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Abstract
In the last few decades, the development of Geographical Information Systems (GIS)
technology has provided a method for the evaluation of landslide susceptibility and
hazard. Slope units were found to be appropriate for the fundamental morphological
elements in landslide susceptibility evaluation. Following the DEM construction in a
loess area susceptible to landslides, the direct-reverse DEM technology was employed
to generate 216 slope units in the studied area. After a detailed investigation, the
landslide inventory was mapped in which 39 landslides, including paleo-landslides,
old landslides and recent landslides, were present. Of the 216 slope units, 123
involved landslides. To analyze the mechanism of these landslides, six environmental
factors were selected to evaluate landslide occurrence: slope angle, aspect, the height
and shape of the slope, distance to rivers and human activities. These factors were
extracted in terms of the slope unit within the ArcGIS software. The spatial analysis
demonstrates that most of the landslides are located on convex slopes at an elevation

of 101-150 m with slope angles from 136°-225° and 41°-60°. Landslide occurrence
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was then checked according to these environmental factors using an artificial neural
network with back propagation, optimized by genetic algorithms. A dataset of 120
slope units was chosen for training the neural network model, i.e., 80 units with
landslide presence and 40 units without landslide presence. The parameters of genetic
algorithms and neural networks were then set: population size of 100, crossover
probability of 0.65, mutation probability of 0.01, momentum factor of 0.60, learning
rate of 0.7, max learning number of 10000, and target error of 0.000001. After training
on the datasets, the susceptibility of landslides was mapped for the land-use plan and
hazard mitigation. Comparing the susceptibility map with landslide inventory, it was
noted that the prediction accuracy of landslide occurrence is 93.02%, whereas units
without landslide occurrence are predicted with an accuracy of 81.13%. To sum up,
the verification shows satisfactory agreement with an accuracy of 86.46% between the
susceptibility map and the landslide locations. In the landslide susceptibility
assessment, ten new slopes were predicted to show potential for failure, which can be
confirmed by the engineering geological conditions of these slopes. It was also
observed that some disadvantages could be overcome in the application of the neural
networks with back propagation, for example, the low convergence rate and local
minimum, after the network was optimized using genetic algorithms. To conclude,
neural networks with back propagation that are optimized by genetic algorithms are
an effective method to predict landslide susceptibility with high accuracy.

Keywords: landslide; Geographical Information Systems; genetic algorithms; back

propagation neural networks; susceptibility evaluation
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1. Introduction

Landslides are local phenomena occurring in different geomorphic contexts; they can
be triggered by a variety of mechanisms, such as earthquakes or rainfall, and some of
the causes are not yet well known. Landslides cannot be predicted accurately;
however, the susceptibility of a given area to landslides can be determined and
depicted using hazard zonation. Various methods have been proposed to partition
landscape for the purpose of landslide hazard assessment and zonation mapping,
including grid cells, terrain units, unique-condition units, slope units and topographic
units (Carrara et al.,1991; van Westen, 1994; Guzzetti et al. 1999; Chung and Fabbri,
2003). With respect to the landscape partitioning methods mentioned above, slope
units can be resized according to the prevailing failure type and dimension, thereby
partitioning a river basin into nested subdivisions: coarser for larger landslides and
finer for smaller failures. Because a clear physical relationship exists between
landslides and the fundamental morphological elements of a hilly or mountain region,
namely, drainage and divided lines, the slope-unit technique seems appropriate for
landslide susceptibility assessment.

A careful review of the concepts, principles, techniques and methodologies for
landslide susceptibility evaluation reveals that the most commonly used methods are
geomorphological hazard mapping, analysis of landslide inventories, heuristic or
index-based methods, functional, statistically based models and geotechnical or
physically based models (Guzzetti et al. 1999; Wang et al. 2005; Fell et al., 2008).

Recently, probabilistic models such as frequency ratio and logistic regression methods
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have been applied to evaluate landslide susceptibility and have been integrated with
Geographical Information Systems (GIS) (Ayalew and Yamagishi, 2005; Chung, 2006;
Dahal et al.,, 2008; Nefeslioglu, et al., 2008; Yilmaz, 2009; Bai, et al., 2010;
Garcia-Rodriguez and Malpica, 2010; Hasekiogullari and Ercanoglu, 2012). Due to
geological complexity of slopes and self-organized system, however, many variables
are involved in slope stability evaluation, which display a highly nonlinear
relationship with evaluation results. Under the consideration of the nonlinear
characteristics of the sliding process, artificial neural networks (ANNS) have thus
been introduced to produce landslide susceptibility and hazard maps (Ercanoglu and
Gokceoglu, 2002; Neaupane and Achet, 2004; Catani et al., 2005; Gomez and
Kavzoglu, 2005; Kanungo et al., 2006; Nefeslioglu, et al., 2008; Nefeslioglua et al.,
2011).

The main characteristics of ANNs dealing with quantitative and qualitative indices
include large-scale parallel distributed processing, continuously nonlinear dynamics,
collective computation, high fault-tolerance, self-organization, self-learning and
real-time treatment (Rumelhart and McClelland 1986). It is worth noting that a neural
network system is a processing device, implemented as an algorithm or in hardware,
whose design is inspired by the design and the function of mammalian brains; they
react to training data input in such a way to alter their initial state, and they learn
using unconventional algorithms. Neural networks integrated with GIS may be an
effective approach when dealing with landslide hazard assessments where meaningful

outcomes are difficult to achieve by means of standard mathematical models. Because
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artificial neural network models are adaptive and capable of generalization, they can
handle imperfect or incomplete data and can capture nonlinear and complex
interactions among the several variables of a system (Ermini et al. 2005; Melchiorre et
al. 2008; Lee and Pradhan. 2011).

However, it was found that the slow training speed and difficulty in achieving a local
minimum cannot be resolved in practical applications for the most commonly used
back propagation neural networks (BPNN). To solve this problem, several methods
were proposed to improve the training speed of networks, such as improving error
functions and adjusting the studying rates. For this kind of solutions, the BPNN is
likely to converge to a local solution, which may not be the global solution, with the
random selection of initial weights. Thus, a global search algorithm was then
introduced, e.g., evolutionary programming, simulated annealing or genetic
algorithms (GAs). Among them, GA has mainly been used to search for the optimal
solution in BPNNSs due to its excellent global search ability (Holland 1975; Sexton
and Gupta, 2000; Kesign, 2004; Madaeni, et al., 2010; Chen and Zeng, 2011). There
are two main aspects of applying GA to BPNNSs for finding global optima in complex
problems: one is to optimize the weights of the network, and the other is to optimize
the topological structure of the network.

After an overview on landslide susceptibility using ANNSs, it was noted that the
weights were randomly selected and that the optimization cannot be carried out for
global searching. This paper thus proposes a hybrid model of a GA and BPNN to

evaluate landslide susceptibility for the optimization of weights. In this study,
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landslide inventory was mapped after detailed field investigation and interpretation
from high-resolution imagery. The outline of the watershed polygons was mapped as
the ridge line using DEM, and reverse DEM data were used to detect the valley line.
The combined DEM and reverse DEM, slope units were then mapped within a
commercial software as ArcGIS (. After the definition of slope units, environmental
factors were analyzed for the presence of landslide occurrence, and a hybrid of GA
and BPNN was developed to evaluate landslide susceptibility. In this method, the GA
was used to search for the optimal or approximately optimal connection weights and
thresholds for the networks, and then, using back-propagation learning rules and
training algorithms, the final weights could be adjusted.

2. Study area

2.1 General information

The study area is the Changshougou Valley, which is located northwest of Baoji city
in Shaanxi Province (Fig. 1). The elevation is approximately 600-700 m a.s.l., and the
relative relief exceeds 100-350 m over the Changshougou valley. In this area, three
main geomorphological units may be distinguished: dissected loess plateau (yuan),
loess hills (mao), and loess ridges (liang). The lithology of the strata in these units is
mainly Neogene argillites and fluvial deposits consisting of clayey silts and gravels
and Quaternary loess. Due to the erosion of the Pliocene lacustrine basin by stream
systems and the reactivation of folds and faults, a very unstable base was formed for
the extensive Quaternary loess deposits, which acts as the underlying cause of the

loess instability. Loess is known as a “problem soil”; although it can sustain nearly



137 vertical slopes when dry, it is susceptible to catastrophic failure on reaching certain

138  critical moisture contents.

139

140  Fig. 1 Geographical location of the study area marked by the red rectangle
141 (data from Google earth)

142 The climate of the study area is notable for Asiatic monsoons and marked seasonal
143 shifts in dominant winds. The mean annual temperature is 12.9 °C, and the maximum
144  isup to 41.6 °C. The mean annual precipitation reaches 679.1 mm, and almost 50% of
145  the precipitation falls in the period from July to September.

146 2.2 Types of landslides

147  There are a variety of landslides present in the Changshougou valley. The
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examination of the Weihe River terraces and their overlying loess units has shown that
landslides fall into three broad temporal categories, i.e., palaeo-landslides, old
landslides, and recent landslides. Palaeo-landslides occurred before or during the
Pleistocene. The slide masses consist of materials of Tertiary to Middle Pleistocene
age, in which the late Pleistocene loess (Malan) sometimes occurs as a drape.
Landslides of Late Holocene age involve materials of Late Pleistocene loess, which
were developed entirely within loess. This kind of landslides was common in the
study area. As a result of human activities, recent landslides were triggered or
reactivated from other kinds of landslides. The principal mass movement types
recognized in the study area are summarized in Table 1 (Wang, et al., 2011).

Table 1 Classification of landslide types in the study area

Type of materials
Mixed

Loess only

Geometry and movement
Flows and complex mass movements
Large rotational mass movements
Planar slides

Debris flows and mudflows

Types based on situation of the failure plane
Bedrock-contact landslides
Palaeosol-contact landslides
Mixed landslides

Landslides entirely within loess

Age
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Palaeo-slides
Old slides

Recent slides

As can be seen in Fig. 3, there are three basic types of landslides that occur in a

variety of materials based on the situation of the failure plane.

Landslide within loess
or palaeosol-contact landslide

Fluvial deposit contact landslide

Mixed landslide

I: Slid loess mass I:l
Fluvial deposit E Palacosol

Argillic bedrock

—_— l: Silty clay

Fig. 2 Representative types of slope failures in the study area

3. Data preparation

3.1 Landslide inventory

A landslide-inventory map was prepared primarily by the interpretation of
high-resolution imagery and secondarily by site investigations. As shown in Fig. 3, 39
landslides in the study area are classified into three types: paleo-landslides, old
landslides and recent landslides (Meng et al. 2000). Fifty percent of landslides are
old as dormant-mature, and 25% have been reactivated recently. For all of the

landslides, the slope after failure averages 22.6°, with a maximum of 45°. The slope



171 gradients of large-scale landslides tend to be gentle, at approximately 18°, which

172 implies that most of the paleo-landslides in the study area are stable.

-4&=-= Palaeo-slide
bz (1d slide

A& Recent slide

0 500 1,000 m

173

174  Fig. 3 Landslide inventory mapping in the Changshougou valley
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It was also observed that the landslides are concentrated at the confluence of two
streams. As described in the previous section, these landslides are attributed to the
undercutting of the slopes associated with gullying. Major factors affecting the
initiation of slope failure and subsequent modes of movement appear to be dependent
upon the morphology, the nature and degree of weathering of the underlying bedrock,
and the moisture status of the loess deposits. Numerous ancillary factors include
bedrock-loess interface, slope steepness, vegetation cover, and land utilization. As
already noted, the upper surface of the Neogene bedrock is often weathered and
contains variable amounts of smectites. In this zone, wetting-drying results in a
progressive decrease in strength that may ultimately lead to slope failure.
Undercutting of the slopes along the gullies is frequent, which increases the risk of
slope failure. As a result of the high relative relief, the steep slopes and the relatively
uniform geological and geomorphological conditions, the landslides tend to be very
large and to occur in groups.

In terms of geological periods, landslides in the studied area fall into three categories:
palaeo-slides, old slides, and recent slides. The most ancient landslides are not
traceable in the historical records, and some recent landslides keep moving. Typically,
a swarm of landslides is located at Zhuyuan village (Fig. 4), approximately 10 km
north of Baoji. The landslide mass is 1000 m wide and 850 m long, with an estimated
volume of 5.1X 10" m>. Steeper slopes are generally over 40°around the crest, with
forested landslide terraces. Remote-sensing interpretations and field investigations

indicate a maximum vertical displacement of 150 m along the slip surface of the

11



197  landslides. The shape and slope angle of the landslide scars suggest a single, major
198  concave surface of rupture. For these studied landslides, the failure planes occurred
199  either along the contacts between the fluvial deposits and the Neogene argillites or
200 partially within the bedrock. With regard to the Neogene argillite in the loess plateau,
201 the clay minerals are dominated by illite, chlorite, smectite and kaolinite, similar to
202  the overlying Quaternary loess (Peng and Guo 2007). This type of argillite is thus
203  subjected to long-term softening due to saturation in the contact zone. After a point is
204  reached, at which they are no longer able to support the overlying loess, a progressive
205  failure occurs. The occurrence of planar slides in the study area depends on the
206  shear-strength conditions of the failure surface and the cohesion of the materials

207  involved, usually presented in the Malan loess and in reworked loess slope deposits.

; Sl
% = rataeo siige o) ',‘
N ] ousice [

E Recent slide -
@ Borehole

208
209  Fig. 4 View of the Zhuyuan and Lijiaquan landslides from a Quickbird image

12



210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

3.2 Defining slope units

In this study, a GIS-based hydrologic analysis and modeling tool, Arc Hydro, is
employed to draw the dividing lines for forming slope units automatically. Arc Hydro
is an ArcGIS based software geared to support water resources applications
(Maidment 2002). The software provides a method for the delineation of watersheds
and stream networks using digital elevation models (DEM) of land-surface terrain. In
the present study, the topographic maps were used to produce DEM with a contour
interval of 10 m at a scale of 10,000. Using the DEM, the outlines of the watershed
polygons are topographically mapped as the ridge lines, and the reverse DEM data
can be used to detect the valley lines (Xie, et al., 2003). Using the DEM grid analysis,
high DEM values can be turned into low values and low DEM values to high. After
these values change, the original valley line can be turned into a ridge line.
Meanwhile, the valley line can also be obtained by watershed analysis of the reverse
DEM data. The combined DEM and reverse DEM analyses map the slope units within

the of ArcGIS in the studied area (Fig. 5).
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Fig. 5 Slope units from combination of DEM and reverse DEM
3.3 Selection of environmental factors

In these slope units, a variety of environmental factors such as slope angle, aspect,
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height and shape of slope were selected to evaluate landslide susceptibility. Two more
environmental factors were selected, namely, distance to rivers and human activities.
As for the distance to rives, the buffering zone was used to analyze the relationship
between the distance to river and landsliding. It was shown that landslide frequency
generally decreases with the increasing of the distance from drainage line increases,
due to the gully erosion. In addition, the influence of human activity was analyzed
under the consideration of land using on the slope area. After the detailed
investigation, it is valued as 1 if the slope areas were used for vegetation, while the
value is considered as 0 without any vegetation.

(1)Slope angle

Slope angle has a great influence on the susceptibility of a slope for landslide
occurrence. As the slope angle increases, more of the load force is directed down the
slope. The steeper slope, the more potential to landsliding. To quantify the relative
frequency of landslides on different slope gradients, it is necessary to consider the
distribution of the slope gradient categories using the available DEM dataset. Using
the function of Mean in the ArcGIS Spatial Analyst model, an average slope angle
was defined for each slope unit. In the study area, slope angles were categorized into

six classes: 0-20°, 21°-30°, 31°-40°,41°-50°, 51°-60° and larger than 60° (Fig. 6).
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Fig. 6 Thematic map of the slope angle
(2) Slope height

Slope height plays an important role in landslide occurrence, especially in loess areas

16



251

252

253

254

255

256

(Derbyshire et al., 2000). Other conditions being equal, higher slopes can increase
stress values in different areas of slope, making the slopes unstable. The slope height
was classified into five classes: 0-50, 51-100 m, 101-150 m, 151-200 m and 201-300
m. Using Min and Max functions in the model of ArcGIS Spatial Analyst, the slope
height was obtained from the difference of the minimum and maximum elevation over

all the slope units.
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258  Fig. 7 Thematic map of slope height
259 (3) Slope aspect

260  Moisture retention and vegetation is mainly reflected by slope aspect, and then
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influence landslide initiation, to some extent. To understand the relationship between
slope aspect and landsliding, the slope aspect information was used from the Majority
function within the ArcGIS. In the present study, it was categorized as 0-45, 46-90,

91-135, 136-180, 181-225, 226-270, 271-325 and 326-360 (Fig. 8).
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266  Fig. 8 Thematic map of slope aspect

267 (4) Slope morphology

268 It is known that water concentrates in concave topographic positions and makes the
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slope susceptible to (sub) surface flow as the main hydrological triggering mechanism.
According to the analysis of the relationships between the landslide occurrence and
slope morphology, however, most of landslides are located in the convex topographic
positions (Fig. 9). The slope morphology can be classified as plain, concave and

convex in the study area.
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274

275  Fig. 9 Thematic map of the slope shape

276 4. Methods

277 4.1 Normalization of data
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Input-output data for the GA-BPNN training and testing are from a database,
including slope, aspect, elevation, shape of slope, distance to river and human activity.
These sets are utilized to test network modeling. As the dimension and magnitude of
the original sample data are different, the input and test data should be normalized

before training, i.e.,

T=2 2" Zmn__q (Eq. 1)

where X represents the original data, Xmax and Xmin are the maximum and minimum of
original data, respectively. T is the target data after normalization.

4.2 GA-based BPNN

The BPNN is trained by repeatedly presenting a series of input/output pattern sets to
the networks. The networks gradually learn the input/output relationships of interest
by adjusting the network weights to minimize the error between the actual and
predicted output patterns of the training sets (Fig. 9). After the learning process is
completed, the network weight coefficients cannot be changed. In this model, the
usage of networks with only forward calculations is needed in pattern recognition and

prediction, and the calculation can be executed very quickly.

Inputs Hidden layers Outputs
Xl Yl

Y2

Yn
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Fig. 10 Architecture of three-layer BPNN

The GA-based BPNN learning process consists of two stages (Fig. 11): employing
GAs to search for the optimal or approximate optimal connection weights and
thresholds for the networks and then using the back-propagation learning rules and
training algorithms to adjust the final weights. The implementation procedure of the

network training is programmed within Matlab using the GAs and Neural Networks

Tool Boxes.
Back Propagation Neural Network Genetic algorithms
Topology of networks Initiation of weights and thresholds

Parameters of networks

Population fitness
ol

Imitial parameters |«

v

Error estimation

v

Stopping Rule

satisfied?

Adjustment of weights

'

Select genetic operator

|

Precision

requirement? Crossover
Mutation
Trained? i
N Evolutionary N
r ¥
. ) Computing?
Save trained data PUtnE

—(= ]

Fig. 11 Framework of GA-based BPNN
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In this processing, the BPNN weights and thresholds are represented as genes in a
chromosome, and the global optimum is then searched for using the selection,
crossover and mutation operators of the genetic algorithm. This procedure is
completed by applying a BP algorithm on the GA-established initial connection
weights and thresholds. If the BP network’s total mean square error is larger than the
expected error, the weights and thresholds will be updated; otherwise, they are saved
as initial value of the BP network training. To train the BPNN, the learning rate was
adjusted to follow Eqg. 2 using the momentum and the self-adapting methods, which

was programmed using Matlab.

1.05-1Ir(k); mse(k +1) < mse(k)
Ir(k +1) =<0.7 -Ir(k); mse(k +1) >1.04mse(k) (Eq. 2)
Ir(k);else

where Ir means adaptive learning rates, mse represents mean square errors for BPNN,
and k is training time.

After the initiation of weights and thresholds was formed from the BPNN training, an
initial population S(0) was randomly generate, because it is not known a priori where
the globally optimal strings. In GAs, each member of S(0) is a string of length that
corresponds to the problem coding. From this initial population, subsequent
populations, S(1), ..., S(t), ..., will be computed by employing three genetic operators
of selection (reproduction), crossover and mutation. Then, the fitness score of each
individual string of the current population S(t) is computed, and the strings in the
current population are copied and placed in the intermediate population, which is

proportional to their fitness relative to other individuals in the population. Crossover
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and mutation are applied to the intermediate population for the creation of the next
population. The two new strings, called as offspring, are formed by the juxtaposition
of the first part of one parent and the last part of the other parent. It can continue with
the calculation of population fitness until some stopping criterion applies to find final
population. Subsequently, they were further adjusted under the BP learning rule to the
best result, by which the landslide susceptibility can be accurately predicted. The

detailed framework is shown in Fig. 12 for landslide susceptibility using GA-based

BPNN.
Geospatial Landslide inventory Geology Hydrology
Database
T DEM Reverse DEM
| I I reeedf
I ] '|'
: o)  Slope
| | Units
I
l Aspect |
| <
+ GA Elevation -
Modeling | 3 | Slope |
BP Shape of slope |
Hydrogeology
condition
l Human
Landslide engineerng
susceptibility activities

Fig. 12 Framework of landslide susceptibility using GA-based BPNN

Using BPNN modeling optimized by genetic algorithms, the parameters of GAs and
neural networks are set in the present study. The population size is 100; crossover
probability is 0.65; mutation probability is 0.01; momentum factor is 0.60; learning

rate is 0.7; max learning number is 10000; and target error is 0.000001. From a
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355

database of 216 landslides in units of slope, 120 landslides were randomly used for
training the neural network models, and 96 landslides were used for the validation of
landslide susceptibility. In the analysis of susceptibility, the slope unit affected by
landsliding was valued as 1, while the unit without landslides was assigned as 0.

For the GA-improved BPNN, the network was trained for 488 times, and the error
sum of the squares vs. the generation and fitness is shown in Figs. 13 and 14,
respectively. In the figures, the blue line is the best solution trend, while the red one is
the mean of the whole population. The final error is 9.96914e-007 from the
relationship of the epochs and errors in Fig. 15. It can be demonstrated that the

requirement was met for the BPNN training for landslide susceptibility assessment.
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Fig. 13 The error sum of squares vs. generation
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5. Results

Following the process of mapping the slope units, the environmental factors can be
categorized into slope, aspect, slope height, shape of slope, distance to rivers and
human activities. These factors were statistically analyzed by slope units within the
scope of GIS, after the construction of the geo-database. As mentioned above, the
geological condition is almost the same in the study area, in which the strata in these
units are mainly Neogene argillites, and the fluvial deposits consist of clayey silts and
gravels and Quaternary loess. The environmental factors are analyzed by focusing on
the slope parameters, such as slope angle, aspect, height and the shape of the slope.
According to the statistical analysis, 36% of the slope units affected by landslides
occurred on slopes with angles between 41° and 50°, and 30% were occurred on
slopes with angles from 51°-60° (Fig. 16). From the analysis of the relationships
between the slope height and landslide occurrence (Fig. 17), almost 45% of the
landslides occurred at elevations between 101 and 150 m (Fig. 18). It was also found
that 38% and 56% of landslides were toward the southeast and southwest, respectively.
However, other five variables made little contribution to the landslide occurrence. In
addition, it was also demonstrated that the concave terrain was more stable, after

large-scale landslides were observed to have occurred in the loess areas (Fig. 19).
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After the GA-improved BPNN training, the susceptibility of landslides was predicted,
as shown in Fig. 20. Comparing landslide occurrence with the susceptibility map, it
was noted that the prediction accuracy of landslide occurrence is 93.02%, whereas the
units without landslide occurrence is predicted with an accuracy of 81.13%. To sum

up, the verification demonstrates satisfactory agreement with the accuracy of 86.46%

obtained between the susceptibility map and landslide locations.
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Fig. 20 Map with predicted landslide susceptibility (slopes potential to landslides
in yellow)

Ten slopes (in yellow in Fig. 20) were predicted to be prone to landslides. In view of
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the environmental factors, most of these slopes were toward the southeast or southeast,
were higher than 100 m and had slope angles greater than 43°. Furthermore, seven of
the slopes were in convex topographic conditions, whereas the other slopes were
located in concave topographic conditions.

6. Discussions and Concluding remarks

As a useful tool, which addresses a nonlinear system and is capable of response to
inputs and adaptation to the environment, the most widely used BPNN is capable of
evaluating landslide susceptibility at both the regional and site-specific scales (Lee et
al. 2003; Neaupane and Achet 2004). The BPNN can be applied better over a wide
area using non-parametric variables with large extensions. However, the BPNN is
prone to falling into local extremes, and their convergence is slow. To overcome these
drawbacks, a GA-based BPNN was proposed to optimize the neural network weights
for landslide susceptibility assessment, and the topology was subjectively kept in
three layers. In the optimization of the GA-based BPNN, the number of neurons can
be decided in the hidden layer by the Kolmogorov theorem. For the training of the
BPNN, the weights and thresholds were represented as genes of a chromosome, and
the global optimum was then searched for using the selection, crossover and mutation
operators of the genetic algorithm.

During the processing of GA-BPNN, it is very important for the selection of training
datasets, since the slope failure can be a combination of several environmental factors.
In the present study, the training samples were randomly selected, and some of

parameters were determined by experience, for example, learning rates, crossover
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probability and mutation probability. To some extents, the accuracy of prediction was
affected by the accurate selections of these parameters.

Meanwhile, the advantages of using genetic algorithms were based on the
performance of neural networks on the testing datasets, instead of only on the minimal
square error in the modeling datasets. In addition, the minimal improvement of the
genetic algorithms in this study occurred in the ratios between the numbers of
chromosomes of a generation.

In the present study, through the use of direct-reverse DEM technology, the
Changshougou valley was divided into 216 slope units, of which 123 units were
affected by landslides. According to the mechanism analyses of the landslides in the
loess area, six environmental factors were selected to evaluate landslide occurrence,
such as slope height, slope angle, aspect, shape of slope, distance to rivers, and human
activities. After the spatial analysis of the environmental factors, a case study was
presented for landslide susceptibility prediction using BPNN modeling optimized by
genetic algorithms. From a database of 216 slopes, 120 units, including 80 with
landslide presence and 40 without, were used for training the neural network models,
and 96 slopes, i.e., 43 with landslide presence and 53 without landslide presence, were
used for the validation of landslide susceptibility. Comparing landslide presence with
a susceptibility map, it was noted that the prediction accuracy for landslide occurrence
is 93.02%, whereas units without landslide occurrence could be predicted with an
accuracy of 81.13%. It was also noted that 10 slopes were predicted to be prone to

landslides. In view of the environmental factors, most of these slopes are toward
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southeast or southeast, are at an elevation greater than 100 m, and have slope angles
greater than 43°. It was also noted that seven of the slopes are in convex topographic
conditions, whereas the other slopes are located in concave topographic conditions.
Furthermore, the prediction of 10 slopes can be used as a general planning tool but is
not intended for individual site-specific evaluations.

As for the landsliding in loess areas, the six environmental factors were selected for
the susceptibility of landslides using the slope units. Geological conditions is not
complicated, since there are no faults and folds in the study area. All the selected
factors were statistically analyzed using GIS, however, the classification was
objectively determined. In fact, the large-scale landslides are composed of slope units,
the deformation is thus completely different from a slope unit. Further detailed studies
should be conducted for a single large-scale landslide in hazard assessment at a
site-specific scale. However, the rainfall is the main trigger for the slope failure in this
kind of areas, especially in northwest China. Detailed information for the landslide
occurrence is needed for the evaluation of hazard, therefore, landslide mitigation can
be effectively carried out in the Changshougou Valley.

To sum up, the verification indicates a satisfactory agreement, with an accuracy of
86.46% between the susceptibility map and landslide locations. In this case study, it
was also found that some disadvantages can be overcome in the application of BPNN,
such as low convergence rates and susceptibility to local minimums, after the
optimization was carried out using GAs. To conclude, GA based BPNN are an

effective method to predict landslide susceptibility with high accuracy.
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