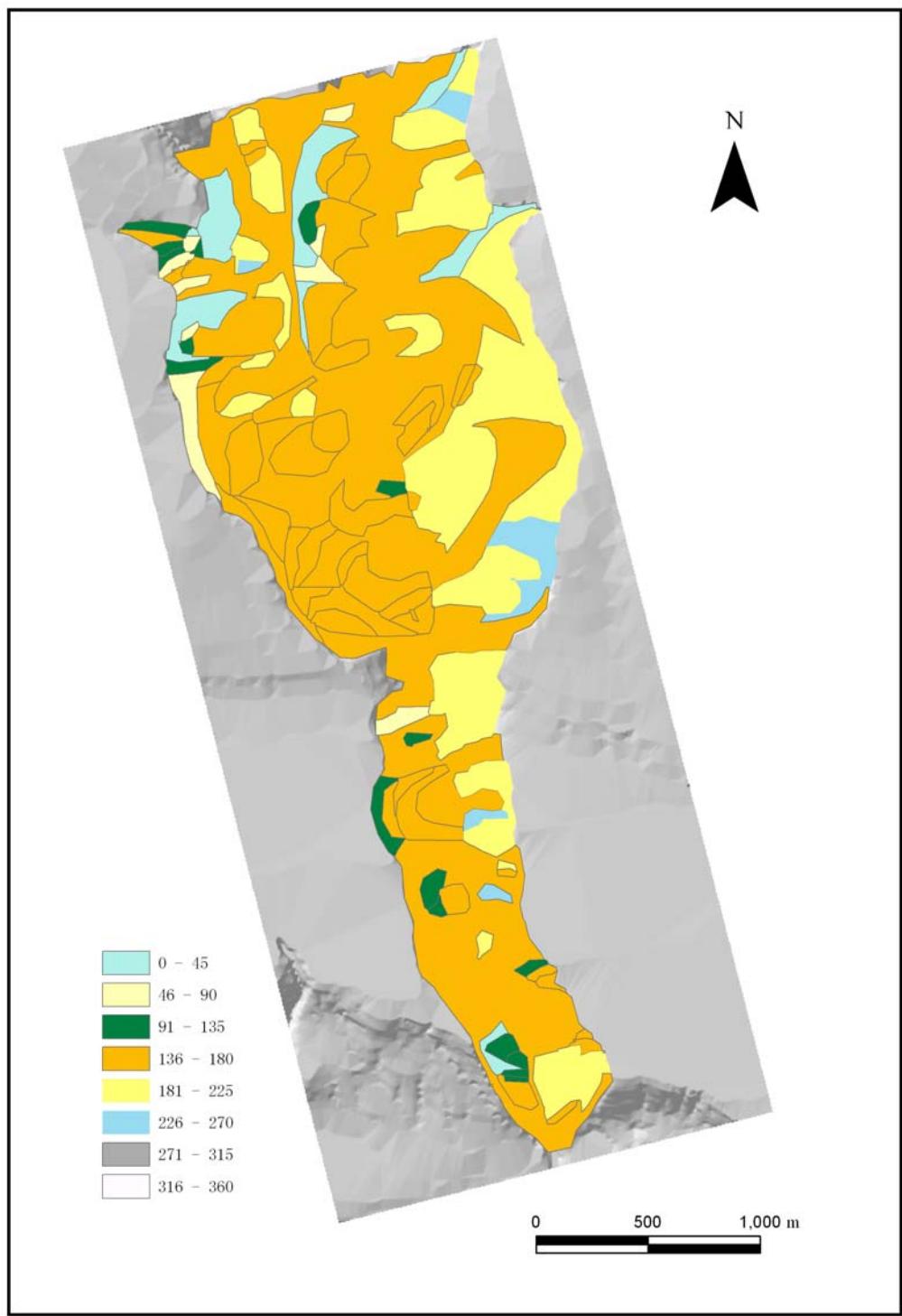
257

258 **Fig. 7 Thematic map of slope height**

259 **(3) Slope aspect**

260 Moisture retention and vegetation is mainly reflected by slope aspect, and then

261 influence landslide initiation, to some extent. To understand the relationship between
262 slope aspect and landsliding, the slope aspect information was used from the Majority
263 function within the ArcGIS. In the present study, it was categorized as 0-45, 46-90,
264 91-135, 136-180, 181-225, 226-270, 271-325 and 326-360 (Fig. 8).



265

266 **Fig. 8 Thematic map of slope aspect**

267 **(4) Slope morphology**

268 It is known that water concentrates in concave topographic positions and makes the

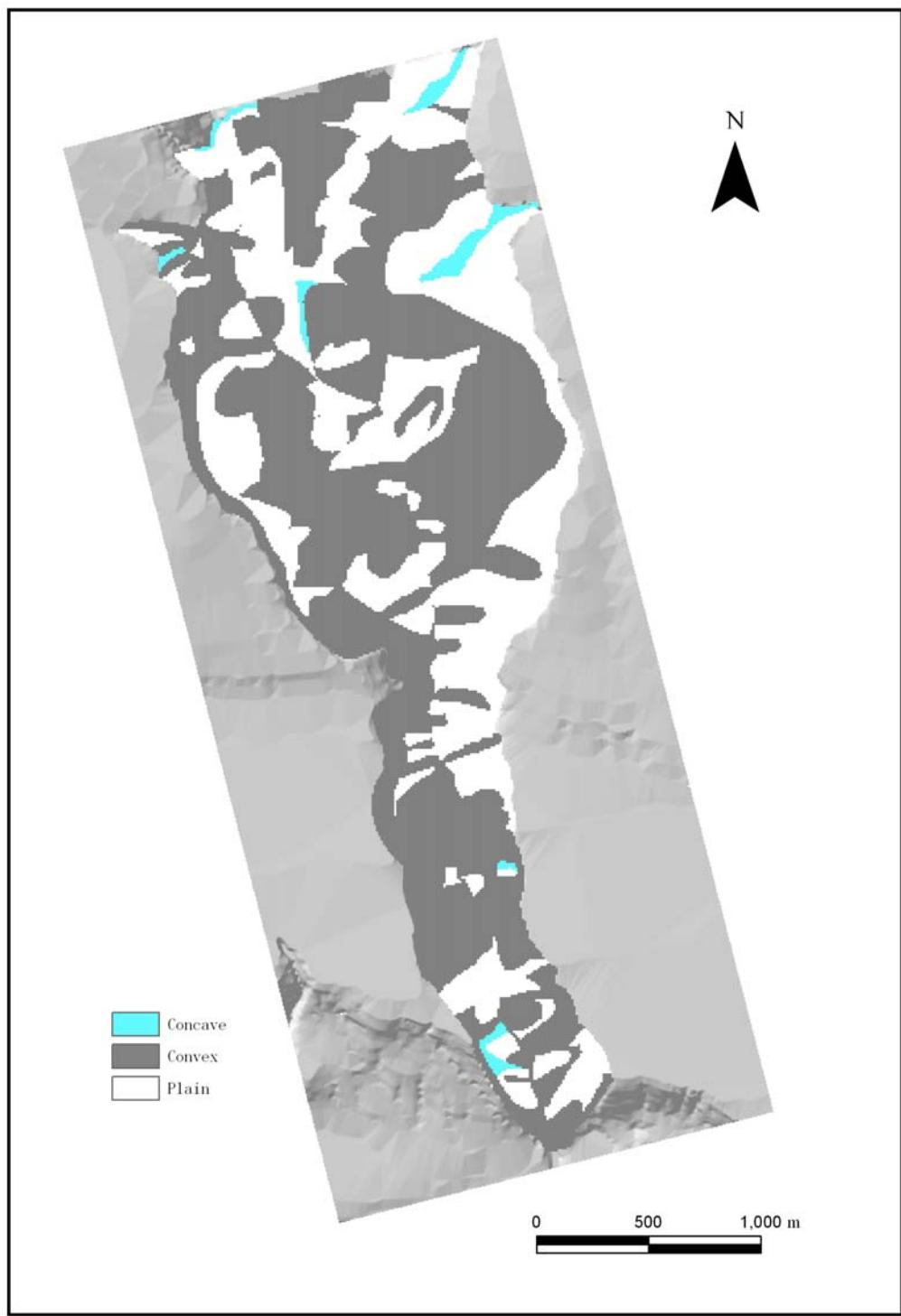
269 slope susceptible to (sub) surface flow as the main hydrological triggering mechanism.

270 According to the analysis of the relationships between the landslide occurrence and

271 slope morphology, however, most of landslides are located in the convex topographic

272 positions (Fig. 9). The slope morphology can be classified as plain, concave and

273 convex in the study area.



274

275 **Fig. 9 Thematic map of the slope shape**

276 **4. Methods**

277 **4.1 Normalization of data**

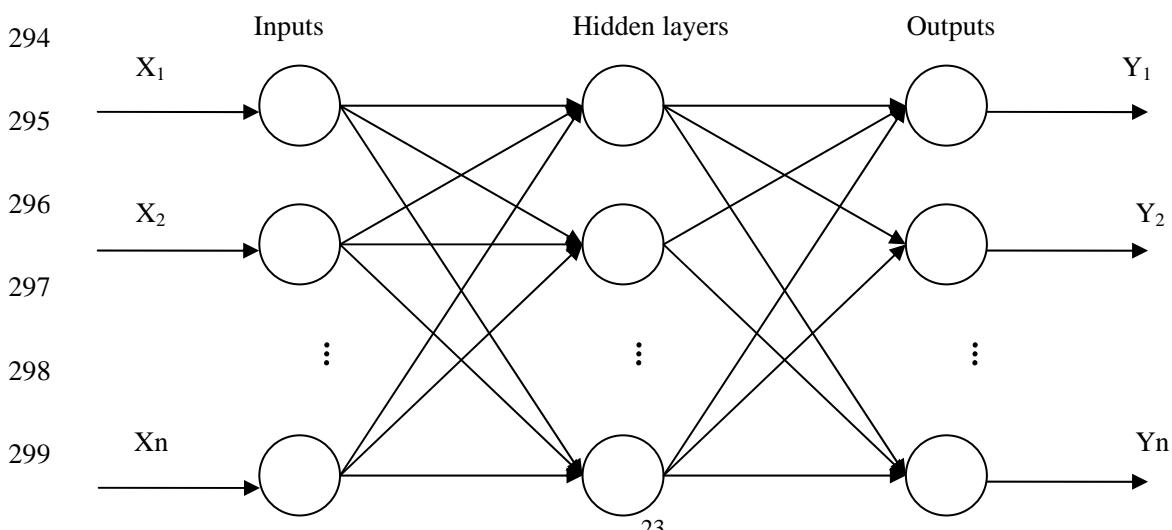
278 Input-output data for the GA-BPNN training and testing are from a database,
 279 including slope, aspect, elevation, shape of slope, distance to river and human activity.
 280 These sets are utilized to test network modeling. As the dimension and magnitude of
 281 the original sample data are different, the input and test data should be normalized
 282 before training, i.e.,

$$283 \quad T = 2 \cdot \frac{X - X_{\min}}{X_{\max} - X_{\min}} - 1 \quad (\text{Eq. 1})$$

284 where X represents the original data, X_{\max} and X_{\min} are the maximum and minimum of
 285 original data, respectively. T is the target data after normalization.

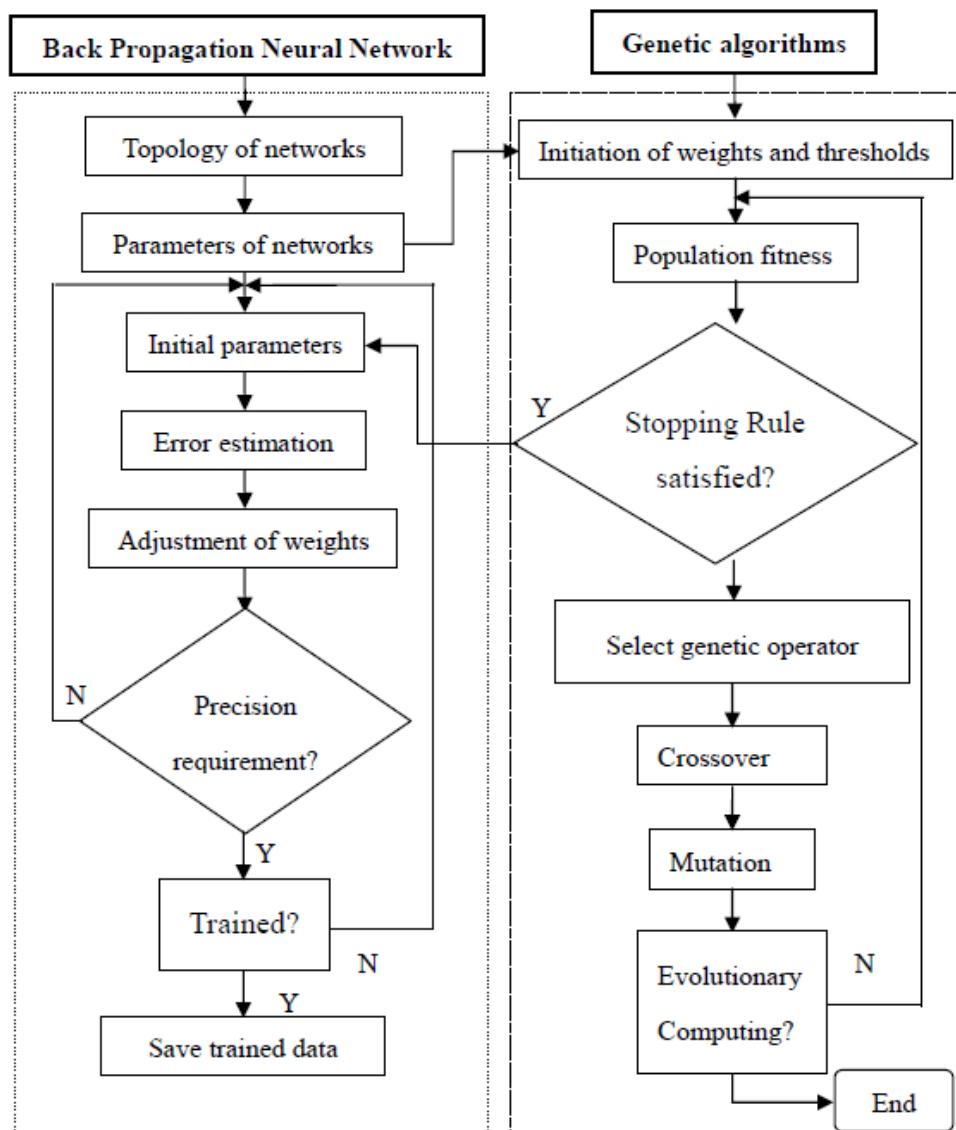
286 4.2 GA-based BPNN

287 The BPNN is trained by repeatedly presenting a series of input/output pattern sets to
 288 the networks. The networks gradually learn the input/output relationships of interest
 289 by adjusting the network weights to minimize the error between the actual and
 290 predicted output patterns of the training sets (Fig. 9). After the learning process is
 291 completed, the network weight coefficients cannot be changed. In this model, the
 292 usage of networks with only forward calculations is needed in pattern recognition and
 293 prediction, and the calculation can be executed very quickly.



300 **Fig. 10 Architecture of three-layer BPNN**

301 The GA-based BPNN learning process consists of two stages (Fig. 11): employing
 302 GAs to search for the optimal or approximate optimal connection weights and
 303 thresholds for the networks and then using the back-propagation learning rules and
 304 training algorithms to adjust the final weights. The implementation procedure of the
 305 network training is programmed within Matlab using the GAs and Neural Networks
 306 Tool Boxes.



307

308 **Fig. 11 Framework of GA-based BPNN**

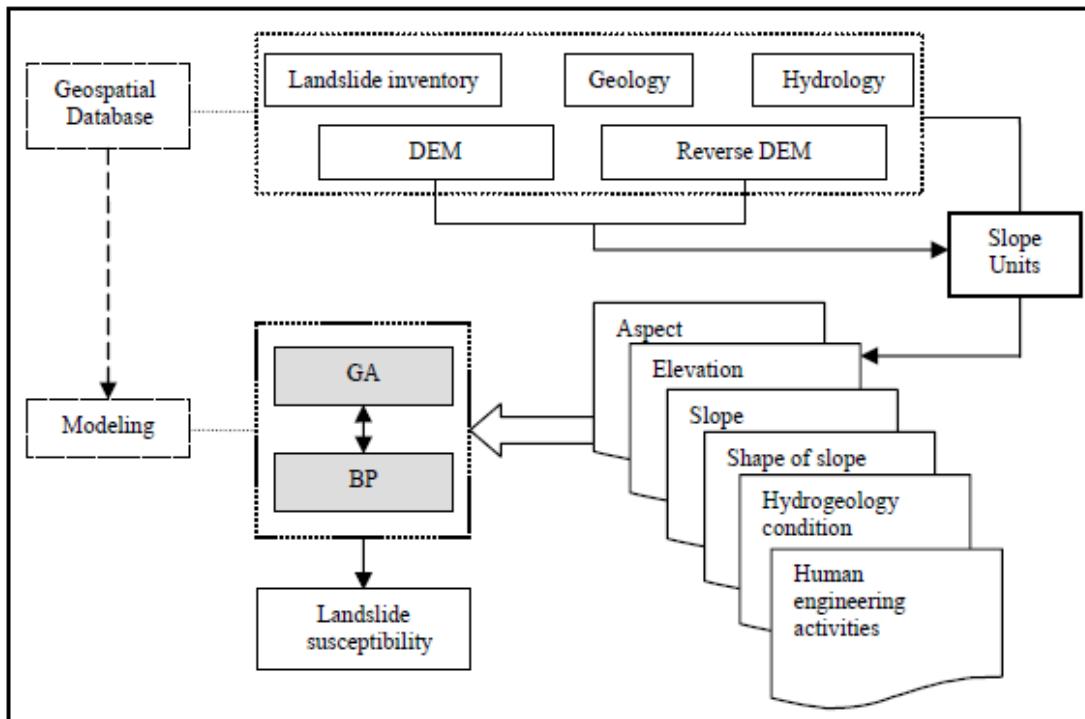
309 In this processing, the BPNN weights and thresholds are represented as genes in a
 310 chromosome, and the global optimum is then searched for using the selection,
 311 crossover and mutation operators of the genetic algorithm. This procedure is
 312 completed by applying a BP algorithm on the GA-established initial connection
 313 weights and thresholds. If the BP network's total mean square error is larger than the
 314 expected error, the weights and thresholds will be updated; otherwise, they are saved
 315 as initial value of the BP network training. To train the BPNN, the learning rate was
 316 adjusted to follow Eq. 2 using the momentum and the self-adapting methods, which
 317 was programmed using Matlab.

$$318 \quad lr(k+1) = \begin{cases} 1.05 \cdot lr(k); & mse(k+1) < mse(k) \\ 0.7 \cdot lr(k); & mse(k+1) > 1.04mse(k) \\ lr(k); & \text{else} \end{cases} \quad (\text{Eq. 2})$$

319 where lr means adaptive learning rates, mse represents mean square errors for BPNN,
 320 and k is training time.

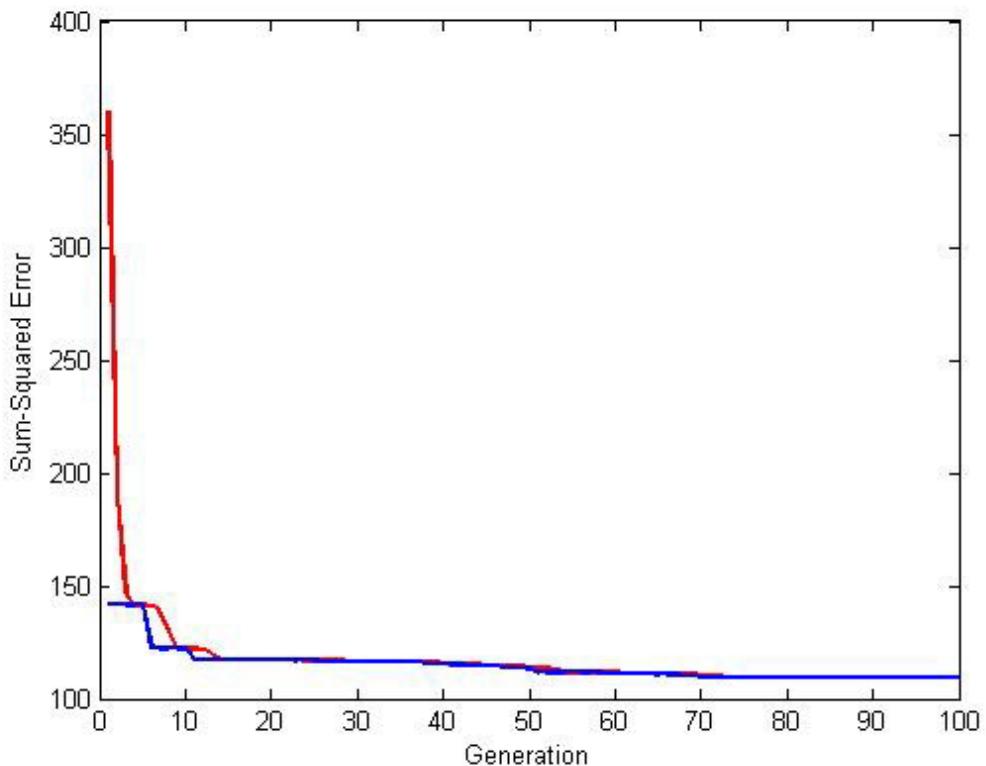
321 After the initiation of weights and thresholds was formed from the BPNN training, an
 322 initial population $S(0)$ was randomly generate, because it is not known a priori where
 323 the globally optimal strings. In GAs, each member of $S(0)$ is a string of length that
 324 corresponds to the problem coding. From this initial population, subsequent
 325 populations, $S(1), \dots, S(t), \dots$, will be computed by employing three genetic operators
 326 of selection (reproduction), crossover and mutation. Then, the fitness score of each
 327 individual string of the current population $S(t)$ is computed, and the strings in the
 328 current population are copied and placed in the intermediate population, which is
 329 proportional to their fitness relative to other individuals in the population. Crossover

330 and mutation are applied to the intermediate population for the creation of the next
 331 population. The two new strings, called as offspring, are formed by the juxtaposition
 332 of the first part of one parent and the last part of the other parent. It can continue with
 333 the calculation of population fitness until some stopping criterion applies to find final
 334 population. Subsequently, they were further adjusted under the BP learning rule to the
 335 best result, by which the landslide susceptibility can be accurately predicted. The
 336 detailed framework is shown in Fig. 12 for landslide susceptibility using GA-based
 337 BPNN.



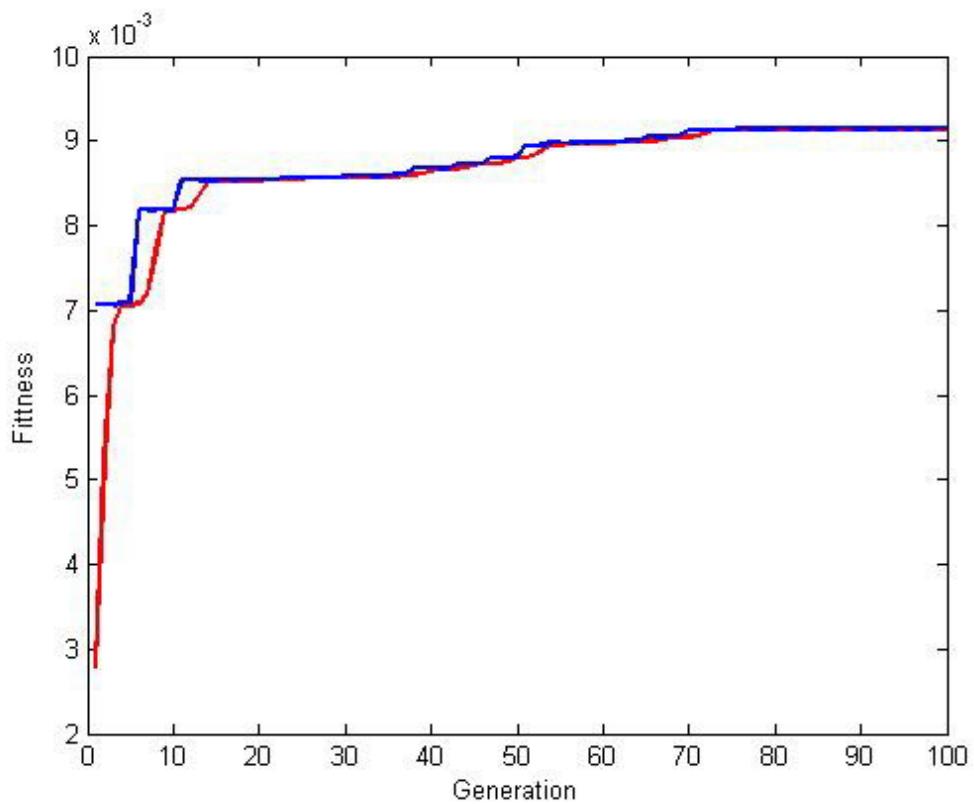
338
 339 **Fig. 12 Framework of landslide susceptibility using GA-based BPNN**
 340 Using BPNN modeling optimized by genetic algorithms, the parameters of GAs and
 341 neural networks are set in the present study. The population size is 100; crossover
 342 probability is 0.65; mutation probability is 0.01; momentum factor is 0.60; learning
 343 rate is 0.7; max learning number is 10000; and target error is 0.000001. From a

344 database of 216 landslides in units of slope, 120 landslides were randomly used for
345 training the neural network models, and 96 landslides were used for the validation of
346 landslide susceptibility. In the analysis of susceptibility, the slope unit affected by
347 landsliding was valued as 1, while the unit without landslides was assigned as 0.
348 For the GA-improved BPNN, the network was trained for 488 times, and the error
349 sum of the squares vs. the generation and fitness is shown in Figs. 13 and 14,
350 respectively. In the figures, the blue line is the best solution trend, while the red one is
351 the mean of the whole population. The final error is 9.96914e-007 from the
352 relationship of the epochs and errors in Fig. 15. It can be demonstrated that the
353 requirement was met for the BPNN training for landslide susceptibility assessment.



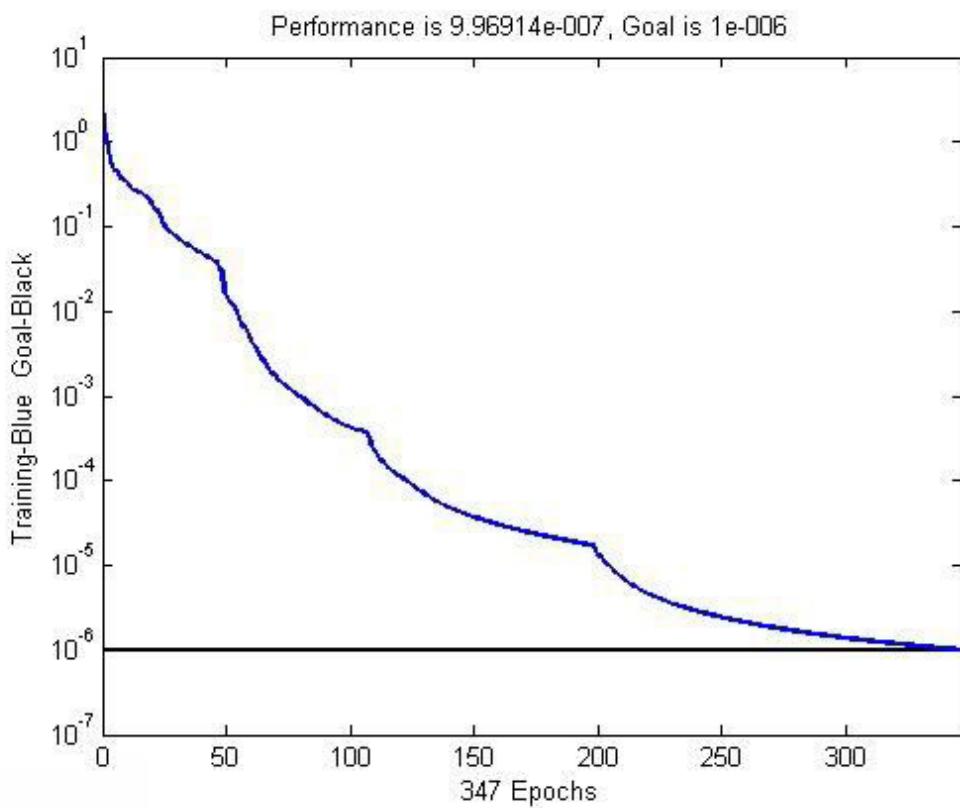
354

355 **Fig. 13 The error sum of squares vs. generation**



356

357 **Fig. 14 Generation vs. fitness**

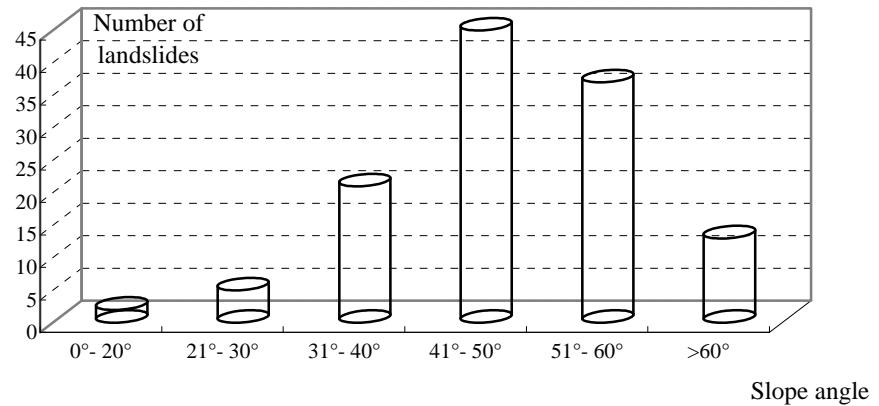


358

359 **Fig. 15 The relationship between epochs and errors**

360 **5. Results**

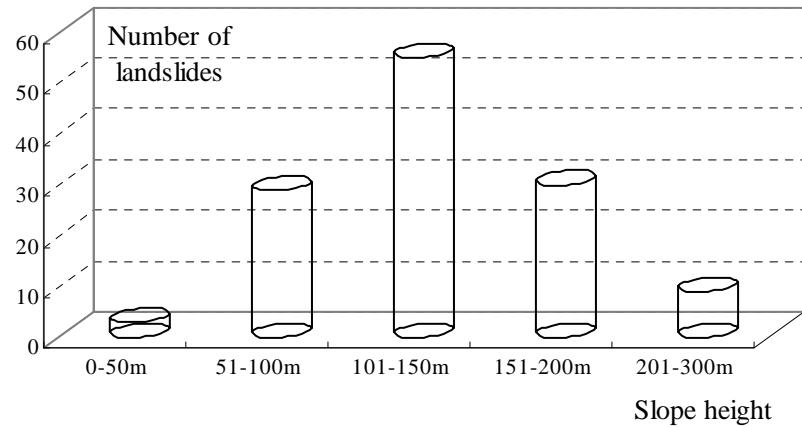
361 Following the process of mapping the slope units, the environmental factors can be
362 categorized into slope, aspect, slope height, shape of slope, distance to rivers and
363 human activities. These factors were statistically analyzed by slope units within the
364 scope of GIS, after the construction of the geo-database. As mentioned above, the
365 geological condition is almost the same in the study area, in which the strata in these
366 units are mainly Neogene argillites, and the fluvial deposits consist of clayey silts and
367 gravels and Quaternary loess. The environmental factors are analyzed by focusing on
368 the slope parameters, such as slope angle, aspect, height and the shape of the slope.
369 According to the statistical analysis, 36% of the slope units affected by landslides
370 occurred on slopes with angles between 41° and 50°, and 30% were occurred on
371 slopes with angles from 51°-60° (Fig. 16). From the analysis of the relationships
372 between the slope height and landslide occurrence (Fig. 17), almost 45% of the
373 landslides occurred at elevations between 101 and 150 m (Fig. 18). It was also found
374 that 38% and 56% of landslides were toward the southeast and southwest, respectively.
375 However, other five variables made little contribution to the landslide occurrence. In
376 addition, it was also demonstrated that the concave terrain was more stable, after
377 large-scale landslides were observed to have occurred in the loess areas (Fig. 19).



378

379

Fig.16 relationships between slope angle and landslide occurrence

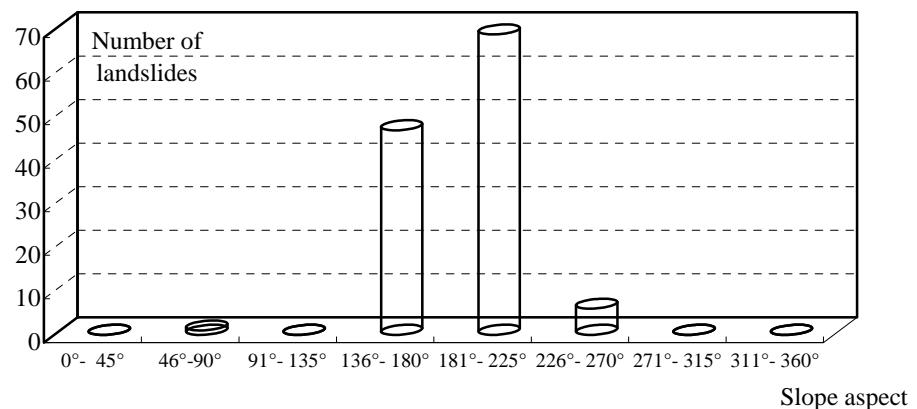


380

381

Fig.17 relationships between slope height and landslide occurrence

382



383

384

Fig.18 relationships between slope aspect and landslide occurrence

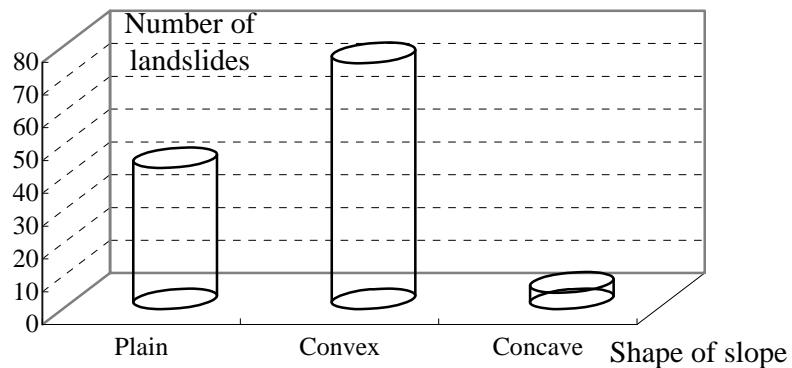
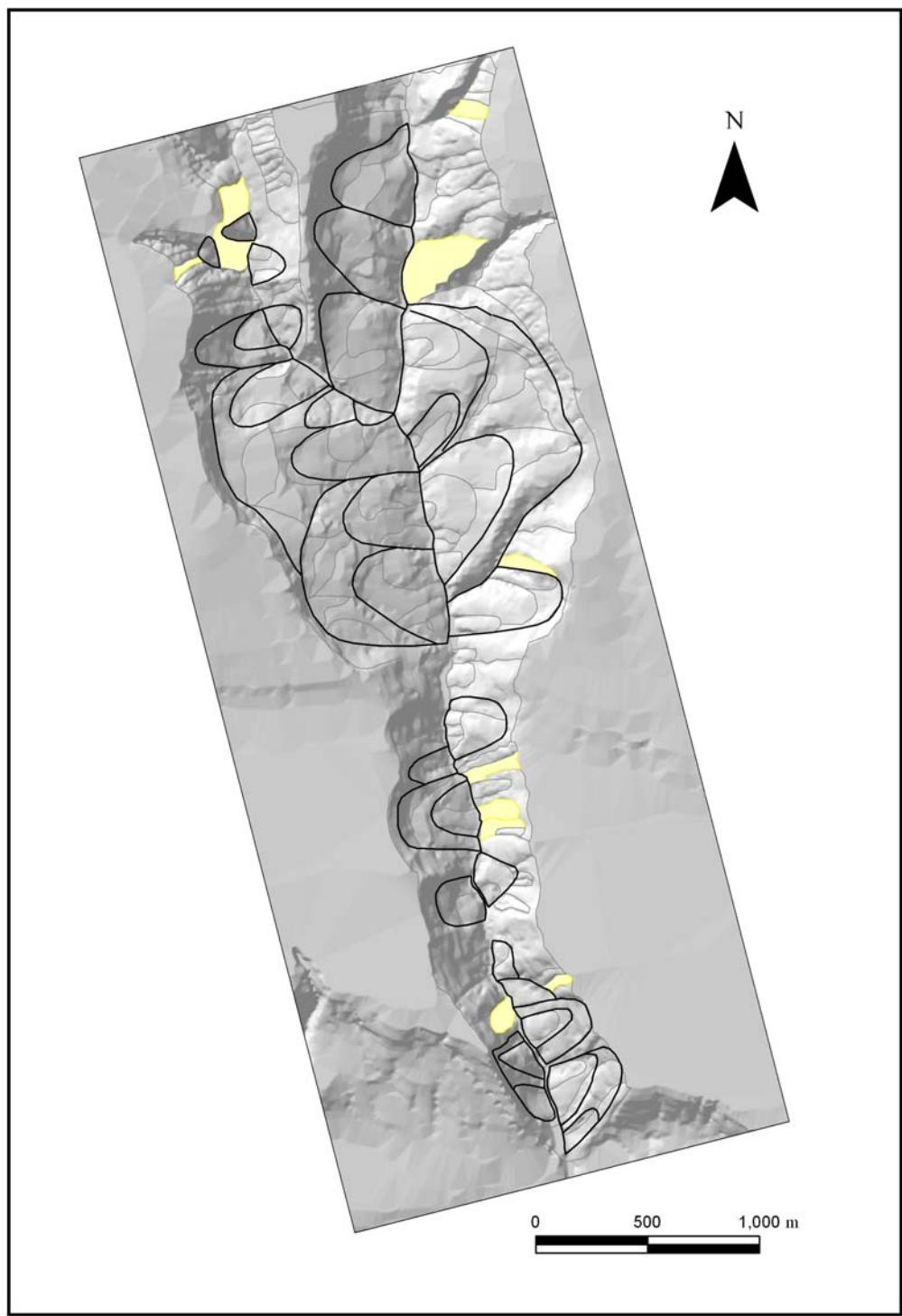


Fig.19 relationships between the shape of slope and landslide occurrence

387 After the GA-improved BPNN training, the susceptibility of landslides was predicted,
 388 as shown in Fig. 20. Comparing landslide occurrence with the susceptibility map, it
 389 was noted that the prediction accuracy of landslide occurrence is 93.02%, whereas the
 390 units without landslide occurrence is predicted with an accuracy of 81.13%. To sum
 391 up, the verification demonstrates satisfactory agreement with the accuracy of 86.46%
 392 obtained between the susceptibility map and landslide locations.



394

395 **Fig. 20 Map with predicted landslide susceptibility (slopes potential to landslides**
396 **in yellow)**

397 Ten slopes (in yellow in Fig. 20) were predicted to be prone to landslides. In view of

398 the environmental factors, most of these slopes were toward the southeast or southeast,
399 were higher than 100 m and had slope angles greater than 43°. Furthermore, seven of
400 the slopes were in convex topographic conditions, whereas the other slopes were
401 located in concave topographic conditions.

402 **6. Discussions and Concluding remarks**

403 As a useful tool, which addresses a nonlinear system and is capable of response to
404 inputs and adaptation to the environment, the most widely used BPNN is capable of
405 evaluating landslide susceptibility at both the regional and site-specific scales (Lee et
406 al. 2003; Neaupane and Achet 2004). The BPNN can be applied better over a wide
407 area using non-parametric variables with large extensions. However, the BPNN is
408 prone to falling into local extremes, and their convergence is slow. To overcome these
409 drawbacks, a GA-based BPNN was proposed to optimize the neural network weights
410 for landslide susceptibility assessment, and the topology was subjectively kept in
411 three layers. In the optimization of the GA-based BPNN, the number of neurons can
412 be decided in the hidden layer by the Kolmogorov theorem. For the training of the
413 BPNN, the weights and thresholds were represented as genes of a chromosome, and
414 the global optimum was then searched for using the selection, crossover and mutation
415 operators of the genetic algorithm.

416 During the processing of GA-BPNN, it is very important for the selection of training
417 datasets, since the slope failure can be a combination of several environmental factors.
418 In the present study, the training samples were randomly selected, and some of
419 parameters were determined by experience, for example, learning rates, crossover

420 probability and mutation probability. To some extents, the accuracy of prediction was
421 affected by the accurate selections of these parameters.

422 Meanwhile, the advantages of using genetic algorithms were based on the
423 performance of neural networks on the testing datasets, instead of only on the minimal
424 square error in the modeling datasets. In addition, the minimal improvement of the
425 genetic algorithms in this study occurred in the ratios between the numbers of
426 chromosomes of a generation.

427 In the present study, through the use of direct-reverse DEM technology, the
428 Changshougou valley was divided into 216 slope units, of which 123 units were
429 affected by landslides. According to the mechanism analyses of the landslides in the
430 loess area, six environmental factors were selected to evaluate landslide occurrence,
431 such as slope height, slope angle, aspect, shape of slope, distance to rivers, and human
432 activities. After the spatial analysis of the environmental factors, a case study was
433 presented for landslide susceptibility prediction using BPNN modeling optimized by
434 genetic algorithms. From a database of 216 slopes, 120 units, including 80 with
435 landslide presence and 40 without, were used for training the neural network models,
436 and 96 slopes, i.e., 43 with landslide presence and 53 without landslide presence, were
437 used for the validation of landslide susceptibility. Comparing landslide presence with
438 a susceptibility map, it was noted that the prediction accuracy for landslide occurrence
439 is 93.02%, whereas units without landslide occurrence could be predicted with an
440 accuracy of 81.13%. It was also noted that 10 slopes were predicted to be prone to
441 landslides. In view of the environmental factors, most of these slopes are toward

442 southeast or southeast, are at an elevation greater than 100 m, and have slope angles
443 greater than 43°. It was also noted that seven of the slopes are in convex topographic
444 conditions, whereas the other slopes are located in concave topographic conditions.

445 Furthermore, the prediction of 10 slopes can be used as a general planning tool but is
446 not intended for individual site-specific evaluations.

447 As for the landsliding in loess areas, the six environmental factors were selected for
448 the susceptibility of landslides using the slope units. Geological conditions is not
449 complicated, since there are no faults and folds in the study area. All the selected
450 factors were statistically analyzed using GIS, however, the classification was
451 objectively determined. In fact, the large-scale landslides are composed of slope units,
452 the deformation is thus completely different from a slope unit. Further detailed studies
453 should be conducted for a single large-scale landslide in hazard assessment at a
454 site-specific scale. However, the rainfall is the main trigger for the slope failure in this
455 kind of areas, especially in northwest China. Detailed information for the landslide
456 occurrence is needed for the evaluation of hazard, therefore, landslide mitigation can
457 be effectively carried out in the Changshougou Valley.

458 To sum up, the verification indicates a satisfactory agreement, with an accuracy of
459 86.46% between the susceptibility map and landslide locations. In this case study, it
460 was also found that some disadvantages can be overcome in the application of BPNN,
461 such as low convergence rates and susceptibility to local minimums, after the
462 optimization was carried out using GAs. To conclude, GA based BPNN are an
463 effective method to predict landslide susceptibility with high accuracy.

464 **Acknowledgements**

465 This research was supported by funding from the Key Program of Natural Science
466 Foundation of Hubei (2009CDA007). In addition, partial support from the Doctoral
467 Fund from the Ministry of Education of China (20100142110059) is acknowledged. A
468 special note of appreciation is extended to the Ministry of National Science and
469 Technology for their funding support (2012BAK10B00). Two anonymous reviewers
470 were greatly appreciated for their comments and suggestions.

471 **References**

472 Ayalew, L., Yamagishi, H.: The application of GIS-based logistic regression for
473 landslide susceptibility mapping in the Kakuda-Yahiko Mountains, central Japan,
474 *Geomorphology*, 65,15-31,2005.

475 Bai, S., Lu, G., Wang, J., Zhou, P., Ding, L.: GIS-based rare events logistic
476 regression for landslide-susceptibility mapping of Lianyungang, China,
477 *Environmental Earth Sciences*, 62, 139-149, 2011.

478 Battiti, R.: Accelerated back propagation learning: Two optimization methods,
479 *Complex Systems*, 3, 331–342, 1989.

480 Carrara, A., Cardinali , M., Detti,R., Guzzetti, F., Pasqui,V., Reichenbach, P.: GIS
481 techniques and statistical models in evaluating landslide hazard, *Earth Surface
482 Processes Landforms*, 16,427–445, 1991.

483 Catani, F., Casagli, N., Ermini, L. , Righini, G and Menduni, G.: Landslide hazard
484 and risk mapping at catchment scale in the Arno River basin, *Landslides*, 2,
485 329-342, 2005.

486 Chen, H.Q., Zeng, Z.G.: Deformation Prediction of Landslide Based on
487 Genetic-Simulated Annealing Algorithm and BP Neural Network. Fourth
488 International Workshop on Advanced Computational Intelligence, Wuhan,
489 Hubei, China; October 19-21, 2011.

490 Chung, C.F., Fabbri, A.G.: Validation of spatial prediction models for landslide
491 hazard mapping, Natural Hazards, 30, 451-472, 2003.

492 Chung, C.J. : Using likelihood ratio functions for modeling the conditional probability
493 of occurrence of future landslides for risk assessment. Computer and
494 Geosciences, 32, 1052-1068, 2006.

495 Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., Paudyal, P.:
496 Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya
497 of Nepal based on weights-of-evidence, Geomorphology, 102, 496-510, 2008.

498 Derbyshire E, Meng, X.M., Dijkstra, T.A. (eds).: Landslides in the thick loess terrain
499 of north-west China. John Wiley, 2000.

500 Ercanoglu, M. and Gokceoglu, C.: Assessment of landslide susceptibility for a
501 landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach, Environ
502 Geol 41:720-730, 2002.

503 Ermini, L., Catani, F., Casagli, N.: Artificial Neural Networks applied to landslide
504 susceptibility assessment, Geomorphology, 66, 327-343, 2005.

505 Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W.Z.:
506 Guidelines for landslide susceptibility, hazard and risk zoning for land use
507 planning, Engineering Geology, 102, 85-98, 2008.

508 García-Rodríguez, M. J. and Malpica, J. A.: Assessment of earthquake-triggered
509 landslide susceptibility in El Salvador based on an Artificial Neural Network
510 model, *Nat. Hazards Earth Syst. Sci.*, 10, 1307-1315, 2010.

511 Gómez, H., Kavzoglu, T.: Assessment of shallow landslide susceptibility using
512 artificial neural networks in Jabonosa River Basin, Venezuela, *Engineering
513 Geology*, 78, 11-27, 2005.

514 Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P.: Landslide hazard evaluation:
515 a review of current techniques and their application in a multi-scale study,
516 Central Italy. *Geomorphology*, 31, 181-216, 1999.

517 Hagan, M.T., Demuth, H.B., Beale, M.: *Neural Network Design*, PWS publishing
518 company, a division of Thomson learning, Boston, USA, 1996.

519 Hasekiogullar, G. D., Ercanoglu, M.: A new approach to use AHP in landslide
520 susceptibility mapping: a case study at Yenice (Karabuk, NW Turkey), *Natural
521 Hazards*, 63, 1157 - 1179, 2012.

522 Haykin, S.: *Neural Networks: A Comprehensive Foundation* (2nd edition), Publisher:
523 Prentice Hall, 1999.

524 Kanungoa, D.P., Arorab, M.K., Sarkara, S., Guptac, R.P.A.: Comparative study of
525 conventional, ANN black box, fuzzy and combined neural and fuzzy weighting
526 procedures for landslide susceptibility zonation in Darjeeling Himalayas,
527 *Engineering Geology*, 85, 347–366, 2006.

528 Kesign, U.: Genetic algorithm and artificial neural network for engine optimisation of
529 efficiency and NOx emission. *Fuel*, 83, 885–895, 2004.

530 Lee, S., Ryu, J.H., Min, K., Won, J.S.: Landslide susceptibility analysis using GIS and
531 artificial neural network, *Earth Surface Processes and Landforms*, 23,
532 1361-1376, 2003.

533 Lee, S., Pradhan, D.: Regional landslide susceptibility analysis using
534 back-propagation neural network model at Cameron Highland, Malaysia,
535 *Landslides*, 7(1), 13-30, 2010.

536 Madaeni, S.S., Hasankiadeh, N.T., Kurdian, A.R., Rahimpour, A.: Modeling and
537 optimization of membrane fabrication using artificial neural network and genetic
538 algorithm. *Separation of Purification Technology*, 76, 33–43, 2010.

539 Maidment, D.: *Arc Hydro: GIS for water resources*. ESRI 380, New York Street,
540 Redland, California, 2002.

541 Melchiorre, C., Matteucci, M., Azzoni, A., Zanchi, A.: Artificial neural networks and
542 cluster analysis in landslide susceptibility zonation, *Geomorphology*, 94,
543 379-400, 2008.

544 Meng, X.M., Dijkstra, T. D., Derbyshire, E.: Loess slope instability. In: Derbyshire E,
545 Meng, X.M., Dijkstra, T.A. (eds). *Landslides in the thick loess terrain of*
546 *north-west China*. John Wiley, 175-181, 2000.

547 Mu, Y., Yu, H.Q.: Simulation of biological hydrogen production in a UASB reactor
548 using neural network and genetic algorithm, *Int. J. Hydrogen Energy*, 32,
549 3308–3314, 2007.

550 Neupane, K.M., Achet, S.H.: Use of back propagation neural network for landslide
551 monitoring: a case study in the higher Himalaya, *Engineering Geology*, 74,

552 213–226, 2004.

553 Nefeslioglu, H. A., Gokceoglu, C., Sonmez, H.: An assessment on the use of logistic
554 regression and artificial neural networks with different sampling strategies for
555 the preparation of landslide susceptibility maps, *Eng. Geol.*, 97, 171–191, 2008.

556 Nefeslioglu, H.A., Gokceoglu, C., Sonmez, H., Gorum, T.: Medium-scale hazard
557 mapping for shallow landslide initiation: the Buyukkoy catchment area (Cayeli,
558 Rize, Turkey). *Landslides*, 8(4), 459–483, 2011.

559 Peng, S.Z., Guo, Z.T.: Clay mineral composition of the Tertiary red clay and the
560 Quaternary loess-palaeosols as well as its environmental implication. *Chinese J.*
561 *Quaternary Science*, 27, 277-285, 2007.

562 Rumelhart, D.E., McClelland, J.L.: *Parallel Distributed processing: Exploration in the*
563 *Microstructure of Cognition*. MIT-Press, Cambridge, MA, 1986.

564 Saengprung, A., Abtahi, A., Zilouchian, A.: Neural network model for a commercial
565 PEM fuel cell system, *J. Power Sources*, 172, 749–759, 2007.

566 Sexton, R.S., Gupta, J.N.D.: Comparative evaluation of genetic algorithm and back
567 propagation for training neural networks, *Inform. Sciences*, 129, 45–59, 2000.

568 Van Westen, C.J.: GIS in landslide hazard zonation: a review, with examples from
569 Andes of Colombia, In: Price, M. and Heywood, I. (eds.), *Mountain*
570 *Environments and Geographic Information Systems*, Taylor & Francis,
571 Basingstoke, U.K., pp135-165, 1994.

572 Wang, H.B., Liu, G.J., Xu, W.Y., Wang, G.H.: GIS-based landslide hazard
573 assessment: An overview. *Progress in Physical Geography*, 29, 548-567, 2005.

574 Wang, H.B., Zhou, B., Wu, S.R., Shi, J.S.: Characteristic analysis of large-scale loess
575 landslides: a case study in Baoji City of Loess Plateau of Northwest China.
576 Natural Hazards and Earth Sciences, 11, 1829–1837, 2011.

577 Xie, M.W., Esaki, T., Zhou, G.Y.: GIS-based probabilistic mapping of landslide
578 hazard using a three-dimensional deterministic model, Natural Hazards, 33,
579 265-282, 2004.

580 Yilmaz, Y.: An Agent Simulation Study on Conflict, Community Climate, and
581 Innovation in Open Source Communities, International Journal of Open Source
582 Software and Processes, 1(4), 1-25, 2009.

583 Zhou, X.: Genetic algorithm based on new evaluation function and mutation model
584 for training of BPNN, Tsinghua Science and Technology, 7, 28-31, 2002.
585