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Abstract 16 

     To reveal the preparatory processes of large inland earthquakes, we 17 

systematically applied the pattern informatics (PI) method to earthquake 18 

data of Japan. We focused on 12 large earthquakes with magnitudes greater 19 

than M6.4 (based on the magnitude scale of the Japan Meteorological 20 

Agency) that occurred at depths shallower than 30 km between 2000 and 21 

2010. We examined the relationship between the spatiotemporal locations of 22 

these large shallow earthquakes and the locations of PI hotspots, which 23 

correspond to grid cells of anomalous seismic activity during a designated 24 

time span. Based on a statistical test conducted using Molchan’s error 25 

diagram, we investigated whether precursory anomalous seismic activity 26 

occurred in association with these large earthquakes and, if so, studied the 27 

characteristic time spans of such activity. Our results indicate that Japanese 28 

inland earthquakes with M  6.4 are typically preceded by anomalous 29 

seismic activity in timescales of 8–10 years. 30 

 31 

32 
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1  Introduction 32 

     Japan has been struck by many large (M  6.4) inland earthquakes, 33 

including the 2000 Western Tottori Prefecture earthquake, the 2004 Mid 34 

Niigata Prefecture earthquake, the 2005 West Off Fukuoka Prefecture 35 

earthquake, the 2007 Noto Hanto earthquake, the 2007 Niigataken 36 

Chuetsu-oki earthquake, and the 2008 Iwate–Miyagi Nairiku earthquake. 37 

Most of these earthquakes occurred along faults that had not been 38 

considered active prior to their occurrence (Imanishi et al., 2006). Therefore, 39 

more detailed survey of poorly mapped active faults is required to ensure 40 

accurate modeling of the mechanisms underlying the occurrence of large 41 

inland earthquakes and to calculate strong motions at various sites 42 

including plain regions. Moreover, further and more detailed investigation of 43 

the statistical features of large inland earthquakes is also required. In 44 

particular, to ensure a comprehensive understanding of the preparatory 45 

processes of large inland earthquakes, the systematic investigation of the 46 

statistical features of seismic activity prior to large inland earthquakes is 47 

essential. 48 

     Seismic activity is sensitive to stress in the crust (Dieterich, 1994; 49 

Dieterich et al., 2000; Toda et al., 2002). Therefore, investigation of temporal 50 

changes in seismic activity is essential to understand temporal variations in 51 

such stress and may, in turn, provide information regarding the possibility of 52 

occurrence of future large earthquakes. Temporal changes in seismic activity 53 

before large earthquakes have been reported for various regions including 54 

Alaska (Bufe et al., 1994; Kisslinger and Kindel, 1994), California (Bowman 55 

et al., 1998; Bowman and King, 2001; Bufe and Varnes, 1993; Jaume and 56 

Sykes, 1999; Papazachos et al., 2005; Resenberg and Matthews, 1988; 57 

Sobolev, 2003; Stuart, 1991; Sykes and Jaume, 1990), Central Asia 58 

(particularly the India–Eurasia collision zone; Zheng et al., 1995), China 59 

(Wei et al., 1978; Yu et al., 2011), Greece (Karakaisis et al., 2002; 60 

Papazachos et al., 2005), Italy (Console et al., 2000), Japan (Huang et al., 61 

2001; Mogi, 1969; Nagao et al., 2011; Ogata, 2004, 2005; Resenberg and 62 

Matthews, 1988; Papazachos et al., 2010; Katsumata, 2011a, 2011b), Russia 63 
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(Borovik et al., 1971), Taiwan (Chen, 2003; Chen et al., 2005, 2006; Chen and 64 

Wu, 2006; Wu and Chiao, 2006; Wu and Chen, 2007; Wu et al., 2008a, 2008b, 65 

2011), and Turkey (Öztürk and Bayrak, 2012). 66 

     The results of these previous studies imply that anomalous seismic 67 

activity is associated with the preparatory processes of large earthquakes 68 

near their epicenters and in surrounding regions over various timescales. 69 

However, few studies to date have systematically investigated temporal 70 

changes in seismic activity prior to large earthquakes or the statistical 71 

characteristics of such activity. A systematic examination of precursory 72 

seismic activity is necessary to provide a comprehensive understanding of 73 

the preparatory processes of large earthquakes and may provide insight into 74 

the mechanisms underlying these processes. To address this, we 75 

systematically investigated precursory changes in seismic activity for large 76 

earthquakes in inland Japan using the pattern informatics (PI) method, 77 

which has retrospectively succeeded in identifying anomalous seismic 78 

activity prior to large earthquakes (Chen et al., 2005, 2006; Holliday et al., 79 

2005, 2006; Rundle et al., 2002, 2003; Tiampo et al., 2002; Wu et al., 2008a, 80 

2008b, 2011). In Section 2, we introduce the analysis procedures used to 81 

derive a spatiotemporal PI map using the PI method, which identifies PI 82 

hotspots exhibiting anomalous change in seismic activity. The PI maps 83 

illustrate the relationships between the spatiotemporal locations of areas of 84 

anomalous seismic activity and those of inland large earthquakes; these 85 

maps are presented along with Molchan’s error diagrams in Section 3 and 86 

are discussed in Section 4. 87 

 88 

2  Data and Methodology 89 

     We used the earthquake catalog maintained by the Japan 90 

Meteorological Agency (JMA). JMA initiated a new data processing 91 

operation in October 1997, aiming to unify the earthquake catalogs 92 

maintained by different organizations. Furthermore, JMA also began to 93 

relocate past seismic events using different velocity models and initiated 94 

changes in the methods used to calculate JMA magnitude (M) in 2003. 95 



4 
 

Accordingly, inhomogeneity has been induced in the earthquake catalog; this 96 

inhomogeneity can be attributed primarily to differences between seismic 97 

networks, improvements in observation instruments, and changes made to 98 

data processing methods (Habermann, 1987; Nanjo et al., 2011; Resenberg 99 

and Matthews, 1988). Investigation of the spatial and temporal homogeneity 100 

of the JMA earthquake catalog is important for evaluating temporal changes 101 

in seismic activity. Therefore, to examine the homogeneity of the catalog, we 102 

mapped the minimum magnitude of completeness (Mc) with grid cell 103 

intervals of 80 km and 100 km at depths of 0–30 km from January 1980 104 

onward using the method of Wiemer and Wyss (2000); to calculate Mc for 105 

each grid cell, we used the surrounding 200 earthquakes. Application of this 106 

method produced Mc < 3.5, which is consistent with the results of Huang et 107 

al. (2001) and Nanjo et al. (2010). Thus, we first used events with M  3.5 108 

(i.e., a cut-off magnitude of 3.5) for application of the PI method. We also 109 

conducted analyses using events with M  4.0 and 4.5 to examine the effects 110 

of different cutoff magnitudes on the statistical features of the 111 

spatiotemporal PI maps obtained. 112 

     The PI method was originally developed based on the concept of pattern 113 

dynamics (Rundle et al., 2000). Stress can be regarded as a space–time state 114 

variable in a system of true deterministic dynamics, and is a fundamental 115 

measure that must be monitored to allow identification of its temporal 116 

change in advance of large earthquakes. However, direct observation of 117 

stress change is difficult because earthquakes occur below the surface of the 118 

earth. To address this, new instruments have been developed to allow the 119 

observation of seismic activity with higher precision and accuracy; seismic 120 

activity is considered to be a type of stress sensor (Ma et al., 2005; Stein, 121 

1999; Toda et al., 2002), and is determined based on seismographic 122 

information. Here, we selected seismic activity as a space–time state 123 

variable of pattern dynamics to investigate change in an earthquake system. 124 

     We applied the PI method to earthquake data for Japan (the 125 

rectangular region in Fig. 1) as follows and as illustrated in the flowchart of 126 

Fig. 2. (1) The target region is set and divided into grid cells with specific 127 

intervals (80  80 km and 100  100 km for cutoff magnitudes of 3.5 and 4.0 128 
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or 4.5, respectively). (2) The seismic intensity change Ii(tb,t1,t2) is calculated 129 

for the i-th grid cell for a target time period from t1 to t2 (defined as the 130 

change interval), where t1 = t2  tc (tc = 4, 6, 8, 10, 12, and 14  365 days) and 131 

t2 = 1 October 1997 to 28 February 2011. This calculated change is used to 132 

obtain an index (PI value) likely representing the probability of earthquake 133 

occurrence during the prediction period from t2 to t3, where t3  t2 = t2  t1= tc. 134 

Seismic intensity Ii(tb,t) is defined as the number of earthquakes per day 135 

within a square area that includes the i-th grid cell, averaged over the time 136 

period between a reference time tb (where t0 < tb < t1 and t0 is 1 January 1980) 137 

and t. The lengths of the sides of the square are varied depending on the 138 

cutoff magnitude, forming squares of 240  240 km and 300  300 km for 139 

cutoff magnitudes of 3.5 and 4.0 or 4.5, respectively. To obtain seismic 140 

intensity change, seismic intensities Ii(tb,t1) and Ii(tb,t2) for the i-th grid cell 141 

are calculated for the corresponding time periods (i.e., tb to t1 and tb to t2, 142 

respectively). Then, seismic intensity change is calculated as follows: 143 

Ii(tb,t1,t2) = Ii(tb,t2)  Ii(tb,t1). (3) Step (2) is repeated to obtain seismic 144 

intensity changes for all grid cells. (4) To extract coherent trends in seismic 145 

intensity change during t1 to t2, seismic intensities Ii(tb,t1) and Ii(tb,t2) are 146 

calculated by shifting tb from t0 to t1; then, seismic intensity change 147 

Ii(tb,t1,t2) is normalized temporally by subtracting its temporal mean and 148 

dividing by its temporal standard deviation. Additionally, Ii(tb,t1,t2) is 149 

normalized spatially to highlight unusual seismic intensity changes. The 150 

value of Ii(tb,t1,t2) varies depending on the grid cells in which tb is fixed; 151 

therefore, it can be normalized spatially by subtracting its spatial mean and 152 

then dividing by its spatial standard deviation for each value of tb. The 153 

spatiotemporally normalized seismic intensity change can then be obtained, 154 

denoted as Îi(tb,t1,t2). (5) Most of the effects of random fluctuation in seismic 155 

intensity change and background seismic intensity change are eliminated by 156 

normalization, such that the preseismic change can be represented by the 157 

spatiotemporally normalized seismic intensity change Îi(tb,t1,t2). The 158 

preseismic change that occurs during preparatory processes can be seismic 159 

quiescence, seismic activation, or even both; therefore, Îi(tb,t1,t2) may be 160 

negative or positive. To incorporate all preseismic change and reduce the 161 
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fluctuation of random noise, we take the absolute value of the 162 

spatiotemporally normalized seismic intensity | Îi(tb,t1,t2)| and average this 163 

absolute value over all values of tb to obtain ˆ I i tb ,t1,t2( ) . (6) Then, the 164 

probability of earthquake occurrence Pi(t1,t2) is defined as ˆ I i tb ,t1,t2( ) 2 and 165 

the average probability as the mean μp of Pi(t1,t2). The probability of 166 

earthquake occurrence relative to the background mean, Pi(t1,t2)  167 

ˆ I i tb ,t1,t2( ) 2 μp, is further divided by the spatial maximum ( Pmax); thus 168 

obtained Pi / Pmax is defined as PI value. The common logarithm of PI 169 

value is color coded and plotted on PI map (not shown in the present study). 170 

(7) The end of change interval t2 is moved forward (t1 and t3 are changed 171 

accordingly, by the same time interval) and steps (2) to (6) are conducted 172 

again. (8) Finally, the common logarithm of Pi / Pmax (PI value) for each 173 

grid cell for each change interval is color coded and plotted on spatiotemporal 174 

PI map (Figs. 3–5). 175 

 176 

3  Results 177 

     Figures 3–5 illustrate the spatiotemporal PI maps for cutoff 178 

magnitudes of 3.5, 4.0, and 4.5; grid cells with large changes in seismic 179 

activity (i.e., PI hotspots) for different change intervals (4, 6, 8, 10, 12, and 14 180 

years) are highlighted. Colored grid cells with the common logarithm of PI 181 

values greater than 0.4 (i.e., between 0.4 and 0) represent spatiotemporal 182 

locations with large changes in seismic activity; such changes likely 183 

represent seismic quiescence or seismic activation and are related to high 184 

probabilities of earthquake occurrences during the prediction periods, the 185 

lengths of which are equal to those of the change intervals (Fig. 2). The grid 186 

cells colored red represent the greatest changes in seismic activity, which 187 

typically correspond to the highest probabilities of earthquake occurrence in 188 

the prediction period. Conversely, the grid cells colored deep blue represent 189 

values lower than 0.4 and highlight locations with only small changes in 190 
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seismic activity, indicating low earthquake occurrence probability in the 191 

prediction period. The red and white stars in each panel represent the 192 

spatiotemporal locations of target (i.e., M  6.4) earthquakes (Table 1). In 193 

particular, the red stars indicate target earthquakes that occurred in the 194 

prediction periods following change intervals with the common logarithm of 195 

PI values higher than 0.4, whereas the white stars indicate that the target 196 

earthquakes occurred outside the prediction periods. For convenience, we 197 

hereafter refer to the total spatiotemporal area occupied by prediction 198 

periods that follow change intervals with large seismicity changes (or high 199 

earthquake occurrence probabilities) as the alarm area. 200 

     Figures 6–9 show the spatiotemporal alarm area maps for the same 201 

cutoff magnitudes as in Figs. 3–5, respectively; panels (a)–(f) in Figs. 6–9 202 

denote the alarm area maps for different change intervals of 4, 6, 8, 10, 12, 203 

and 14 years, respectively. White grid cells illustrate the alarm area. Black 204 

grid cells show non-alarm area, which indicates the total spatiotemporal 205 

areas outside the alarm area. The black and white stars correspond to the 206 

red and white stars in Figs. 3–5, respectively; labels (A)–(L) in panels (a) and 207 

(d) denote the earthquake indices in Table 1. 208 

     Here, we focus on whether each large earthquake occurred within the 209 

alarm area. Therefore, it is necessary to quantitatively compare the 210 

statistical performances of the spatiotemporal PI maps for different cutoff 211 

magnitudes, different change intervals, and different lower thresholds of PI 212 

value representing large seismicity change during the change interval or 213 

high earthquake occurrence probability during the prediction period. For 214 

this purpose, we used Molchan’s error diagram (Kagan, 2007; Molchan, 215 

1997; Shcherbakov et al., 2010) to examine the coherence between the 216 

spatiotemporal locations of target earthquakes and the fraction of grid cells 217 

occupied by the alarm area. Figures 9–11 present plots of miss rate versus 218 

fraction of grid cells occupied by the alarm area. Here, miss rate is defined as 219 

the number of M  6.4 events located outside the alarm area normalized by 220 

the total number of M  6.4 events. A line connecting (0,1) to (1,0) indicates 221 

the random miss rate, which corresponds to a line of no significance. We used 222 

the method of Zechar and Jordan (2008) to calculate the lower 95% 223 



8 
 

confidence level of the random miss rate. In the statistical test, variation in 224 

the miss rate in response to changes in the alarm area was calculated by 225 

changing the lower threshold of PI values which correspond to large 226 

seismicity changes (black open circles in Figs. 9–11). The best performance of 227 

the PI method is found in the bottom left corner of each diagram. Conversely, 228 

we do not regard the performance in areas of the plot above and to the right 229 

of the lower 95% confidence level curve of the random miss rate as 230 

statistically significant. Therefore, we focused primarily on the data 231 

represented by the black open and large black solid circles located below and 232 

to the left of the lower 95% confidence level curve. The large black solid 233 

circles in Figs. 9–11 correspond to the results shown in Figs. 3–8, which were 234 

obtained by setting the lower threshold of the common logarithm of PI value 235 

representing large seismicity change during the change interval to 0.4. 236 

     Statistical features of Molchan’s error diagrams for respective cutoff 237 

magnitudes (Figs. 9–11) can be described as follows. As to cutoff magnitude 238 

of 3.5, miss rates and fractions of grid cells occupied by alarm areas (denoted 239 

by black open circles and large black solid circles in Fig. 9) for 8- or 10-year 240 

change intervals (Figs. 9c and 9d) performed better than those for other 241 

change intervals although they are located primarily above and to the right 242 

of the lower 95% confidence level curve. In the case of cutoff magnitude of 4.0, 243 

miss rates and fractions of grid cells occupied by alarm areas for 8-, 10-, or 244 

12-year change intervals (Figs. 10c–10e) showed better performances than 245 

for other change intervals. Especially, the statistical performance for 10-year 246 

change interval is statistically significant in that the black open and large 247 

black solid circles are located primarily below and to the left of the lower 95% 248 

confidence level curve of the random miss rate. For cutoff magnitude of 4.5, 249 

miss rates and fractions of grid cells occupied by alarm areas (shown in Figs. 250 

11c and 11d) were plotted primarily below and to the left of the lower 95% 251 

confidence level curve of the random miss rate when 8- or 10-year change 252 

intervals were adopted, indicating that the PI method performed better for 8- 253 

or 10-year change intervals than for others.  254 

     Summarizing the common statistical performance of the error 255 

diagrams for cutoff magnitudes of 3.5, 4.0, and 4.5 (Figs. 9–11), there 256 
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appears to be some relationship between the locations of M  6.4 events and 257 

the number of grid cells occupied by alarm areas for 8- or 10-year change 258 

intervals. Especially, for cutoff magnitudes of 4.0 (10-year change intervals) 259 

and 4.5 (8- or 10-year change intervals), the null hypothesis, which states 260 

that there is no significant relationship between the locations of M  6.4 261 

events and the number of grid cells occupied by alarm areas, was rejected at 262 

a confidence level of 95%. In addition to showing that application of the PI 263 

method to the shallow earthquake data of Japan produces the best statistical 264 

results for change intervals of 8–10 years, this statistical performance 265 

demonstrates that such change intervals reflect the characteristic time 266 

period associated with preparation for the occurrence of large shallow 267 

earthquakes in Japan. 268 

 269 

4  Discussion and Conclusions 270 

     We applied the PI method to the earthquake catalog covering the 271 

inland areas of Japan. Because seismicity rate is a proxy for stress rate 272 

(Dieterich, 1994; Dieterich et al., 2000; Toda et al., 2002), the position of a PI 273 

hotspot is considered to reflect an area with significant temporal change in 274 

stress rate during a given change interval. In the present study, we focused 275 

on the occurrence (or nonoccurrence) of each large shallow earthquake that 276 

occurred during each prediction period, where the prediction period followed 277 

a change interval in which the observed seismicity change exceeded a given 278 

threshold; we varied the threshold as part of a statistical test using 279 

Molchan’s diagram to check the robustness of the analysis result and to infer 280 

the characteristic timescale of precursory anomalous seismic activity. 281 

Typically, in cases where PI hotspots are located on the epicenter of a large 282 

inland earthquake, the stress rate around the focal region of the earthquake 283 

increases. Therefore, the observation of temporal change in the locations of 284 

PI hotspots is a key factor in improving the physical understanding of stress 285 

state near the source area of a future large inland earthquake and the 286 

preparatory processes of such earthquakes. As discussed in Section 3, our 287 

analysis identified PI hotspots on timescale of 8–10 years in regions on the 288 
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focal regions of all target earthquakes prior to their occurrences.  289 

     Some previous studies have examined such precursory seismicity 290 

changes related to large inland earthquakes in Japan. Takahashi and 291 

Kumamoto (2006) discussed the relationships between some seismic indices 292 

and the degree of fault evolution by investigating temporal changes in the 293 

seismic indices prior to the occurrences of 8 large inland earthquakes in 294 

Japan; in fact, four of these earthquakes were also included in the present 295 

study (earthquake indices (C), (D), (E), and (G) in Table 1). The seismic 296 

indices used included the cumulative number of earthquakes, the a- and 297 

b-values of the Gutenberg–Richter relation (Gutenberg and Richter, 1944), 298 

the AS function (Habermann, 1983), and the LTA function (Habermann, 299 

1991; Wu and Chiao, 2006). The results presented by Takahashi and 300 

Kumamoto (2006) demonstrated that precursory seismic quiescence occurred 301 

on timescales of 1–7 years over areas at spatial scales of ~100 km, centered 302 

at the epicenters of large inland earthquakes (C), (D), (E), and (G) in Table 1. 303 

Although it appears that the precursory time intervals determined by 304 

Takahashi and Kumamoto (2006) are inconsistent with those obtained in the 305 

present study, this may be due to differences in the areas included when 306 

calculating the temporal changes in seismic activity: the areas of 240  240 307 

km and 300  300 km used in the present study are more extensive than the 308 

areas of 0.2  0.2° and 1  1° used by Takahashi and Kumamoto (2006). 309 

     Yoshida and Aoki (2002) examined the seismic activity that occurred 310 

prior to the 1891 Nobi earthquake (Mikumo and Ando, 1976; Nakano et al., 311 

2007), the 1964 Niigata earthquake (Hirasawa, 1965), the 1983 Central 312 

Japan Sea earthquake (Satake, 1985), and the 2000 Western Tottori 313 

Prefecture earthquake in Japan (earthquake index (C) in Table 1; Fukuyama 314 

et al., 2003; Ohmi et al., 2002). Their results indicated that the precursory 315 

seismic quiescence of the earthquakes occurred more than 10 years before 316 

the earthquakes. Moreover, the results for the 2000 Western Tottori 317 

Prefecture earthquake indicated that the related precursory seismic 318 

quiescence began to occur 10 years before the occurrence of the earthquake 319 

within a rectangular region of 150  350 km that included the earthquake’s 320 

source area. It should be noted that the earthquake occurrence probabilities 321 
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obtained in the present study were obtained for square regions measuring 322 

240  240 km and 300  300 km, centered at the respective calculation grids; 323 

this is very similar to the scale of Yoshida and Aoki (2002). Therefore, the 324 

precursory time interval (for timescales of 8–10 years) obtained in the 325 

present study seems to be consistent with that obtained by Yoshida and Aoki 326 

(2002). 327 

     The PI method can identify locations of anomalous seismic activity 328 

including both seismic quiescence and activation. Therefore, it is able to 329 

highlight areas of stress relaxation and stress concentration in and around 330 

the source areas of future large earthquakes. According to Yoshida and Aoki 331 

(2002), seismic quiescence occurred over a broader region around the source 332 

area of the 2000 Western Tottori Prefecture earthquake; meanwhile, 333 

seismicity remained active in the source area. Yoshida and Aoki (2002) 334 

interpreted this observation to be a result of the transfer of stress into 335 

asperities within the source area, possibly due to stress relaxation processes 336 

in the surrounding region. Wyss et al. (1981) and Wyss (1986) reached 337 

similar conclusions in the cases of the 1975 Kalapana, Hawaii, earthquake 338 

and the 1983 Kaoiki, Hawaii, earthquake, respectively. Furthermore, based 339 

on a numerical simulation using rate- and state-dependent friction laws 340 

(Ruina, 1983), Kato et al. (1997) demonstrated the appearance of regional 341 

seismic quiescence in the continental crust before a large interplate 342 

earthquake due to regional stress relaxation; such relaxation could occur as 343 

a result of preseismic sliding on the boundary between a subducting oceanic 344 

plate and the overriding continental plate. Kato et al. (1997) also argued that 345 

the mechanism underlying seismic quiescence could apply to other types of 346 

earthquakes, including intraplate earthquakes on active faults. Therefore, 347 

the anomalous seismicity obtained in the present study may reflect a 348 

temporal change in crustal seismicity associated with regional stress 349 

relaxation prior to a large earthquake (Kawamura et al., 2013; Wu and 350 

Chiao, 2006; Wu et al., 2008a, 2008b). 351 

     We conclude that anomalous seismic activity likely precedes the 352 

occurrence of M6 or M7 large shallow earthquakes in inland areas of Japan 353 

on timescales of 8–10 years. In considering the implications of our study for 354 
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the preparatory processes of large shallow earthquakes in Japan, it would be 355 

informative to investigate the existence of anomalous seismic activity 356 

preceding large earthquakes elsewhere. Moreover, if such activity were 357 

found, it would be enlightening to compare the associated timescales with 358 

those described for Japan in the present study. This should provide a more 359 

comprehensive understanding of the mechanisms responsible for the 360 

occurrence of large shallow earthquakes. 361 
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 568 

Earthquake 

index 

Date Longitude 

(°) 

Latitude 

(°) 

Depth 

(km) 

Magnitude 

(A) 1 July 2000 139.19 34.19 16.1 6.5 

(B) 30 July 2000 139.41 33.97 17.0 6.5 

(C) 6 Oct. 2000 133.35 35.27 9.0 7.3 

(D) 26 July 2003 141.17 38.41 11.9 6.4 

(E) 23 Oct. 2004 138.87 37.29 13.1 6.8 

(F) 23 Oct. 2004 138.93 37.31 14.2 6.5 

(G) 20 March 2005 130.18 33.74 9.2 7.0 

(H) 25 March 2007 136.69 37.22 10.7 6.9 

(I) 16 July 2007 138.61 37.56 16.8 6.8 

(J) 14 June 2008 140.88 39.03 7.8 7.2 

(K) 20 Dec. 2008 142.70 36.53 0.0 6.6 

(L) 11 Aug. 2009 138.50 34.79 23.3 6.5 

 569 

Table 1 570 

Earthquake index assigned to each of 12 large earthquakes with magnitudes 571 

larger than M6.4 with corresponding occurrence date, epicenter (longitude 572 

and latitude), depth, and magnitude. 573 

 574 

 575 

576 
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Figure Legends 576 

Figure 1 577 

Maps showing epicenters within rectangular regions used for PI analysis for 578 

threshold magnitudes of (a) 3.5, (b) 4.0, and (c) 4.5. Labels (A)–(L) correspond 579 

to earthquake indices in Table 1. The X and Y axes of the rectangular region 580 

show the west-southwest to east-northeast and its perpendicular directions, 581 

respectively. The inset of panel (a) shows a map view of the tectonic setting 582 

around the Japanese islands; PA: Pacific plate, PH: Philippine Sea plate, EU 583 

(AM): Eurasian plate (Amurian plate), OKH: Okhotsk plate. 584 

 585 

Figure 2 586 

(a) Flowchart of the procedure for obtaining PI maps, which illustrate the 587 

spatial distribution of grid cells with large seismicity changes above a 588 

particular threshold (referred to as PI hotspots). (b) Illustration of the 589 

method for obtaining the spatiotemporal PI map obtained by combining PI 590 

maps obtained based on the process described in (a). X and Y axes 591 

correspond to those in Fig. 1. 592 

 593 

 594 

Figure 3 595 

Spatiotemporal PI maps for a cutoff magnitude of 3.5, illustrating the 596 

locations of grid cells with large seismicity changes (PI hotspots) for different 597 

change intervals between t1 and t2 (t2  t1 = 4, 6, 8, 10, 12, and 14 years, t2 = 1 598 

January 1997 to 28 February 2011). Length of change interval for each panel 599 

is shown after “t1 ” in parenthesis of the labels of vertical axes. Grid cells 600 

with the common logarithm of PI values greater than 0.4 are regarded as 601 

locations with large seismicity changes, including seismic quiescence and 602 

activation, during the specified change interval. Red grid cells correspond to 603 

the highest probability of earthquake occurrence. Deep blue cells indicate 604 

probabilities lower than 0.4, representing locations with small seismicity 605 

changes and indicating low probabilities of earthquake occurrences in the 606 

prediction periods following the change intervals. Horizontal and vertical 607 

axes are as in Fig. 2b. The red stars indicate the locations of target 608 
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earthquakes that occurred in the prediction periods following the change 609 

intervals with large seismicity changes. The white stars denote those with 610 

small seismicity changes. The labels (A)–(L) correspond to the earthquake 611 

indices in Table 1. 612 

 613 

Figure 4 614 

As in Fig. 3, but for a cutoff magnitude of 4.0. 615 

 616 

Figure 5 617 

As in Fig. 3, but for a cutoff magnitude of 4.5. 618 

 619 

Figure 6 620 

Spatiotemporal distribution of the alarm area for a cutoff magnitude of 3.5. 621 

The alarm area is defined as the total spatiotemporal area occupied by the 622 

prediction periods that follow the change intervals with large seismicity 623 

changes, or with the common logarithm of PI values higher than 0.4. The 624 

black and white stars correspond to the red and white stars in Figs. 3–5, 625 

respectively. White grid cells correspond to the alarm area; black grid cells 626 

show the non-alarm area, which is defined as the complement of the alarm 627 

area. The labels (A)–(L) correspond to the earthquake indices in Table 1. 628 

 629 

Figure 7 630 

As in Fig. 6, but for a cutoff magnitude of 4.0. 631 

 632 

Figure 8 633 

As in Fig. 6, but for a cutoff magnitude of 4.5. 634 

 635 

Figure 9 636 

Molchan’s error diagrams for different change intervals between t1 and t2 (t2 637 

 t1 = 4, 6, 8, 10, 12, and 14 years; t2 = 1 January 1997 to 28 February 2011). 638 

Vertical axis denotes the miss rate, which is defined as the number of M  639 

6.4 earthquakes occurred outside the alarm area relative to the total number 640 

of M  6.4 earthquakes. Horizontal axis shows fraction of all grid cells 641 
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occupied by prediction periods following change intervals with the common 642 

logarithm of PI values greater than 0.4. A line connecting (0,1) to (1,0) 643 

indicates the random miss rate, which shows no statistical significance. A 644 

curve with crosses is the lower 95% confidence level of the random miss rate, 645 

which was calculated using the method of Zechar and Jordan (2008). The 646 

performance in areas of the plot above and to the right of the curve is not 647 

regarded as statistically significant. Open circles were calculated by 648 

changing the lower threshold of the common logarithm of PI values above 649 

which (toward zero) temporal change in seismic activity is large; the large 650 

solid circle is calculated by setting the lower threshold to 0.4. 651 

 652 

Figure 10 653 

As in Fig. 9, but for a cutoff magnitude of 4.0. 654 

 655 

Figure 11 656 

As in Fig. 9, but for a cutoff magnitude of 4.5. 657 

658 
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Fig. 2 661 
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Fig. 3 663 
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Fig. 3 (continued) 665 
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Fig. 4 667 
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Fig. 4 (continued) 669 
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Fig. 5 671 
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Fig. 5 (continued) 673 
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Fig. 6 675 
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Fig. 6 (continued) 677 
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Fig. 7 679 
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Fig. 7 (continued) 681 
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Fig. 8 683 
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Fig. 8 (continued) 685 
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Fig. 9 (continued) 689 
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Fig. 10 691 
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Fig. 10 (continued) 693 
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Fig. 11 (continued) 697 


