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Reply to the specific comments 12 

We numbered the comments given by the referee, as some comments refer to similar sections 13 

which were changed in the revised manuscript. This numbering should assist to make the 14 

cross-references within this reply easier to follow.  15 

The comments by the referee are presented in bold, whereas the reply is in normal font type. 16 

The added text in the revised manuscript was inserted with an indentation. Please notice that 17 

some comments were split up into more comments if the original comment was referring to 18 

different lines or aspects. This is indicated with “..:” at the end and at the beginning of the 19 

comments concerned.  20 

1. P1003 line 20 – 25: I suggest that the most used and applied models should be 21 

mentioned or briefly described. Then it would be easier to understand why they tend to 22 

overfit or why are they not flexible. This will enhance the manuscript and the methodology 23 

used. 24 

The reviewer correctly points out a source of confusion in the manuscript. Therefore, the most 25 

commonly used models were briefly listed in the revised manuscript including some 26 

references of studies using these methods. Within this the terms linear models and machine 27 
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learning models were explained by listing the most commonly used models found in literature 1 

(e.g. logistic regression; artificial neural networks and support vector machines): 2 

Added to page 1003, line 14 3 

This study was embedded in a project preparing landslide susceptibility maps for the 4 

province of Lower Austria (15.850 km²) with an aimed output map scale of 1:25,000 5 

(Glade et al., 2012). Generally, landslide hazard zonation for determining slope 6 

instability due to landslides is based on simple landslide inventories or heuristic, 7 

statistical (including machine learning) or deterministic approaches (Soeters and Van 8 

Westen, 1996). Although these approaches are dealing with landslide hazards (spatial 9 

and temporal occurrence probability of landslides) the same categorization can be 10 

applied for susceptibility maps. Statistical landslide susceptibility models are 11 

particularly useful for modelling large areas on a medium scale (1:25,000 – 1:500,000) 12 

to get an overview of which slopes or slope sections might be prone to landslides in 13 

future (Fell et al., 2008). According to the resulting susceptibility maps hot spots can 14 

be identified where more detailed analysis of the slope stability should follow (Van 15 

Westen et al., 1997). For this study a statistical approach was regarded as suitable 16 

considering the aimed output map scale, the size of the study area, the available data 17 

and the limited availability of additional resources for preparing input data (such as 18 

landslide inventory or soil parameters).  19 

The central assumption of landslide susceptibility modelling is based on James 20 

Hutton’s (1726-1797) concept of uniformitarianism, “the past and the present are keys 21 

to the future” (Orme, 2002). Thus, statistical estimation of the possible future location 22 

of landslides is usually based on the conditions (e.g. local terrain attributes) of past 23 

landslides (Varnes, 1984; Carrara et al., 1995). Presently, several statistical and 24 

machine learning techniques are available for application to landslide susceptibility 25 

modelling. The most common are logistic regression (Atkinson et al., 1998; Ayalew 26 

and Yamagishi, 2005; Van Den Eeckhaut et al., 2006), bivariate models such as 27 

weights of evidence (Neuhäuser and Terhorst, 2007; Schicker and Moon, 2012) and 28 

machine learning techniques such as artificial neural networks (e.g. Nefeslioglu et al., 29 

2008; Pradhan and Lee, 2009) and support vector machines (e.g. Marjanović et al., 30 

2011; Pradhan, 2013).   31 
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2. P1004 line 10 – 15: It should be clear why the k-fold validation is chosen and in 1 

which grounds. The authors should quantify how much more reliable is this than 2 

traditional methods. … 3 

We understand the lack of background to the selection of the k-fold cross-validation. A more 4 

detailed description of the differences of a single hold-out validation method to k-fold cross-5 

validation might assist for a deeper understanding. A single (non-replicated) hold-out 6 

validation method is done with one single (random) sample and results in a single (random) 7 

performance estimate whose particular value depends on (random) properties of the selected 8 

training and test sets. While the hold-out set approach is, in principle, unbiased (on average 9 

over many studies), it is known to be statistically inefficient in the sense that is has an 10 

excessively large estimation variance. While we are unaware of any published quantification 11 

of this inefficiency, it is clear that the precision of an estimator typically improves 12 

asymptotically with the inverse of the square root of the sample size, Thus, choosing a large 13 

number of cross-validation repetitions (here: r = 20) can be expected to reduce one 14 

component of AUROC estimator precision (the component that is related to random variation 15 

in cross-validation partitioning) by a factor of about 0.22 compared to a fixed partitioning in 16 

single hold-out validation. In addition, using the entire data set (due to aggregation over all k 17 

folds) instead of one fixed hold-out partition of (typically) 50% of the overall sample size is 18 

further expected to improve the estimator’s precision by a factor of 0.7. Since the focus of this 19 

study is on model uncertainties and not on uncertainties in the estimation of model 20 

uncertainties, we decided to omit such technical detail from the manuscript. 21 

To explain the superiority of repeated k-fold cross-validation to the reader, the relevant part of 22 

the Introduction section was moved to section 2.2 and has been modified as follows: 23 

Added to page 1006, line 7  24 

In single hold-out methods the data set is split in one single training and test sample. 25 

The training sample is used to fit the model and the test sample is used to determine 26 

the model performance. This results in a single estimate of the performance measure 27 

(e.g. one single AUROC value) without providing a measure of precision of the 28 

estimator. The estimate depends on the (random) sample used for modelling the 29 

susceptibility and testing the model’s performance, which may itself have “peculiar” 30 

random characteristics that would be different for a different test set. Repeated k-fold 31 

cross-validation solves this problem by using, one after another, different subsets or 32 
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partitions of the data set as test and training sets, thus effectively using the entire data 1 

set for performance estimation (Brenning, 2012a, 2012b). In addition, repeating this 2 

procedure for different data partitioning reduces sampling variability and allows for 3 

the determination of the precision of the performance estimator (see section 5.3 for 4 

details). 5 

3. … In line 15 the authors mentioned about uncertainties and ways to communicate 6 

them. This is very important but I can not see how this document assists on this, neither in 7 

the methodology nor inside the manuscript. The authors should be quite clear in showing 8 

how they tackle this problem. 9 

This referee comment clearly shows us a need for further clarification in the revised 10 

manuscript. We disagree that the communication of uncertainties is not part of our study. 11 

However, we acknowledge, that we only presented one possible form of communication, the 12 

visualization of (specific) uncertainties, which is also recommended in literature in the 13 

context of risk and uncertainty assessment. Information on uncertainties might be easier 14 

understood by the stakeholders if they are visualized (Kunz et al., 2011). Accordingly, we 15 

propose to enhance the communication with stakeholders about model uncertainties by 16 

presenting the possible overlaps of susceptibility classes taking into account the confidence 17 

limits of the model predictions in several maps (refer to Figure 6 in the original manuscript). 18 

This analysis and visualization is one of our main points in our study. The general concept of 19 

the need for communication and visualization is discussed in section 7 of the revised 20 

manuscript. This connection of the analysis of the prediction uncertainties and their 21 

visualization as first step towards communication was more emphasized at different sections 22 

of the revised manuscript as indicated below. The methodology of the analysis of the spatially 23 

varying prediction uncertainties was presented in section 5.5. Accordingly the results were 24 

presented in section 6.4 in the refereed manuscript. We included more about the 25 

communication in the discussion (section 7.3) of the revised manuscript, to draw attention to 26 

more the potential of communicating effects of uncertainties to stakeholders by providing 27 

illustrative maps (as shown in a further comment). 28 

Generally, section 2 can be seen as an extension of the introduction which was introduced in 29 

order to keep the introduction shorter. This section was altered substantially in the revised 30 

manuscript as further replies on referee comments will show. 31 



 5 

Added to page 1004, line 15 1 

Since the application of the landslide susceptibility map resulting from this study is 2 

planned for implementation by municipal authorities, our main focus is to identify 3 

different aspects of quality (depending on input data, model performance and provided 4 

analysis of uncertainties). Accordingly, the purpose of this study is to review the 5 

characteristics that describe quality, to analyse the (statistical) model quality and to 6 

assess and visualize the uncertainty of the prediction. 7 

Added to page 1004, line 24  8 

This very broad term of quality can be interpreted in several ways and on several 9 

stages of the process of preparing a landslide susceptibility map as described, amongst 10 

others, by Carrara (1993), Carrara et al. (1995), Ardizzone et al. (2002), Guzzetti et al. 11 

(2006). In general, a good quality refers to input data, model or result (e.g. 12 

susceptibility map) which includes relatively low uncertainties.  13 

Added to page 1006, line 15 14 

2.3 Quality of final susceptibility map 15 

One important model form uncertainty which can be visualized in a map is the 16 

prediction uncertainty arising from using a statistical model. The output of a statistical 17 

model for spatial modelling is usually comprised of a single probability value for each 18 

unit of the prediction surface (grid cells, slopes or terrain units). These individual 19 

probability values represent an estimated conditional mean value of the predicted 20 

probability (Hosmer and Lemeshow, 2000). Therefore, there is a prediction 21 

uncertainty or possible range, as determined by the standard error of the predicted 22 

probabilities, of probability estimates for each unit of the susceptibility map (Guzzetti 23 

et al., 2006). Estimating the standard error was analysed and presented in previous 24 

research (e.g. Guzzetti et al., 2006; Van Den Eeckhaut et al., 2009a; Rossi et al., 2010; 25 

Sterlacchini et al., 2011). However, the way it affects the appearance of the classified 26 

landslide susceptibility map is of interest for planning purposes as considering these 27 

prediction uncertainties might result in overlaps of different susceptibility classes. 28 

Naturally, the amount of overlapping raster cells and therefore the uncertainty in the 29 

final classified map might be dependent on the number of classes and the selected 30 

thresholds for the classification. However, the analysis of the standard error of the 31 
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predicted probabilities and the prediction uncertainty analysis are independent of any 1 

class thresholds.  2 

4. P1004 line 26: I suggest rephrasing this sentence and to be more specific regarding 3 

the terms of quality and its analysis. 4 

We thankfully included the suggested rephrasing in the revised manuscript. This sentence was 5 

moved to the introduction of the manuscript. There the aspects of quality analysed within this 6 

study (depending on input data, model performance and provided analysis of prediction 7 

uncertainties) were pointed out more specifically. Furthermore, these terms were better 8 

described in section 2 of the revised manuscript. Please see the added text to page 1004, line 9 

15 presented in our reply on comment number 3.  10 

5. P1005 line 5 – 8: I disagree with this statement. In fact, I suggest that the authors 11 

rephrase the complete paragraph. The idea of making a susceptibility map which can lead 12 

to a risk assessment (quantitative) is to assess the uncertainties that are either inherent or 13 

non inherent. There are ways and procedures to assess these uncertainties and quantify 14 

them. The authors should carefully look into this. 15 

This is an important point which was considered together with the next comment while 16 

revising the section 2 of the manuscript. Analysing epistemic and aleatory uncertainties is a 17 

challenging topic in all fields that use some sort of model (e.g. risk assessment, computation 18 

science or ecology (Elith et al., 2002; Roy and Oberkampf, 2011; Hill et al., 2013)). Therein 19 

the quantification of aleatory uncertainties is quite common to be assessed with a probabilistic 20 

approach. However, considering epistemic uncertainties in a quantitative manner is more 21 

challenging (Oberkampf et al., 2004; Roy and Oberkampf, 2011).  22 

In the revised manuscript we first defined quality related to uncertainty. Secondly we defined 23 

the different types of uncertainty (aleatory and epistemic) according to literature. Finally we 24 

added some more details on the specific uncertainties occurring in statistical modelling to 25 

each type of quality we identified. For these edits please see our reply to the next comment. 26 

The details of our changes in the revised manuscript are presented in the following: 27 

Added to page 1004, line 24  28 

This very broad term of quality can be interpreted in several ways and on several 29 

stages of the process of preparing a landslide susceptibility map as described, amongst 30 
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others, by Carrara (1993), Carrara et al. (1995), Ardizzone et al. (2002), and Guzzetti 1 

et al. (2006). In general, good quality refers to input data, model or result (e.g. 2 

susceptibility map) which includes relatively low uncertainties. 3 

Landslide susceptibility modelling is inherently riddled with uncertainties. In 4 

engineering and risk assessment a basic distinction between aleatory and epistemic 5 

uncertainties is very common (Hill et al., 2013; Hoffman and Hammonds, 1994; 6 

Oberkampf et al., 2004; Roy and Oberkampf, 2011). Many processes and conditions 7 

leading to landslide occurrence are known and mappable, known but not collectable, 8 

or are simply unknown (Carrara et al., 1999). The imperfect understanding of the 9 

complexity of this hazardous phenomenon arising from the missing knowledge 10 

(Ardizzone et al., 2002; Kunz et al., 2011) is generally referred to as epistemic 11 

uncertainty (Hoffman and Hammonds, 1994; Hora, 1996; Oberkampf et al., 2004). 12 

Epistemic uncertainty is often divided into input uncertainty, parametric uncertainty 13 

and structural or model form uncertainty (Roy and Oberkampf, 2011; Rougier and 14 

Beven, 2013). Naturally, these uncertainties can be reduced by improving knowledge 15 

of the subject (Spiegelhalter and Riesch, 2011). Unavoidable uncertainty arising from 16 

the natural variability and/or randomness of the natural hazard process can be 17 

distinguished as aleatory uncertainty (Rougier and Beven, 2013; Rougier, 2013). 18 

Although these distinctions can be applied, the organization of uncertainties is 19 

dependent on the study objectives (Hora, 1996; Roy and Oberkampf, 2011).  20 

In the following, we will discuss quality by addressing uncertainty issues regarding 21 

input data (parametric uncertainty), model performance (model form uncertainty) and 22 

the final susceptibility map associated with statistical modelling. Details on other types 23 

of uncertainties which might be more important for other types of susceptibility 24 

assessment (e.g. deterministic) or on the propagation of uncertainties can be found 25 

amongst others in Hoffman and Hammonds (1994), Draper (1995), Helton et al. 26 

(2010), Karam (2005), Oberkampf et al. (2004), Rougier (2013).  27 

Added to page 1005, line 25 28 

The quantitative incorporation of parametric uncertainty in subsequent hazard and risk 29 

assessment is still a challenge (Ardizzone et al., 2002; Oberkampf et al., 2004; Roy 30 

and Oberkampf, 2011). 31 
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6. P1005 and P1006: It is a nice effort to try to summarize the aspects that can 1 

influence the quality of a susceptibility maps. But at the same time, I would suggest 2 

including the uncertainties derived from them and divide them in epistemic and aleatory. 3 

We would like to thank the referee for suggesting us to include a classification of the 4 

proposed aspects of quality by the uncertainties (epistemic and aleatory) that are influencing 5 

the quality. The classification of uncertainty types was presented in the previous comment 6 

number 5. Accordingly, we adapted the description of the types of quality, adding some 7 

considerations on the present type of uncertainty: 8 

Added to page 1005, line 14  9 

2.1 Quality of input data 10 

Achieving a good quality of the final landslide susceptibility map starts with the 11 

quality of the input data set for the modelling. Besides the geomorphological 12 

relevance, the spatial resolution and accuracy of the geo-environmental as well as the 13 

landslide inventory data is important (Van Westen et al., 2008). During the preparation 14 

of all input data (done by mapping or measuring) subjectivity, the experience of the 15 

mapper, measuring errors or imprecision in computer processes are sources of 16 

parametric uncertainty (Mosleh, 1986; Ardizzone et al., 2002; Elith et al., 2002; van 17 

Westen et al., 2005, 2008). 18 

Added to page 1005, line 21 19 

This source of epistemic uncertainty can rarely be reduced and other assessments of 20 

the uncertainty have to be selected. Therefore, estimation on the completeness of the 21 

landslide inventory and details on the collecting and mapping method giving 22 

information on the accuracy and the location of the landslide point/line/polygon (main 23 

scarp or entire landslide body) are very important. This influences the further usage of 24 

the input data set and the feasible interpretation of the susceptibility maps 25 

substantially. The explicit incorporation of parametric uncertainty in subsequent 26 

hazard and risk assessment is still a challenge (Ardizzone et al., 2002; Oberkampf et 27 

al., 2004).  28 

Added to page 1005, line 27 29 

2.2 Quality of statistical models 30 
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Every model is a simplification of reality. Therefore, while modelling landslide 1 

susceptibility, it should be expected that some discrepancies regarding the ability to 2 

explain all the processes involved in the phenomenon would naturally occur (Rougier 3 

and Beven, 2013). Every modelling result is highly dependent on the input data, the 4 

assumptions made to set up the model design and the selection and performance of an 5 

appropriate model. These assumptions also define the limitations of the model, its 6 

result and the allowed interpretation of it. Quantifying this part of the model form 7 

uncertainty is challenging. However, model validation procedures have been 8 

developed and are commonly applied to assess the model performance and therefore 9 

the model form uncertainty (Roy an Oberkampf, 2011).  10 

The predictions skills (Guzzetti et al., 2006) can be analysed quantitatively with 11 

various performance measures and estimation techniques, and qualitatively by 12 

considering expert knowledge of a particular study area. Qualitative methods analyse 13 

the geomorphic plausibility of the map (Bell, 2007; Demoulin and Chung, 2007). 14 

Common quantitative performance measures are success/prediction rate (Chung and 15 

Fabbri, 2003, 2008), confusion matrix or error rates (Brenning, 2005; Beguería, 16 

2006b), and cost curves (Frattini et al., 2010). Among the performance estimation 17 

techniques and measures, cross-validation using a single hold-out method and the area 18 

under receiver operating characteristic curve (AUROC) value based on ROC plots 19 

(Beguería, 2006; Brenning, 2005; Frattini et al., 2010) are usually applied (i.e. Chung 20 

and Fabbri, 2003, 1999; Fabbri et al., 2003; Remondo et al., 2003; Brenning, 2005; 21 

Beguería, 2006; Frattini et al., 2010; Rossi et al., 2010).  22 

In single hold-out methods the data set is split in one single training and test sample. 23 

The training sample is used to fit the model and the test sample is used to determine 24 

the model performance. This results in a single estimate of the performance measure 25 

(e.g. one single AUROC value) without providing a measure of precision of the 26 

estimator. The estimate depends on the (random) sample used for modelling the 27 

susceptibility and testing the model’s performance, which may itself have “peculiar” 28 

random characteristics that would be different for a different test set. Repeated k-fold 29 

cross-validation solves this problem by using, one after another, different subsets or 30 

partitions of the data set as test and training sets, thus effectively using the entire data 31 

set for performance estimation (Brenning, 2012a, 2012b). In addition, repeating this 32 
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procedure for different data partitioning reduces sampling variability and allows for 1 

the determination of the precision of the performance estimator (see section 5.3 for 2 

details).  3 

Depending on the partitioning method (randomly or spatially) to obtain the folds these 4 

statistical estimation methods can further provide a means for assessing the non-spatial 5 

transferability of a model onto a different, independent random sample, and the spatial 6 

transferability into a spatially separate area. Spatial transferability refers to the 7 

capability of the model to generalize empirical relationships learned on a training data 8 

set, and to transfer these relationships to (usually adjacent) regions without major loss 9 

in predictive performance (Brenning, 2005; von Ruette et al., 2011).  10 

Additionally, aleatory uncertainties are of importance in the modelling stage, as even 11 

if all parameters would be known perfectly some deviance (or discrepancy) of the 12 

model results to the nature might still occur due to the natural variability of the process 13 

(Elith et al., 2002, Rougier and Beven, 2013).  14 

Added to page 1006, line 15 15 

2.3 Quality of final susceptibility map 16 

One important model form uncertainty which can be visualized in a map is the 17 

prediction uncertainty arising from using a statistical model. The output of a statistical 18 

model for spatial modelling is usually comprised of a single probability value for each 19 

unit of the prediction surface (grid cells, slopes or terrain units). These individual 20 

probability values represent an estimated conditional mean value of the predicted 21 

probability (Hosmer and Lemeshow, 2000). Therefore, there is a prediction 22 

uncertainty or possible range, as determined by the standard error of the predicted 23 

probabilities, of probability estimates for each unit of the susceptibility map (Guzzetti 24 

et al., 2006). Estimating the standard error was analysed and presented in previous 25 

research (e.g. Guzzetti et al., 2006; Van den Eeckhaut et al., 2009; Rossi et al., 2010; 26 

Sterlacchini et al., 2011). However, the way it affects the appearance of the classified 27 

landslide susceptibility map is of interest for planning purposes as considering these 28 

prediction uncertainties might result in overlaps of different susceptibility classes. 29 

Naturally, the amount of overlapping raster cells and therefore the uncertainty in the 30 

final classified map might be dependent on the number of classes and the selected 31 

thresholds for the classification. However, the analysis of the standard error of the 32 



 11 

predicted probabilities and the prediction uncertainty analysis are independent of any 1 

class thresholds. 2 

7. P1005 and P1006: In the course of the manuscript the term “susceptibility map” is 3 

very general. The authors assume that these types of assessments are done in a regional 4 

scale with a statistical approach. This is not the case in reality. I suggest that the authors 5 

make a clear definition of the type of susceptibility map they are analysing …  6 

In the introduction a description of the different methods of preparing a landslide 7 

susceptibility map was included in the revised version (after Soeters and Van Westen, 1996; 8 

Fell et al., 2008). Fell et al. (2008) listed the best suitable scale with the respective methods. 9 

We emphasize the choice of the method according to the aimed map output scale of 1:25,000 10 

and the list given by Fell et al., (2008). For more details and the changed text in the revised 11 

version please also refer to the answer on the referees’ comment 1 on P1003 line 20-25. 12 

8. … and if their proposed method can be applied to any other type of susceptibility 13 

maps. 14 

This is a very interesting field, and we understand, that this would fit good in our discussion 15 

of the different types of quality and uncertainty. However, the analysis of the possible 16 

application of the proposed methods to other types of susceptibility mapping (heuristic or 17 

deterministic) was not the focus of this study/review. We added text to point this out to avoid 18 

misunderstandings. 19 

For the added text please see our reply to the comment 5 on P1005 line 5 – 8. The text stating 20 

that our considerations on the quality are mainly focused on statistical modeling was added 21 

there (page 1004, line 24). Furthermore, we changed the title of section 2 to be more specific 22 

“Considerations on the quality of statistical landslide susceptibility models and resultant 23 

maps”. 24 

Nevertheless, we want to give some general comments on the applicability to other types of 25 

susceptibility maps/models in this context. Assessing the model performance with 26 

independent test sets is recommended for any susceptibility assessment method. This is 27 

important in science but also for the stakeholders to know how good the model fits to the 28 

landslides that occurred in the past, assuming that the triggering and predisposing conditions 29 

have not changed significantly since. As the heuristic and deterministic methods are less 30 
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reliant on the landslide inventory at the stage of modelling the susceptibility, these methods 1 

are less dependent on the selection of landslide samples. However, in the assessment of the 2 

model performance, the selection of the landslide sample might have a clear effect on the 3 

performance measure. This could be assessed in a similar manner as the k-fold cross-4 

validation. The visualization of the prediction uncertainty might be transferred to any 5 

statistical method which provides the possibility of calculating confidence intervals. This 6 

method very specifically relates to the usage of a statistical model. However, this 7 

methodology might inspire the assessment and visualization of uncertainties e.g. of assigning 8 

different weights in heuristic susceptibility mapping, or different calibration of factors in a 9 

deterministic assessment in a similar manner.  10 

9. P1005 line 27: I suggest changing the subtitle “Quality of the statistical model”. It is 11 

not the quality of the models that should be the focus in this section (since they have been 12 

applied soundly in many other cases) but how the performance of the models and its 13 

applicability to landslide cases. This performance should be linked to the quality of the data 14 

and the uncertainties from the application. 15 

The authors are thankful for the suggestion of changing the subtitle. In order to be consistent 16 

with the other subtitles in this section we changed the subtitle to “Quality of statistical model 17 

form”. The model form uncertainty can be assessed with model performance measures. The 18 

model performance is amongst other influences dependent on the selected sample, the sample 19 

size and also on the resolution or scale of the input data. Whereas the effects of a changing 20 

sample and sample size (quality or completeness of the inventory) are addressed in the study, 21 

the analysis of the link of the performance to the quality of the data (resolution, scale) was 22 

beyond the scope of this study. 23 

10. P1006 line 15: This statement should be referenced or if not explained thoroughly. 24 

For this reason, it is suggested to define the uncertainties involved in the mapping and to 25 

classify them. Once this is done, it can be referred to this classification. 26 

We are thankful for pointing out a need for clarification. We altered this section to be more 27 

specific regarding the types of uncertainties which can be analysed to define the quality of the 28 

susceptibility map itself better.  29 



 13 

For the changes in the text please refer to the additions done to page 1006, line 15 described 1 

in the reply to the comment number 6.  2 

11. P1006 line 26 – 28: I suggest rephrasing the sentence. This is dependent on the 3 

amount of susceptibility classes and the choice of classification. 4 

The authors are thankful for the suggestion of rephrasing the sentence. We agree with that 5 

comment. The possible overlaps of susceptibility classes are strongly related to the number of 6 

classes and selected thresholds. We rephrased the sentence and added some new sentences in 7 

the revised version.  8 

For the edits please refer to our reply to comment 6 and the changes added to page 1006, line 9 

15 10 

12. P1007 line 1 -13: The authors attempt to mention the quality achieved by 11 

communication and presentation of the uncertainties. However, the paragraph is very poor 12 

and does not present something valuable for the manuscript. This is a very complex issue 13 

that the authors should discuss in more detail (if not, this should be removed or added to 14 

other section). 15 

This section was altered and moved to the discussion of the spatially varying prediction 16 

uncertainties in the discussion section of the revised manuscript. In the discussion section we 17 

use the statements from literature to underpin the benefit of analysing the spatially varying 18 

prediction uncertainties and to visualize them. Generally the discussion section 7.3 was 19 

changed substantially. Therefore, we present the new text here:  20 

Added to page 1029, line 25 21 

Some model form uncertainties within this method arise from using the lookup table 22 

for transferring the prediction standard error to all grid cells as shown by the range of 23 

resulting R². This method might be improved or substituted by a function assigning the 24 

standard errors to all grid cells.  25 

It was found that in the classified map the majority of grid cells did not change. 26 

However, there are differences between the modelling domains where some domains 27 

had larger overlaps of different susceptibility classes than others. Special attention 28 
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should be given to the low susceptibility class. Here, the highest percentage of 1 

overlapping classes and underestimation of the susceptibility were detected.  2 

The visualization of these spatially varying uncertainties is of special interest for 3 

future land-use and development planning usually performed by non-landslide experts. 4 

In the aftermath of this study each landslide susceptibility class will be related to, not 5 

legally binding, recommendations for the designation of new building areas. 6 

Therefore, a misclassification (e.g. low instead of medium susceptibility) might lead to 7 

an interpretation by the municipality or landowner that underestimated landslide 8 

susceptibility. Knowledge about the susceptibility class overlaps might outline where 9 

more caution and detailed investigations are necessary. Additionally, it also shows 10 

where no uncertainties are expected, which might help to avoid costs for slope 11 

investigations.  12 

There is also a need to communicate the research results and their quality with 13 

appropriate explanations for the local officials, environmental managers and the public 14 

to raise awareness and knowledge on it which leads to an easier understanding and 15 

incorporation of the results into the decision-making process (Brierley, 2009; Hill et 16 

al., 2013; Knuepfer and Petersen, 2002; Rogers, 2006). This analysis might aid to a 17 

good acceptance of the landslide susceptibility maps in the local governments, as 18 

instead of a fuzzy statement on involved uncertainties these are clearly shown in a map 19 

on grid cell level (Guzzetti et al., 2006; Luoto et al., 2010). Furthermore, the 20 

preparation of the susceptibility maps showing the class overlaps contributes to an 21 

easier understanding of the possible effects of the prediction uncertainties.  22 

The question if the policy makers or stakeholders are really interested in knowing 23 

more about the uncertainty is discussed conversely. The study of Brugnach et al. 24 

(2006) pointed out that the confidence in modelling results is dependent on the way 25 

the uncertainties are addressed. Policy makers were missing more information on the 26 

uncertainty of any model result. Therefore, the modelling results should be presented 27 

with a measure of uncertainty or confidence indicator (Brugnach et al., 2006). In 28 

habitat suitability modelling the visualisation of uncertainty was identified as relevant 29 

to inform decision-makers about areas with extreme error, but also about areas which 30 

are particularly well modelled (Elith et al., 2002). This openly addresses the 31 

uncertainties involved in the maps instead of giving an impression of certainty (Elith 32 
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et al, 2002). However, interviews of Klimeš and Blahůt (2012) showed that local 1 

governments do not want any information on uncertainties.  2 

Nevertheless, these uncertainties might have severe consequences on buildings and 3 

their inhabitants if an event occurred within the uncertainties of the method used to 4 

delineate the hazard zones. The converse discussion shows, that more or better 5 

communication with the stakeholders or policy makers (also during the modelling 6 

process) is necessary to learn about uncertainties and enlarge confidence into the 7 

modelling (Brugnach et al., 2006). However, the way how the uncertainties are 8 

presented to the stakeholder has to be adapted by the scientist to ensure the success of 9 

the communication. The visualization of some aspects of the quality of landslide 10 

susceptibility maps, such as the spatially varying prediction uncertainty, can enhance 11 

the communication among experts and decision-makers to facilitate informed 12 

decisions (Kunz et al., 2011).  13 

Additionally, further aspects of considering and communicating the effects of 14 

epistemic uncertainty are still open research fields in susceptibility modelling. A clear 15 

assessment of these is necessary to evaluate on their consequences on the 16 

susceptibility (or hazard or risk) map. 17 

13. P1007 Title section 3: The subtitle is very generic and does not portray the area as 18 

such. Many places in the world are heterogeneous too. Is this heterogeneity based only on 19 

the lithological factors? Then this should be included and a more concise title is suggested. 20 

In the revised manuscript a new subtitle for section 3 will be included: “Lower Austria 21 

landslide occurrence”.  22 

14. P1007 section 3: The authors should include a map and a table regarding the 23 

inventory. This will help the reader to understand the attributes and the spatial distribution 24 

of the inventory in the heterogeneous area. 25 

We understand the interest on more details on the inventory. However, the landslide 26 

distribution is presented in Table 1. The table shows the total number of landslides and also 27 

the landslide density. This is a function of number of landslides per km² and is very different 28 

for each lithological unit. A figure of the landslide inventory of the entire study area was 29 

presented in Glade et al. (2012) and will be published in a general paper about the landslide 30 
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inventory mapping on the basis of a high resolution LiDAR DTM (Petschko et al.,2013a). 1 

Considering the length and amount of figures we already have in this manuscript we prefer to 2 

not publish another inventory map here. According to the referee comment we consider that 3 

the form of the inventory is quite unclear to the reader. Therefore, we included some more 4 

text to describe the nature of the landslide inventory better.  5 

Added to page 1008, line 15 6 

While rock fall and debris flows typically occur in the southern lithology 7 

(Austroalpine Unit), earth and debris slides occur all over the province with different 8 

densities (Tab. 1), sizes and depths. Only earth and debris slides which were mapped 9 

with one point in the main scarp of each slide were within the scope of this study; 10 

recent examples of these landslide types are shown in Fig. 2. 11 

Added to page 1009, line 24 12 

However, no attributes (landslide type, estimated age, landcover, time/date of 13 

occurrence etc.) were assigned to each point. 14 

15. P1007 line 27: The authors should explain why and what is the importance of 15 

featuring the median slope angle. What influence this have in the result and what is the 16 

significance of this value in a scale like this? 17 

We are thankful for outlining the possible source of misunderstanding in this line. The median 18 

slope angle is purely used as a proxy to describe the differences in the topography in the 19 

different lithological units of the study area. We used this simple parameter, as it shows which 20 

units are rather flat, or which units are rather steep. An impression we wanted to give the 21 

reader to understand the heterogeneity of the study area better. Therefore, we also supplied 22 

Figure 2 which shows landslides in all the different settings of lithology but also topography. 23 

The text in the revised manuscript was changed accordingly: 24 

Added to page 1008, line 1 25 

The median slope angle was used as a simple proxy of the topographic characteristics 26 

to highlight the diverse conditions across Lower Austria. The median slope angle 27 

ranges from a minimum of <1° (alluvial deposits) to a maximum of 27° (Austroalpine 28 

Unit with dolostone; Tab.1). 29 
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16. P1008 line 4: Land use as mentioned in the manuscript differs among topography 1 

and lithology. Why not consider this factor? The authors mention the temporal aspect of 2 

land use, but this is not an excuse to exclude this of the analysis. Besides this, land use has 3 

a very important influence in the infiltration process. Why instead of using proxies for 4 

infiltration, not link the land use to these factors too? I suggest that the authors make their 5 

assumptions understandable regarding this and make a clear reasoning about this. 6 

We agree that land cover has an important influence on the infiltration and evaporation 7 

processes which are important for the slope stability (Crozier, 1986). A close relationship 8 

between land cover and the occurrence of landslides can usually be found by the analysis of 9 

event landslide inventories. These inventories are collected right after an event; therefore the 10 

landslides correspond to the recent land cover conditions. It is more straight forward to use an 11 

event landslide inventory with the respective land cover information than to use an inventory 12 

mapped on LiDAR data, as the absolute age of the landslides is unknown (van Westen et al., 13 

2005). Some of the mapped landslides might be very old (much older than 100 years) and 14 

some dynamic triggering conditions (e.g. land cover, rainfall) are not traceable over the entire 15 

study area anymore. Therefore, we decided to prepare a landslide susceptibility map on the 16 

basis of the rather static local terrain conditions only (Brabb, 1984; Soeters and Van Westen, 17 

1996).  18 

Land use or land cover changes are documented since the medieval but occurred also more 19 

recently throughout the province. Studies in Lower Austria (the municipality of Ybbsitz and 20 

in the Vienna Forest) have shown that land cover changes have occurred with different extent 21 

in the past (Fritz, 2005; Johann, 2005; Lettner and Wrbka, 2011). These are very different in 22 

the West of the province (Ybbsitz) from the East of the province (Vienna Forest). In Ybbsitz 23 

arable fields mainly were converted to meadows and pasture and there was also an increase in 24 

forest during 1822 to 2006 (Lettner and Wrbka, 2011). Furthermore, the influence of the 25 

ironware industry was large in this area from late mediaeval times to the mid- 19
th

 century 26 

(Lettner and Wrbka, 2011). The consequence was a widespread deforestation in this area 27 

(Lettner and Wrbka, 2011). In the Vienna Forest deforestation occurred due to the need of fire 28 

wood in the city of Vienna (Johann, 2005) and due to the expansion of settlements (Fritz, 29 

2005). However, in the 20
th

 century further deforestation was tamed to preserve the forest. In 30 

recent years the main observed land cover change in the Vienna Forest is from meadow to 31 

settlement area as the vicinity to Vienna attracted many new inhabitants (Fritz, 2005).  32 
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The influence of the landscape history and extent e.g. of the transition from forest to pasture 1 

and from pasture to forest again on the slope stability (or infiltration capacity) compared to a 2 

slope which was forested all the time is unknown in the study area. Van den Eeckhaut et al. 3 

((Van Den Eeckhaut et al., 2009b)2009) showed that landslides repeatedly re-activate under 4 

forest. Whereas it is assumed that reforestation and the regrowth of roots will increase the root 5 

cohesion and evaporation and increase the slope stability (Markart et al., 2006; Bathurst et al., 6 

2010). However, a study from the Flysch in the Spanish Pyrenees showed, that landslides still 7 

occurred in arable fields re-vegetated by shrubs or trees (Beguería, 2006a). This shows very 8 

contradictory experiences from the field and from modelling concerning the effect of land 9 

cover or land use on landslide activity, which shows the need for further research in the study 10 

area (Papathoma-Köhle and Glade, 2013). Furthermore, the time span how long such changes 11 

(like deforestation) are influencing the slope even after reforestation are not well understood 12 

and more research is necessary.  13 

This relevant data on land cover changes of the past and their influence on the slope stability 14 

in Lower Austria are not available for the entire study area. We conclude using the recent land 15 

cover in the modelling might introduce an unwanted bias into the model, as this data does not 16 

portray dynamics in past land cover changes. For more considerations on this topic we would 17 

like to refer to a publication planned at the 3
rd

 World landslide forum in Bejing 2014 18 

(Petschko et al., 2013b). 19 

We included some more text to make our decision better traceable for the reader. Considering 20 

the general length of the manuscript and the focus of the study we provide a reference in the 21 

text to our further research for more detailed information. The section 4.2 was restructured, 22 

therefore the new reference (to page and line) might be confusing in comparison with the 23 

original manuscript. Therefore we inserted the entire paragraph on land cover here: 24 

Added to page 1011, line 27 25 

Land cover data for Lower Austria was also available for this study, but was not 26 

included in the analysis. Since the ages of the landslides were not available in the 27 

inventory, it would not be accurate to associate the landslide distribution with present 28 

land cover conditions (Petschko et al., 2013b). We simply do not know how land 29 

cover had historically changed and influenced all of the landslides in this inventory, 30 

which is important to understand the changing conditions of slope stability. (Glade, 31 

2003; Beguería, 2006a; Van Den Eeckhaut et al., 2009b; Bathurst et al., 2010). For 32 
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example, areas which are forested today, might not have been forested for a long time 1 

period in the past, e.g. due to influences of mining ore in the study area (Lettner and 2 

Wrbka, 2011). Therefore, the landslide susceptibility models were prepared focussing 3 

on local terrain conditions (Brabb, 1984), which are relatively static compared to the 4 

dynamic nature of land cover. 5 

17. P1008 line 17: The choice of earth and debris slides is clear and the authors try to 6 

include hydrological factors inside the analysis which is a good point. However, one of the 7 

main triggers of this type of slides is the intensity-duration of the rainfall. How is this taken 8 

into account in this analysis? 9 

We are thankful for the positive feedback on including factors such as the topographic 10 

wetness index in our modelling. The point on considering precipitation in the model is rather 11 

challenging considering that the exact triggering conditions of the mapped landslides in the 12 

inventory are unknown. Usually convective storms or long lasting rainfall events increase the 13 

wetness of the slope and decrease the slope stability. However, reliable rainfall data available 14 

in Lower Austria only dates back to 1970 which might only cover a small part of all the 15 

triggered landslides (see also the previous comment regarding the potential age of the 16 

landslides in the inventory). Furthermore, it is questionable if the mean or max rainfall 17 

amount in this time span is an appropriate parameter to be used in the modelling. Therefore, 18 

we decided to leave out all dynamic factors in the analysis of the landslide susceptibility. 19 

Including different precipitation data in the statistical susceptibility model was beyond the 20 

scope of the presented study but surely is an interesting field of research. In the text we 21 

pointed out the type of susceptibility map more clearly. 22 

For the added text please see our reply to comment 16 with the text added to page 1011, line 23 

27. 24 

18. P1009 line 10-12: It is not clear why the authors had a LIDAR data with a 25 

resolution of 1x1, they resample it to have a final resolution of 10x10. I am certain that this 26 

loss of resolution will affect the slopes and derivatives factors. What type of resampling was 27 

done? 28 

We agree with the reviewer on the importance of stating the resampling method as this might 29 

change the data significantly. In this study we used bilinear interpolation to resample the 30 
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DTM from 1 m x 1 m resolution to 10 m x 10m resolution. All the derivatives were calculated 1 

from the DTM grid with 10 m x 10 m cell size. We are aware, that this resampling to a lower 2 

resolution affects the data and all the derivatives. However, we argue according to Van 3 

Westen et al. (2008) that using input variables with a very high resolution might have adverse 4 

effects on the final susceptibility map. The local variations captured in the LiDAR DTM in 5 

combination with the positioning of the point while mapping or randomly sampling the 6 

landslide point might not describe the more general slope conditions of landslide occurrence 7 

(Van Westen et al., 2008). However, we want to point out that analyzing the influence of 8 

input data resolution was beyond the scope of this study. Accordingly some more details were 9 

added in the text of the revised manuscript: 10 

Added to page 1009, line 9 11 

Considering the detailed resolution we have given in the ALS-DTM and the rather 12 

coarse resolution given in the soil data (50 m x 50 m) we had to find a compromise for 13 

the analysis and output of the susceptibility map. We decided an output resolution of 14 

the maps of 10 m x 10 m would be suitable to produce 1:25.000 scale maps; we are 15 

still able to take advantage of the high resolution of the topographic data but also 16 

avoid wrong signals in the modelling form very local variations in the derivatives of 17 

the high resolution DTM (Van Westen et al., 2008). Although, the exploratory 18 

variables were resampled by bilinear interpolation to a 10 m x 10 m resolution for 19 

modelling purposes, we are aware that this artificial improvement of the data 20 

resolution does not increase the data accuracy. 21 

19. P1009 4.1 Response variable: Choosing to work with a point inventory has a great 22 

influence on the final susceptibility map results, mostly when assessing fast moving 23 

landslides like debris flows. I disagree with the authors that there are small differences 24 

when choosing the main scarp or the entire landslide, this is a clear problem of scale 25 

(check also reference listed). The authors should dig into this deeper and come with the 26 

right assumption for using a point inventory. …  27 

We would like to thank the referee for pointing out some need for a more precise description 28 

of the assumptions and previous research done on the selection of points in the main scarp 29 

instead of using randomly selected points in the entire landslide polygon. We have to mention 30 

that we did not model debris flows as we modelled earth and debris slide susceptibility. 31 
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However, we agree that the effect on the susceptibility map is high if showing the probability 1 

values only. Precisely the entire interpretation of the map changes if only points from the 2 

main scarp are used within the modelling. However, what we analysed in the previous study 3 

and wanted to point out here is the difference in the final classified susceptibility map (in 3 4 

classes) using points randomly selected in the main scarp or in the entire body of the 5 

landslide. The random selection of multiple points/grid cells or one point/grid cell only per 6 

each landslide is a procedure usually done in modelling (e.g. Atkinson et al., 1998; Beguería, 7 

2006b; Van Den Eeckhaut et al., 2006; Felicísimo et al., 2012; Schicker and Moon, 2012). 8 

This is done because of considerations on avoiding spatial autocorrelation (Van Den Eeckhaut 9 

et al., 2006; Guns and Vanacker, 2012). Our results showed a comparable high model 10 

performance using either one point in the entire body, or one point in the main scarp of the 11 

landslide. Furthermore, the classified susceptibility map changed only marginally (Petschko et 12 

al., 2013c). Considering the need for mapping landslides in the entire province and restricted 13 

resources available, we decided on mapping the main scarp of landslides with one point only 14 

in the remaining study area (Petschko et al., 2013c). In this application of the inventory for 15 

deriving a classified susceptibility map with three classes we conclude that the usage of the 16 

point inventory is reasonable. Accordingly some text was added in the revised manuscript.  17 

Added to page 1009, line 24 18 

Considering the large study area and the aimed result of a susceptibility map with 19 

three classes a point inventory was preferred over a polygon inventory (Petschko et al, 20 

2013c). The decision to map one point per landslide was aimed at increasing mapping 21 

efficiency, avoiding uncertainty related to mapping landslide polygon boundaries, 22 

reducing spatial autocorrelation of the case samples (e.g., landslides) and providing 23 

equal treatment of small and large landslide samples (Carrara et al., 1991; Atkinson et 24 

al., 1998; Van Den Eeckhaut et al., 2006; Heckmann et al., 2013; Petschko et al., 25 

2013a). A comparison of sampling with either a single point for the main scarp or a 26 

random point anywhere in a landslide polygon was conducted by Petschko et al. 27 

(2013c). They observed only small differences between the predictive model 28 

performances and classified susceptibility maps for the two landslide sampling 29 

schemes. 30 
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20. … Another difficulty regarding this is the slide mechanism and its retrogressive 1 

failure. Is the point inventory enough then? 2 

A statistical model itself is always a snapshot in time and can not include retrogressive failure. 3 

The statistical model takes into account what has happened so far. Different approaches of 4 

sampling landslide information are available including the identification of the pre-hillslope 5 

gradient (Atkinson and Massari, 1998; Van den Eeckhaut et al., 2006), focus on the main 6 

scarp only (Begueria, 2006b; Van den Eeckhaut et al., 2006) or on the area upslope from the 7 

main scarp (Suzen and Doyuran, 2004; Yesilnacar and Topal, 2005). However, the process 8 

and extent of retrogressive failure is very depending on the local slope conditions 9 

(hydrological and soil mechanical processes, soil thickness, material, etc.). Therefore, it 10 

would be necessary to know the location and magnitude of an occurring landslide to analyse 11 

this with a deterministic or physical slope stability model. Concluding, it is not a matter of 12 

which type of inventory is used in the analysis (point or polygon) but rather a question of the 13 

selection of models and the scale of the analysis if a retrogressive failure can be taken into 14 

account.  15 

Considering the general length of the manuscript no text was added regarding this comment.  16 

21. P1010 4.2 Explanatory variables: How is it taken into account a debris flow that 17 

happens several times in the same channel? 18 

In this study only the susceptibility of debris slides and earth slides was analyzed, not of 19 

debris flows. Issues of reactivation or of magnitude or frequency were not in the focus of this 20 

study. No changes made. 21 

22. P1011 line 8: Infiltration and run-off are closely related to land use also. Why only 22 

use the lithological factors? Is this accurate enough? 23 

We agree with the comment of the referee that infiltration and run-off are closely related to 24 

land use. However, we want to point out that we did not directly use the lithological map in 25 

the modelling. We used the lithology to split the study area into more homogeneous zones, 26 

which allow for a better characterisation of the area with separate susceptibility models. This 27 

partition of the study area resulted in a better representation of the predisposing and 28 

preparatory factors of landslides in each unit. Applying this partitioning results in a more 29 
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accurate susceptibility map compared to a basic approach. Regarding the land use parameter 1 

see reply to comment 16. 2 

23. P1011 line 15-28: Is this relevant for debris flows? How do the tectonic arrange 3 

affects this flows in reality? Mention some references regarding this. 4 

We would like to point out that this study is dealing with debris and earth slides and not with 5 

debirs flows. The influence of the presence of tectonic fault lines and nappe boundaries on 6 

earth and debris slides was described on page 1011 in the paragraph from line 14 to line 24 in 7 

the original manuscript. References on the possible influence of fault lines on landslides 8 

(Crozier, 1986) and of nappe boundaries on the presence of boundary springs (Schnabel, 9 

1985) were given in the text. 10 

24. P1012 line 1: Why not used the generated lithological map to make this 11 

portioning?? Why used a map that is not use the assessment?  12 

Unfortunately we have to state that we are not sure what our referee wanted to suggest in this 13 

comment. We assume that the connection of the described lithological map to the 14 

homogeneous modelling domains is not clear or misunderstood. In our model design we used 15 

the lithological map, checked it for units which did not contain any landslides or which show 16 

similarities regarding their geotechnical and topographical characteristics and merged the 17 

respective units (for more details please refer to section 5.1). We did some changes in the text 18 

of the revised manuscript.  19 

Added to page 1012, line 1 20 

The heterogeneity of geotechnical and topographical characteristics over a study area 21 

should be considered when modelling landslide susceptibility (Blahut et al., 2010; Lee 22 

et al., 2008). Modelling separately in lithology units is one approach to address this 23 

heterogeneity (Petschko et al., 2012). This approach avoids the use of interaction 24 

terms to represent lithology-dependent processes and preparatory factors, and thus 25 

facilitates easier interpretation of the models. Fitting the model with individual 26 

modelling domains based on the lithology units is expected to improve overall 27 

predictive performance by accurately representing the diversity of geotechnical 28 

conditions across the study area (Blahut et al., 2010; Petschko et al., 2012; Trigila et 29 

al., 2013). 30 
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Accordingly, the study area was divided into 16 modelling domains based on a 1 

simplified 1:200,000 lithological map (Fig.1; Schnabel, 2002; Bell et al., 2013). The 2 

lithological map gives details on the parent material available for soil formation. This 3 

determines the geotechnical characteristics on a scale of 1:200,000. Data on the parent 4 

material was used as a proxy for these characteristics, as no appropriate geotechnical 5 

data covering the entire study area was available. Lithology units with no observed 6 

landslides were merged with geotechnically similar units to create homogenous 7 

modelling domains (Tab. 1). The final susceptibility map of the province was obtained 8 

by merging individual susceptibility maps. 9 

25. P1012 Modelling heterogeneous areas: If the area is so heterogeneous and the area 10 

is already subdivided in homogenous areas, why not make the analysis in the single 11 

homogenous divisions. This will make the assessment more accurate according to Blahut 12 

2011, also the GAM model will fit better the data. Can the authors explain this? 13 

We agree on the possible source of misunderstandings found in this section. The lithological 14 

units were used to represent the homogenous areas and therefore to split the study area in 16 15 

modelling domains (please refer to line 21 on page 1012 in the original manuscript). These 16 

were independently analysed regarding their landslide susceptibility, transferability, 17 

consistency and spatially varying prediction uncertainties as presented in the original 18 

manuscript. The results of the presented study show, that within these domains each domain 19 

was fitted with a different set of variables. This strengthens the assumption that the division 20 

into modelling domains is beneficial for the better characterisation of the susceptibility in the 21 

study area. To clarify this section we changed the texted and included the reference to Blahut 22 

et al (2010) in the revised version.  23 

For the changes please refer to our reply to comment 24 and the presented added text. 24 

26. P1013 Generalized additive model: I am not sure if I missed it inside the manuscript 25 

but it is still not clear to me how was the overfitting of the model approached in this 26 

analysis. Can the authors mention the model’s functions on a table? 27 

As explained in section 5.2, overfitting is avoided or at least reduced through the selection of 28 

nonlinear versus linear data transformations based on the AIC, which penalizes more complex 29 

and flexible models. While other penalization or shrinkage procedures are available in the 30 
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statistical and machine-learning literature, the use of the AIC is well established in the context 1 

of likelihood-based model fitting. References are included in the article, e.g. Hand (1997). 2 

Section 5.2 also displays the general functional representation of the GAM. The possibly 3 

nonlinear, spline-based transformation functions used in the 16 different GAM models are not 4 

shown in the paper due to our focus on predictive performance and the limited space. 5 

27. P1016 line 6: What is the point of this? The results are already predisposed. 6 

This comment refers to criticism of Guzzetti et al. (2006) on the spatial partitioning of the 7 

landslide data into training and test sample. Their discussion states “splitting the study area in 8 

to two adjacent sub-areas can be problematic” as this approach assumes similar characteristics 9 

of the independent variables (Guzzetti et al., 2006). However, the statement of Guzzetti et al. 10 

(2006) is more understood as a word of caution, pointing out the possible pitfalls of spatial 11 

partitioning of the study area. Therefore, this sentence was written, to explain that within the 12 

domain similar variable characteristics are present. Concluding we find that our sentence is 13 

not well understood without additional information on the statement of Guzzetti et al. (2006). 14 

This sentence was moved into the discussion section on the spatial cross-validation.  15 

28. P1016 line 7: The authors should give relevant references in this part of the 16 

manuscript. 17 

According to the referee’s comment relevant references were inserted in the text of the 18 

revised manuscript: 19 

Added to page 1016, line 7 20 

We use non-spatial and spatial k-fold cross-validation to assess each model’s 21 

predictive performance as a measure of the model’s non-spatial and spatial 22 

transferability (Kohavi, 1995; Townsend Peterson et al., 2007).  23 

29. P1017 Section 5.4: The authors should describe the meaning of the transferability 24 

and consistency indexes in a way that the reader is familiar with these terms. 25 

According to your suggestion more details on the meaning of the transferability and 26 

consistency indexes were inserted into the revised manuscript.  27 

Added to page 1017, line 2 28 
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The non-spatial and spatial transferability were expressed by the interpretation of the 1 

estimated interquartile range (IQR) of the AUROC values resulting from the non-2 

spatial and spatial cross-validation of each modelling domain. The lower the estimated 3 

IQR the better we considered the non-spatial and spatial transferability of the model 4 

within the modelling domain. Sample size differences among modelling domains 5 

result in differences in sampling variability of AUROC estimators, which then has an 6 

influence on the IQR of AUROC among cross-validation repetitions. In order to 7 

account for this contribution to sampling variability and be able to provide a 8 

transferability measure that was comparable among modelling domains, the IQR has 9 

to be adjusted according to the sample size. 10 

Added to page 1017, line 17 11 

Furthermore, the results of the non-spatial and spatial cross-validation provide an 12 

estimate on the variable importance and the thematic consistency in each modelling 13 

domain. 14 

30. P1019 line 13 to 18: I suggest including a figure regarding this. 15 

The quoted section describes the methodology of the lookup table of the standard errors. The 16 

lookup procedure is only an auxiliary step or workaround to estimate prediction standard 17 

errors. Given the limited space and the technical nature of this step, we feel that the inclusion 18 

of an additional figure (e.g., scatterplot showing model fit) is not warranted. We added the 19 

resulting R² achieved by using this method to transfer the standard error to the grid cells in 20 

each modelling domain in Table 3. Accordingly, a short text describing the resulting R² values 21 

was included in the revised version of manuscript. 22 

Added to page 1024, line19 23 

The R² resulting from using the lookup table to transfer the standard errors to all grid 24 

cells are ranging from 0.51 (in the Mélange Zone) to 0.9 (in Loess, Loam; Tab. 3). In 25 

the Flysch Zone the computed R² was 0.82 which is only slightly better than in the 26 

Bohemian Massif (0.79). 27 
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31. P1022 line 10-14: Explain the reason why these reductions give better values but 1 

decrease the transferability of the model. … 2 

As described in section 5.4 the transferability of a model is better the smaller the interquartile 3 

range (IQR) of the AUROC values estimated in the k-fold cross-validation is. Therefore, an 4 

increasing IQR with decreasing sample size refers to a lower transferability. The 5 

interpretation of the IQR and the transferability is explained in section 5.4. No changes made. 6 

32. … P1022 Section 6.3: This is clear since most of the topographic influence of the 7 

factors. How can this be overcome in this particular analysis? 8 

While we agree that the importance of topographic variable and in particular slope angle as 9 

predictors is not a big surprise, we would like to keep this general statement unchanged before 10 

entering into a more detailed review of variable importance in different geological units and 11 

across different cross-validation repetitions. No changes made. 12 

33. P1024 line 1-5: I suggest including a table of errors. 13 

According to the suggestion a table of the logit-scale standard error (the minimum, maximum 14 

and range) was included in Table 3. 15 

34. P1025 line 4-15 and P1026 line 5-10: The authors should clarify how this influences 16 

the final susceptibility map and how to avoid this. 17 

The uncertainty assessment performed within this study assesses how the uncertainty may 18 

affect the reliability of the map. The influences of the spatially varying prediction 19 

uncertainties on the final susceptibility map were analysed in this study and have been shown 20 

by an example in Fig. 6 and in the results section 6.4 in the original manuscript. Furthermore, 21 

the influences of a smaller sample size on the AUROC value and the transferability of the 22 

model were shown in section 6.2. The effect on the final susceptibility map was not analysed 23 

directly. However, a lower AUROC value or a higher interquartile range of the AUROCs give 24 

a comparably low model performance and transferability. Both analyses showed that larger 25 

sample sizes are beneficiary to reduce the uncertainty related to sampling variability. 26 

However, the avoidance of small sample sizes is a challenging task, as it could only be done 27 

by increasing the landslide sample size (e.g. larger study area). This might not be possible in 28 

some regions as no additional data on landslides (or data sources for mapping landslides) is 29 



 28 

available. Another scenario might be that the region is just less susceptible so that only a few 1 

landslides occurred. Instead we propose to add a clear analysis, presentation and discussion of 2 

the uncertainties involved in the performed susceptibility modelling. 3 

Added to page 1030, line 29 4 

However, increasing the sample size can only be done by enlarging the landslide 5 

inventory (e.g. by selecting a larger study area). This is challenging, as in some 6 

regions no additional data on landslides (or resources for mapping landslides) might be 7 

available. 8 

35. P1026 Section Discussion: The discussion section should be more critical to the 9 

work and the difficulties found on it. So far it seems to replicate Section 2 with the 10 

assumptions made, the methodology used and some results. I suggest that this section be 11 

modified to include how the work can improve the quality of susceptibility maps and its 12 

transferability to other cases. 13 

The discussion was revised according to the referee’s comment. For the changes on section 14 

7.3 please see our reply to comment number 12. All other changes are presented here. In order 15 

to provide a traceable text we decided to insert the entire sub-sections 7.1, 7.2 and the newly 16 

introduced sub-section 7.4. 17 

Added to line 1025, line 18 18 

Practical challenges in this study arise from the size of the study area and the intended 19 

output map scale of 1:25,000. The size of the study area brings along some limitations 20 

regarding the availability of data sources that offer a full spatial coverage and a 21 

reasonable map scale. This introduces a number of parametric uncertainties into the 22 

modelling. Generally a complete, unbiased inventory would be desirable, as for 23 

example a full inventory that was mapped directly in the aftermath of a landslide event 24 

(single landslide or multiple landslides triggered at the same time) in the area of the 25 

susceptibility map (Van Westen et al., 2008). This would allow for including land 26 

cover or precipitation data in the modelling which might be helpful to learn even more 27 

about the landslides in the area and to build scenarios on future landslide susceptibility 28 

(or hazard / risk; Begueria, 2006b; Tarolli et al., 2011). However, a complete 29 

inventory is rarely available. Particularly for historical inventories the level and type 30 

of completeness is unknown while it is known that they are generally incomplete 31 
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(Malamud et al., 2004). Even a substantially complete inventory, which would be 1 

useful in statistical modelling as it includes a substantial fraction (random sample) of 2 

all landslides at all scales, land use types, lithological units or slope angles, cannot be 3 

reached for historical inventories (Malamud et al., 2004). This origins from the 4 

observation that landslides and their visibility on aerial photographs or other base 5 

maps (e.g. hillshades derived from airborne laser scanning DTMs) are highly 6 

influenced by new landslides, reactivation, erosion, land use type and anthropogenic 7 

activities (Bell et al., 2012; Malamud et al., 2004; McCalpin, 1984; van Westen et al., 8 

2008). Furthermore the mapping and identification of landslides is highly dependent 9 

on the experience and knowledge of the investigator (Van Westen et al., 1999; 10 

Ardizzone et al., 2002; Harp et al., 2002). If these influences on the completeness are 11 

not random they might introduce a bias in the inventory and furthermore in the 12 

sampling which results in a model bias or systematic modelling error. 13 

In our study area it is assumed that the inventory is not complete as it originates from 14 

recent data sources (not multi-temporal) only and the visibility of landslides in the 15 

ALS-DTM or orthophoto is influenced by human impact depending on the land use 16 

type (Bell et al., 2012). Furthermore, a drawback is that no information on the time of 17 

occurrence of the landslide is available. However, the type of incompleteness was not 18 

analysed for the entire study area. Therefore, it is not clear if the missing landslides 19 

are missing completely at random or are biased toward absence in certain land uses or 20 

lithological units. The implications of an incomplete inventory on the model 21 

performance (shown by the AUROC value) were estimated by performing the 22 

repeated k-fold cross-validation using training and test sample. The results show rather 23 

high AUROC values for most modelling domains, which indicates that even with an 24 

incomplete inventory (training sample) the prediction of landslides of the test sample 25 

was successful for most cases. However, sample size is of importance for the model 26 

performance. For the discussion of this please see section 7.4.  27 

7.2 Quality of statistical model 28 

7.2.1 Study design to meet the heterogeneity of the study area 29 

Observed variable-selection frequencies showed that different explanatory variables 30 

were relevant in different domains, which provides additional justification to the 31 

decision to model susceptibility in each modelling domain separately. Additionally, 32 
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not only the different choice of the variables is important but also the way the 1 

variables are fitted or smoothed according to the sample in the respective domain. 2 

Previous studies showed that within each lithological unit landslides occur at different 3 

slope angles (Blahut et al., 2010; Muenchow et al., 2012; Petschko et al., 2012). 4 

Similar differences within lithological units or terrain types might be present for other 5 

explanatory variables as well, as the geomorphic and geologic characteristics change 6 

(Lee et al., 2008). Facing this, our study design gives much more flexibility to 7 

represent the characteristics of the study area. Furthermore, it incorporates information 8 

on lithology by adjusting the odds of the prediction with the sampling rate of cells in 9 

each lithological unit. 10 

However, one may argue that with this approach problems occur at the boundaries of 11 

the lithological units. Inaccuracies in the delineation of the lithological map of the area 12 

have effects on the model results as the landslides might be assigned incorrect 13 

lithological information. This may lead to an underestimation of effect sizes as data 14 

from different (true) lithological units would be mixed. Similar mixing effects may 15 

occur for quantitative predictor variables as well, for example as a function of 16 

positional accuracy for scale and resolution. In regression this effect is known as 17 

dilution, which may introduce a bias of estimated regression coefficients toward zero 18 

(Frost and Thompson, 2000). As this would also occur using the lithological map as a 19 

factor instead of as a mask for partitioning the study area, the boundary inaccuracies 20 

are not only a problem in the applied study design. 21 

7.2.2 Spatial and non-spatial cross-validation 22 

We assessed the model form uncertainty by assessing a model performance estimate 23 

by spatial and non-spatial cross-validation. Cross-validation estimation of a model’s 24 

predictive performance is a crucial step in predictive modelling because estimation on 25 

the training set is always too optimistic (Hosmer and Lemeshow, 2000; Brenning, 26 

2005). Cross-validation results in bias-reduced performance estimates as the test 27 

partitions used in each repetition do not overlap with the training sample (Brenning, 28 

2005). In particular spatial cross-validation is recommendable for spatial data, which 29 

may be subject to spatial autocorrelation (Brenning, 2005; Brenning 2012a).  30 

The median AUROC values estimated by spatial and non-spatial cross-validation were 31 

generally similarly high in this study. However, the median AUROC values and the 32 
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transferability index clearly showed that non-spatial cross-validation provided a more 1 

optimistic or even over-optimistic assessment of the model performance and 2 

transferability in contrast to spatial cross-validation. Therefore, spatial and temporal 3 

cross-validation should be preferred for performance estimation (Chung and Fabbri, 4 

2008)(Chung and Fabbri, 2008). While spatial performance and transferability do not 5 

necessarily reflect a model’s predictive performance in the time domain, they provide 6 

a more realistic assessment of its ability to generalize from the available data than 7 

non-spatial approaches (Brenning, 2005).  8 

The spatially and non-spatially least transferable models in this study were associated 9 

with domains that had the smallest sample sizes. The relationship of sample size on 10 

predictive abilities has also been shown in other spatial modelling studies (Stockwell 11 

and Peterson, 2002; Hjort and Marmion, 2008). However, we believe that the cases of 12 

high variation in AUROC values may be also related to the cross-validation sampling 13 

variation as indicated by the difference between Tsp and lower Tnsp, and possibly the 14 

proportion of stable and unstable terrain in a modelling domain.  15 

Heterogeneity of landslide conditions (e.g. related to topography or land use) in the 16 

cross-validation samples is more likely to occur if samples are partitioned spatially, 17 

such as the case in spatial cross-validation. Here, similar characteristics of the 18 

explanatory variables in both training and test sample are assumed and necessary 19 

(Guzzetti et al., 2006). If this assumption is not met by the data (e.g. a rock type or 20 

land use class is missing in the test sample) the transfer of the fitted model to the test 21 

sample and the estimation of the model performance are difficult (or impossible) 22 

(Guzzetti et al., 2006). In our study some model domains might have high contrast 23 

between stable (e.g., large flat areas) and unstable (e.g., steep areas) terrain which 24 

gives potential for greater variation of sampled terrain conditions; it may be possible 25 

that in some samples one terrain condition is overrepresented relative to others. The 26 

sampling strategy may be improved further by masking low-lying flat areas that are 27 

not typically susceptible to landslides (Van Den Eeckhaut et al., 2009a; Goetz et al., 28 

2011). Consequently, the sample may have more potential to capture the 29 

differentiating conditions of stable and unstable terrain in an area that is generally 30 

susceptible to landslides (e.g., steep hillslopes). This might lead to a smaller variation 31 

in the AUROC values. 32 
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The high importance of topographic variables in the susceptibility modelling goes 1 

along with findings in other studies (Guzzetti et al., 2006; Begueria, 2006b; Van 2 

Westen et al., 2008; Guns and Vanacker, 2012). However, it was rather surprising that 3 

the soil data on permeability and void space was not selected more often during the 4 

stepwise-variable selection. This might be related to the poor resolution of the soil 5 

data (50 m x 50 m) and to the usage of topographic data as a proxy for hydrological 6 

and soil characteristics (soil moisture and thickness). A strong correlation between the 7 

topographic wetness index and soil characteristics was found amongst others by 8 

Seibert et al. (2007). Furthermore, the higher resolution of the topographic variables 9 

might be of advantage for better describing the local conditions of landslide 10 

susceptibility.  11 

Generally, the usage of rather static data in the modelling was a necessity resulting 12 

from the available landslide inventory. However, this does not give the possibility to 13 

include dynamic data on triggers into the modelling or to design scenarios of future 14 

landslide susceptibility considering land cover or precipitation change. A clear source 15 

of model form uncertainty is the concept of uniformitarianism in modelling. This 16 

implies that the predisposing and triggering factors of landslides do not change in 17 

future. However, natural variability of landslide triggering mechanisms and also of the 18 

climate system might cause future changes. Currently, the influence of climate change 19 

on current or future landslide activity is debated. However, no clear evidence on these 20 

possible future changes was found in many regions (e.g. Crozier, 2010; Huggel et al., 21 

2012). Additionally, it might be possible that the most important data set explaining 22 

the susceptibility might still be missing. This might happen although expert 23 

knowledge on geomorphology was applied in selecting geomorphological relevant 24 

data. Moreover, it has to be stated that this type of susceptibility map was designed for 25 

main scarps of landslides. A classified map might cover the possible runout of 26 

landslides but by definition does not show how the initiated landslides might move 27 

downslope and endanger further areas (Demoulin & Chung, 2007). 28 

Whereas a very strong thematic consistency was generally found for domains with a 29 

large sample size and sampling rate, domains with small sample size and rate showed 30 

a high variability in the variable-selection frequencies which gave a weak thematic 31 

consistency. Therefore, the weak thematic consistency might also be associated with a 32 
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poor spatial and non-spatial transferability, both originating from a small sample size 1 

and a small sampling rate. This relation was stronger for the spatial cross-validation, 2 

while the thematic consistency from non-spatial cross-validation was unrelated.  3 

Added to page 1030, line 29 4 

7.4 Considerations on sample size  5 

Summarizing the previously discussed findings some considerations on a minimum 6 

sample size might be possible. While the transferability index is less strongly related 7 

to sample size or sampling rate the thematic consistency index shows a stronger 8 

relationship to them. Generally, larger sample sizes and sampling rates result in better 9 

thematic consistency and transferability of the model. Furthermore, the minimum 10 

standard error of the prediction was lower with larger sample size (Table 3).  11 

The effect of a reduced sample size on the median and interquartile range AUROC 12 

values was assessed in the Flysch domain. We found that the median AUROC 13 

remained satisfactory high but decreased as sample size decreased, while the 14 

interquartile range of the AUROC increased. Even with the smallest sample size the 15 

model still achieved a good discrimination between landslide and non-landslide cells 16 

according to the median AUROC value. Summarizing the results, a minimum sample 17 

size with a sum of around 400 slide and non-slide cells might be recommended for the 18 

methods applied in this study. This size leads to an acceptable transferability and 19 

thematic consistency of the model in spatial cross-validation. However, examples 20 

from successfully fitting a susceptibility model with smaller sample sizes (10 21 

landslides with 15 cells each in an area of 177km²; Demoulin and Chung, 2007) give a 22 

very contrasting result. Furthermore, the sample needs to be substantially complete 23 

which might be difficult to estimate for small samples (Malamud, et al. 2004). 24 

However, increasing the sample size can only be done by enlarging the landslide 25 

inventory (e.g. by selecting a larger study area). This is challenging, as in some 26 

regions no additional data on landslides (or resources for mapping landslides) might 27 

be available on reasonable costs.  28 

This study showed that the general trends found for sample size and sampling rate do 29 

not apply for all modelling domains. Therefore, we highlight that the resulting quality 30 

estimates (transferability index, consistency index and prediction uncertainty) might 31 

additionally be dependent on a combination of the domain size and the landslide 32 
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density (landslides per km²). Also, dependencies on local terrain conditions and their 1 

homogeneity in the modelling domain might exist.  2 

Moreover, the geomorphic plausibility of the susceptibility map has to be analysed. 3 

Previous studies found that high performance measures do not always guarantee high 4 

geomorphic plausibility of the map (Bell, 2007; Trigila et al., 2013). It might be 5 

possible that with a smaller sample size the geomorphic plausibility of the map is 6 

lower. However, the influence of a small sample size on the geomorphic plausibility of 7 

the susceptibility map is unclear. Nevertheless, analysing this was beyond the scope of 8 

this study. 9 

36. P1031 Section Conclusions: The conclusions are poor and do not reflect the results. 10 

This arises the question about the credibility of the created susceptibility map. Land use 11 

and the triggering effect are not considered in a correct manner…. 12 

Regarding the comment on the incorrect dealing with land use or land cover and precipitation 13 

data in our study, we have to disagree with the referee. We argue that given the available 14 

landslide inventory we had no other choice than not including dynamic data in the 15 

susceptibility assessment. This was pointed out in our previous replies to comments number 16 

16 and 17. While this might be a clear limitation of the map, it has to be kept in mind that the 17 

resulting landslide susceptibility map is still showing where landslides might occur in future 18 

given the local terrain conditions. This might be assured considering the strong influence of 19 

slope angle as a predisposing factor described in theory and the results of the variable 20 

importance. Beside this the conclusion was completely rewritten and extended so that it now 21 

also reflects the results. 22 

Added to page 1031, line 1 23 

High quality of landslide susceptibility maps is defined by the low aleatory and 24 

epistemic uncertainties involved in the susceptibility modelling. This was analysed in 25 

terms of landslide susceptibility model performance and spatially varying prediction 26 

uncertainties of the final classified susceptibility map. The analysis gives an overview 27 

and some estimates on the epistemic and aleatory uncertainties involved in statistical 28 

susceptibility modelling. However, the effect of the propagation of all the single 29 

uncertainties on the final map and subsequently to hazard and risk maps has to be 30 

analysed further. Considering the present results in high model performance, analysis 31 
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and visualization of prediction uncertainties the applied model and resulting classified 1 

landslide susceptibility map are regarded to be of high quality. 2 

The applied study design with modelling in the different domains provides a high 3 

flexibility for representing the characteristics of the heterogeneous study area. 4 

Opposed to single hold-out validation the repeated k-fold cross-validation provides a 5 

measure on the precision of the estimator and is independent of the one (random) test 6 

sample. The spatial cross-validation gave a more realistic assessment of the model 7 

performance and spatial transferability from the available data than non-spatial 8 

approaches. This aids as an estimate on the model form uncertainty, which is 9 

considered to be low. 10 

A recommendation on an appropriate minimum sample size might be given 11 

considering the presented analysis in different modelling domains and the tests on 12 

reducing the sample size. According to the results the larger the sample size the better 13 

is the transferability and thematic consistency. Therefore, also the quality of the 14 

statistical model form increases with sample size. However, not all modelling domains 15 

follow this trend. This might be related to a combined influence of the heterogeneity 16 

or homogeneity of the local terrain conditions, the size of the domain and its landslide 17 

density. A minimum sample size of around 400 slide and non-slide cells (200 each) 18 

might be recommended for the methods applied in this study.  19 

Only rather static data on local terrain conditions could reasonably be included in the 20 

analysis given the landslide inventory, with no known landslide age. The stepwise 21 

variable selection resulted in a satisfactory thematic consistency. Among the 22 

geomorphologically relevant variables, topographic variables were selected with a 23 

higher frequency than soil variables. This might be related to the spatial resolution of 24 

the respective data. However, this result goes along with comparable studies having 25 

topographic variables as the most frequently selected variables. The final landslide 26 

susceptibility map gives a good representation of the landslide susceptibility based on 27 

topography although the map does not include possible landslide triggers.  28 

Regarding the susceptibility class uncertainties we conclude that the majority of the 29 

study area is not affected by class uncertainties. Special attention has to be drawn to 30 

possible overlaps of the low and medium susceptibility class in the predicted 31 

probability map and the map of the upper confidence limit. A misclassification in the 32 
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low class might result in an underestimation of the susceptibility. This might have 1 

adverse effects on the municipality or landowner if the recommendations for the 2 

assignment of building areas might not be restrictive enough.  3 

We discussed that there is a need of assessing, minimizing and communicating 4 

uncertainties involved in susceptibility modelling. The analysis results need to be 5 

communicated in an understandable manner to the stakeholder to allow for informed 6 

decisions instead of giving an impression of certainty. A possible example was shown 7 

by the visualization of the prediction uncertainty and its effects on the classified 8 

landslide susceptibility map.  9 

37. … Meanwhile, the other factors chosen are mainly dominated by the slope. Is it 10 

surprising that the slope has the biggest influence on the results?... 11 

Van Westen et al. (2008) and surely also other authors stated that slope gradient (or here 12 

called slope angle) is the most important factor in landslide susceptibility and hazard 13 

assessment. In our analysis we had the opportunity to analyse if slope is still the most 14 

important factor given all the other variables available in our study. We were not very 15 

surprised that our results showed exactly that. However, it is also promising for a good model 16 

and variable selection algorithm that the result could meet our presumptions. Much more 17 

interesting for us was which other variables would show a high importance and if rather 18 

newly used derivatives such as catchment height or the convergence index were worth being 19 

introduced. This was assured considering the results on the variable importance gave a high 20 

selection frequency of both variables. However, a detailed analysis of the benefit or drawback 21 

of introducing or neglecting new variables in terms of its effect on the model performance 22 

was not analysed as this was beyond the scope of our study. This was indirectly covered by 23 

using a stepwise variable selection algorithm and the AIC criterion for identifying which 24 

variables are contributing to a low AIC and low complexity of the model.  25 

38. … How to include the propagation of uncertainties during the analysis? The papers 26 

makes the susceptibility assessment feels like is not worth to use it for a decision making 27 

process. …  28 

This study was focussed on the analysis of the uncertainties resulting from the usage of the 29 

statistical model and did not take into account any propagating error of epistemic or aleatory 30 
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uncertainties. This of course contributes to the overall uncertainties involved in the 1 

susceptibility map and would be very interesting to analyse in a further study, but the focus of 2 

this study was the analysis of the uncertainties resulting from the modelling with a statistical 3 

model taking into account the standard error of the predicted probability of landslide 4 

susceptibility. This will be pointed out more clearly in the revised manuscript. 5 

Different methods for the propagation of uncertainties are reported in literature. However, 6 

these mainly work with a probabilistic (Bayesian) approach (Hill et al., 2013). Therefore, it is 7 

not straight forward how to include the standard errors of the prediction in analysing the 8 

propagation of uncertainties. While there are many study designs available for the 9 

probabilistic analysis of aleatory uncertainties, there is also still a need for further research on 10 

the assessment of epistemic uncertainties and epistemic uncertainties with the presence of 11 

aleatory uncertainties (Rougier and Beven, 2013). This analysis could be complementary to 12 

the presented study. However, this was beyond the scope of this study. 13 

39. … It arises the question: is it worth to make models more complicated or to simplify 14 

them (since mostly the same results will be obtained) in order to make them understandable 15 

and easier to communicate. 16 

As the development of new technology and computation resources are constantly available, 17 

we state that it is always worth to consider new, maybe more complicated, methods or models 18 

in order to be able to better represent the nature of the analysed process. As we did not 19 

perform a comparison of the GAM with methods which might be considered as simpler we 20 

cannot state if really the same results would be obtained. A study comparing the GAM to 21 

generalized linear models (logistic regression) showed that the resulting AUROC and 22 

sensitivity at 90% specificity values were significantly better using the GAM than using 23 

logistic regression (Goetz et al., 2011).  24 

However, we would like to point out that this study is not aiming to allow easier 25 

communication of the models themselves but to enhance the communication on uncertainties. 26 

This communication has to take place to allow for informed decisions of the decision makers. 27 

It can be enhanced or aided e.g. by visualizing the prediction uncertainty in a map. Therefore, 28 

these aspects of uncertainty need to be analysed first, so that they can be communicated later. 29 

 30 
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40. Table 1: What is the point of adding a median slope angle? Is this relevant to the 1 

final assessment? …  2 

Please refer to our reply to comment 15. The median slope angle is not directly relevant to the 3 

final assessment. It was only used as a simple measure to describe the topographic 4 

heterogeneity of the study area. 5 

41. … As mentioned in the paper, these are geotechnical parameters but I can not see 6 

any type of geotechnical parameters (i.e. strength parameters) but just a lithological 7 

description. …  8 

Unfortunately no detailed data set on geotechnical properties (e.g. friction angle, cohesion or 9 

specific weight) covering the entire area is available. This data is only available very locally 10 

where detailed soil analysis was performed in the context of a slope stability survey. 11 

However, it can be stated, that the geotechnical parameters are determined by the parent 12 

material available for the soil formation. Therefore, we took the material of the lithological 13 

unit as a proxy for the geotechnical characteristics predominant in this unit.  14 

We added some more details in the revised manuscript to clarify this.  15 

Added to page 1012, line 22 16 

The lithological map gives details on the parent material available for soil formation. 17 

This determines the geotechnical characteristics on a scale of 1:200,000. Data on the 18 

parent material was used as a proxy for these characteristics, as no appropriate 19 

geotechnical data covering the entire study area was available. 20 

42. … Besides this the table is confusing and not easy to grasp. For example, there are 21 

more landslides in a 12.6 degree median slope than a 20.2 degree median slope and the one 22 

with 16.6 degrees has very few. Problem arises when looking at the density, there are 4.27 23 

(density) slides in a slope of 4.8 degrees which is a fine sand silty marl but there are 2.08 24 

(density) in 20.2 degree limestone, marl and sandstone. I suggest adding more relevant 25 

information to the table. 26 

This table was included in the manuscript to show the heterogeneity of the study area and of 27 

some predisposing conditions of landslides in the area. Landslides were mapped in the entire 28 

area and therefore we are confident that this table is representative for the actual distribution 29 
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of landslides in the study area. As stated by the referee a high landslide density is found in 1 

areas with a median slope angle of 4.8 degree while areas with a much higher median slope 2 

angle (20.2 degree) show a much lower landslide density. This can mainly be traced back to 3 

the different predominant material and its weathering products in the different lithological 4 

units. These details emphasize the need for fitting the model in the different modelling 5 

domains. Therewith, it is much easier and straight forward to consider the different 6 

predisposing conditions in the lithological units. No changes made.  7 

43. Table 2: Once again, this seems to be a topographic susceptibility map only 8 

influences by the topography (according to the table values). Hydrological factors can be 9 

almost discriminated while in reality this is a very important factor in terms of triggering 10 

and soil conditions. I suggest revising this carefully.  11 

Due to the available landslide inventory we decided to not include any dynamic data (land 12 

cover or precipitation) in the modelling of the landslide susceptibility. This was addressed 13 

more thoroughly in our reply to comment 16 and 17.  14 

This table shows the results of the stepwise variable selection applied in our study. Therefore, 15 

the variable selection can be considered as rather objective and not influenced by any 16 

subjective expert knowledge. The case that the soil data was not selected as often as it would 17 

be expected from the expert point of view might be related to the poor resolution of the soil 18 

data. Furthermore, we argue that the topographic data (slope, topographic wetness index, 19 

catchment height and convergence index) might be a very good proxy for hydrological and 20 

soil conditions in the field (as shown by Seibert et al., 2007). This and the better resolution of 21 

the derivatives from the LiDAR DTM might explain the preference of the model to select 22 

topographic data for modelling the landslide susceptibility. Additionally it is not a 23 

topographic susceptibility map only as the differences in the lithology are taken into account 24 

by including the sampling rate in the susceptibility map.  25 

No changes were made as we consider our results as trustworthy. Some of the considerations 26 

were included in the discussion of the manuscript. 27 

Added to page 1029, line 3 28 

The high importance of topographic variables in the susceptibility modelling goes 29 

along with findings in other studies (Guzzetti et al., 2006; Begueria, 2006b; Van 30 

Westen et al., 2008; Guns and Vanacker, 2012). However, it was rather surprising that 31 
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the soil data on permeability and void space was not selected more often during the 1 

stepwise-variable selection. This might be related to the poor resolution of the soil data 2 

(50 m x 50 m) and to the usage of topographic data as a proxy for hydrological and 3 

soil characteristics (soil moisture and thickness). A strong correlation between the 4 

topographic wetness index and soil characteristics was found amongst others by 5 

Seibert et al. (2007). Furthermore, the higher resolution of the topographic variables 6 

might be of advantage for better describing the local conditions of landslide 7 

susceptibility.  8 

44. Table 3: It is a nice table but can be linked to table 1 in order to give space to other 9 

figures. This can be the authors decision of they think the table is relevant enough.  10 

Regarding the suggestion of integrating table 3 into table 1 we would like to refer to comment 11 

33 where it says that table 3 was expanded with columns on the standard error occurring in 12 

each domain. No further changes made. 13 

45. Figure 7: Nice figure but it would be good to see it displayed on a map to have a 14 

better grasp of the concept. 15 

We agree with the suggestion of the referee. However, due to the already reached length of 16 

the paper and large amount of figures we will not provide an additional figure showing this. 17 

Figure 7 was adapted to better show the connection to Figure 6 in the original manuscript. 18 
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