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Reply to the specific comments 12 

We numbered the comments given by the referee, as some comments refer to similar sections 13 

which were changed in the revised manuscript. This numbering should assist to make the 14 

cross-references within this reply easier to follow.  15 

The comments by the referee are in presented in bold, whereas the reply is in normal font 16 

type. Please notice that some comments were split up into two comments if the original 17 

comment was referring to different lines or aspects. This is indicated with “..:” at the end and 18 

at the beginning of the comments concerned.  19 
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1. p1004 l4ff: In this paragraph the authors motivate their strategy of k-fold cross-1 

validation. I feel that, in the introduction chapter, the generic strategy of 1-fold cross-2 

validation (or "single hold-out") should be explained more generally, for the less 3 

experienced reader. In the methods section, the approach can (and must) be explained 4 

more in detail. Specifically, I suggest to briefly explain the term "single hold-out" as model 5 

estimation-validation-strategy in one short sentence instead of simply mentioning "single-6 

holdout model performance measures". 7 

The suggested brief explanation of the single-hold out performance assessment was included 8 

in section 2 of the revised manuscript to make the difference to the k-fold cross-validation 9 

clearer for the less experienced reader.  10 

Added to page 1006, line 7 11 

In single hold-out methods the data set is split in one single training and test sample. 12 

The training sample is used to fit the model and the test sample is used to determine 13 

the model performance. This results in a single estimate of the performance measure 14 

(e.g. one single AUROC value) without providing a measure of precision of the 15 

estimator. The estimate depends on the (random) sample used for modelling the 16 

susceptibility and testing the model’s performance, which may itself have “peculiar” 17 

random characteristics that would be different for a different test set. Repeated k-fold 18 

cross-validation solves this problem by using, one after another, different subsets or 19 

partitions of the data set as test and training sets, thus effectively using the entire data 20 

set for performance estimation (Brenning, 2012a, 2012b). In addition, repeating this 21 

procedure for different data partitioning reduces sampling variability and allows for 22 

the determination of the precision of the performance estimator (see section 5.3 for 23 

details). 24 
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2. p1004 l9: The abbreviation AUROC is used here without prior explanation what 1 

AUROC means and, even more importantly, what AUROC IS (the area under a receiver 2 

operating curve, and as such one possible concept to measure of model quality). As model 3 

validation is explained in the methods section, I suggest that the authors speak, less 4 

specifically, of "a range of possible validation outcomes instead of only one single, 5 

"random" outcome...". Alternatively, the validation concept of ROC and the quality 6 

measure of AUROC would have to be explained prior to using the abbreviation. 7 

According to your suggestion the term AUROC (area under a receiver operating characteristic 8 

curve) is explained earlier in the manuscript and introduced as one possible performance 9 

measure. For the detailed explanation and interpretation of the AUROC value we refer in the 10 

introduction to the methods section (5.3). Furthermore, the sentence is altered according to 11 

your suggestion now being less specific. Generally, this paragraph was moved to section 2 of 12 

the revised manuscript. The first occurrence of the abbreviation AUROC is on page 1006 in 13 

line 4:  14 

Added to page 1006, line 4 15 

Among the performance estimation techniques and measures, cross-validation using a 16 

single hold-out method and the area under receiver operating characteristic curve 17 

(AUROC) value based on ROC plots (e.g. Brenning, 2005; Beguería, 2006; Frattini et 18 

al., 2010) are usually applied (i.e. Chung and Fabbri, 1999, 2003; Fabbri et al., 2003; 19 

Remondo et al., 2003; Brenning, 2005; Beguería, 2006; Frattini et al., 2010; Rossi et 20 

al., 2010). 21 

3. p1010 l12f: a comment: The question is also to what extent missing data (from 22 

blurred, reworked, removed landslides) influences the result of a susceptibility model. If the 23 

latter is good, the locations of previously existing but now invisible landslide should be 24 

"predicted" as susceptible. This cannot be checked, but: cross-validation (which reserves 25 

part of the inventory for evaluation purposes) compared to model goodness-of-fit (i.e. the 26 

model estimated from and applied to the same area/sample) should give an idea of how an 27 

incomplete inventory affects model quality. 28 

We are thankful for the correct and helpful comment. This was included in the discussion of 29 

the results of the study: 30 

Added to page 1026, line 14 31 
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The implications of an incomplete inventory on the model performance (shown by the 1 

AUROC value) were estimated by performing the repeated k-fold cross-validation 2 

using training and test sample. The results show rather high AUROC values for most 3 

modelling domains, which indicates that even with an incomplete inventory (training 4 

sample) the prediction of landslides of the test sample was successful for most cases. 5 

However, sample size is of importance for the model performance. For the discussion 6 

of this please see section 7.4. 7 

4. p1010 l25ff: Please add some explanation on the possible physical meaning of the 8 

DTM-derived variables. For some, it is more obvious (slope) than for others (catchment 9 

height - climatic proxy for precipitation ? slope aspect - orientation relative to bedding?) 10 

We understand the lack of description of the DTM derived variables. We included a short 11 

description of each variable in the revised manuscript.  12 

Added to page 1011, line 6 13 

Van Westen et al. (2008) had discussed the relevance of most of these terrain 14 

attributes to landslide susceptibility. The relationship of slope angle with landslide 15 

activity is well known from general slope stability literature (e.g. Crozier, 1986). Slope 16 

aspect can be used as a proxy for bedding orientation. It may also reflect differences in 17 

intensity of solar radiation, which controls the local temperature and evaporation and 18 

therefore soil moisture (van Westen et al., 2008). Curvature represents convex and 19 

concave surfaces related to local morphology (3x3 grid cells). The topographic 20 

wetness index was used as a proxy for the soil moisture and ground water level (Beven 21 

and Kirkby, 1979; Seibert et al., 2007). The position of the landslide on the slope and 22 

the distance from the ridge was represented by the variable catchment height. This was 23 

calculated for first order catchments. The catchment area was calculated for the sub-24 

catchments and gives a local representation of the contributing area. Convergence 25 

indices were calculated to represent the slope morphology on two different scales by 26 

using two different window sizes for the calculation (10m and 50m). Positive values 27 

indicate ridges while negative values indicate local depressions. 28 

5. p1012 l25ff: Yes, tectonic faults are known to influence landslide (in a general 29 

sense) activity. In the present study, however, there is a focus on earth (and debris) slides 30 
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(p1008 l17), which means a granulometry of >80 (earth) or <80 (debris) per cent sand and 1 

finer. I wonder to what degree tectonics influence this type of process compared to, for 2 

example, lithology, degree of weathering, existence of cover beds, climate etc.  3 

The occurrence of earth and debris slides is very much dependent on the availability of 4 

unconsolidated rock or subsequently formed soil of different thickness. The presence of 5 

tectonic fault lines is together with the parent material (lithology), climate, topography, 6 

vegetation, fauna and time one favouring factor for soil formation (Blume et al., 2010). The 7 

closer to a tectonic fault line, the stronger the material is mechanically stressed and 8 

fragmented. Therefore, the soil formation process might be faster compared to solid rock. 9 

This can also be observed in the field as stated by the Geological Survey of Lower Austria 10 

(pers. Comm. Schweigl, 2013). Although earthquakes occur in Lower Austria the influence of 11 

earthquakes on landslides was not analysed yet (Hammerl and Lenhardt, 1997). However, 12 

earthquakes along active tectonic lines are considered as a possible natural trigger of 13 

landslides (probably rather rock slides or rock falls than slides; Schwenk, 1992).  14 

The variable “Euclidian distance to tectonic fault line” was selected in 9 out of 16 models 15 

using the entire landslide data for fitting the model. This shows that the data has some 16 

explanatory power for the occurrence of earth and debris slides. However, we found that the 17 

contribution of this variable to the overall model was marginal compared to other variables 18 

such as slope angle. No changes made. 19 

6. p1014 l13ff: "landslide points" are mentioned here and in some other paragraphs, 20 

while throughout most of the papers, landslide cells are addressed. Please homogenise 21 

terminology. Generally speaking, "points" and "cells" are spatial units to which the 22 

sampling and the modelling are applied, and in "reality", you use raster cells, not point 23 

objects. 24 

The authors acknowledge the main used terms and changed the wording to landslide cells in 25 

all cases throughout the revised manuscript. 26 
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7. p1014 l24: Pls define sampling rate (as the number of sampled cells per unit area) 1 

as opposed to sample size. … 2 

The reviewer correctly points out a source of confusion in the manuscript. The authors added 3 

some sentences for clarification of the difference of sampling rate to sample size in the 4 

revised manuscript: 5 

Added to page 1014, line 21 6 

The sampling of non-landslide cells for the entire study area was based on a density of 7 

2% of all grid cells. An equal number of cases and controls (1:1) was used for each 8 

model fitted; the landslide samples were matched to an equal number of randomly 9 

selected non-landslide samples. This gives the sample size in the respective modelling 10 

domain. 11 

It was necessary to adjust each model’s raw predictions based on the corresponding 12 

sampling rate to account for the general relative landslide susceptibility of each 13 

modelling domain. We adjusted the prediction by considering the sampling rate (τ0/τ1) 14 

of each lithology unit, using Eq. 3, 15 

odds*(x) =t 0 t1 ´odds(x)          (3) 16 

where,  17 

t 0 = number of sampled non-landslide cells total number of non-landslide cells  , (4) 18 

and 19 

t1 = number of sampled landslide cells total number of non-landslide cells  , (5) 20 

and odds(x) is the unadjusted prediction, in our case, based on training a model with a 21 

1:1 sampling ratio of landslides to non-landslides. 22 

8. …Could you also comment on the justification of the 1:1 ratio of landslide to non-23 

landslide cells? I suppose it has to do with the binary target variable and the cut-off (of 0.5) 24 

to distinguish predicted events from non-events. 25 

The decision on a number of cases and controls is very important for the study design. 26 

Heckmann et al. (2013) gave a detailed review on which ratios have been chosen in landslide 27 

susceptibility modelling and on which grounds (including rare events logistic regression of 28 

King and Zeng (2001)). According to these, ratios between 1:2 and 1:5 are recommended to 29 
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better reflect the full range of values of the explanatory variables. Additionally, it was found 1 

that an increase in the ratio of controls to cases larger than four only marginally leads to an 2 

increase in precision or statistical power (Ury, 1975; Breslow and Day, 1980). It is rather 3 

recommended to increase the number of cases (by widening the study area geographically or 4 

temporally) to achieve a better precision (Wacholder et al., 1992). However, the cost of 5 

gathering more data on cases (landslides) is rather high in this study, as new landslides would 6 

have to be mapped from aerial photographs. As the number of cases and controls is large in 7 

most modelling domains the common selection ratio of controls to cases of 1:1 was selected 8 

(Breslow and Day, 1980). No changes made. 9 

9. p1014 l26ff: Why is it necessary to adjust the predictions? The model predicts, in 10 

each domain, the probability [0,1] of landslide occurrence, no matter what the sample size 11 

or sample rates are. Could you explain this further ? … 12 

The necessity to adjust the predictions according to the sampling rates of each modelling 13 

domain arises due to the need of providing a comparable landslide susceptibility map for the 14 

entire study area. Without adjusting the values every modelling domain would show 15 

probability values ranging from 0 to 1. However, the general differences in the susceptibility 16 

to landslides of each domain as expressed by the sampling rate or landslide density would not 17 

be taken into account. Therefore, the probabilities of each modelling domain have to be 18 

adjusted according to their sampling rates.  19 

For the changes made in the text please refer to our reply on comment 7 and the inserted text 20 

in the revised manuscript. 21 

10. … Furthermore, I could not comprehend the definitions of tau0 and tau1. tau0 is 22 

introduced as a "sampling rate for non-landslide points" and defined as the ratio of 23 

(land)slide to non-(land)slide points - but this ratio was described earlier as being unity. I 24 

understand "sampling rate" as the ratio of sampled cells and the total number of cells in 25 

the domain... Your "sampling rate tau1" is defined "for landslide points" and set to 1. This 26 

is confusing, because this seems to address the ratio of slide to non-slide cells that was 27 

explained earlier; your equation (4) simply becomes tau0*odds(x) because tau1 equals 1... 28 

As I understood it, the sampling rates of landslide and non-landslide "points" should be 29 

the same in each domain, because of the 1:1 ratio of sampled landslide and non-landslide 30 

points. Perhaps tau0 should be the sampling rate (ratio of slide and non-slide pixels to all 31 
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pixels) in the study area, and tau1 this ratio in the domain ? Or is tau0 the ratio of slide to 1 

non-slide pixels in the study area, and tau1 is the ratio of slide to non-slide points in the 2 

sample (so tau1 = 1:1 = 1)? To me, an "adjustment" only makes sense if a property of a 3 

domain (e.g. the ratio of sample size and total size, the ratio of landslide pixels to the total 4 

area, or the number of landslide pixels) is normalised with the same property of the 5 

complete study area. Please explain and clarify. 6 

The referee points out an important source of misunderstanding. We mainly identify it as an 7 

misunderstanding of the terms sample size and sampling rate and some confusion we created 8 

in the equations for tau0 and tau1. The difference between sample size and sampling rate was 9 

clarified in our reply to comment 7. The equations of calculating tau0 and tau1 were updated 10 

and added in the revised manuscript (please refer to comment 7 and the added text in the 11 

revised manuscript). In the original manuscript we stated that tau0 is calculated from the 12 

number of slide cells divided by the number of non-slide points. However, the number of 13 

sampled non-slide cells has to be divided by the total number of non-slide points. As the 14 

sampled number of non-slide cells is identical with the number of slide cells we did not 15 

differentiate here between the number of slide cells and sampled number of non-slide cells in 16 

the original manuscript. However, we acknowledge that this was rather confusing and 17 

therefore we changed this accordingly. Furthermore, we agree that the equation for the 18 

calculation of the adjusted odds could be cancelled to )()( 0

* xoddsxodds  . However, as 19 

future studies might decide to use a subsample of the slide cells we decided to present the 20 

entire equation.  21 

For the added equations please refer to our reply to comment number 7 and the added text 22 

there. 23 

11. p1016 l16: It is easily understood that the random (non-spatial) partition gives 24 

different results for every replication, and the strategy of taking the median and IQR of n 25 

partitions is feasible. Two questions arise for me: (1) did you check if the median and IQR 26 

of the performance measure are already reasonably stable with 20 replications, or has the 27 

number of 20 been chosen arbitrarily ? … 28 

The number of 20 replications is a compromise between a desirable high precision of the 29 

cross-validation estimator and acceptable computational complexity given the large sample 30 

size and the computational complexity of generalized additive models. Some basic and 31 
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approximate back-of-envelope calculations based on Figure 4 (in the original manuscript) can 1 

give a general idea of the precision of cross-validation estimators. For simplicity we will have 2 

a look at the standard error of estimators of mean AUROC (as opposed to the median) across 3 

all 20 repetitions. We obtain the following statistical characteristics for domains 3786 (“worst 4 

case”: high amount of variation between repetitions) and domain 35 (seems to be more 5 

“average”) (IQR=observed sample (i.e. between-repetition) interquartile range; SD = sample 6 

standard deviation; SE = standard error, i.e. precision of the estimator of mean AUROC): 7 

Domain 3786: IQR approx. 0.20; std.dev. approx. IQR/1.35 = 0.15; SE = SD/sqrt(100) = 8 

0.033 9 

Domain 35: IQR approx. 0.1, std.dev. approx. 0.074, SE approx. 0.017  10 

Given the great amount of variation in AUROC among domains (median values from 0.52 to 11 

0.98) this precision appears to be highly acceptable, and differences among domains cannot 12 

be explained by insufficient estimator precision. Figure 5 (in the original manuscript) also 13 

shows very little random variation, which supports this interpretation. We hope that the 14 

reviewer will be satisfied with this simplified consideration. No change made. 15 

12. … (2) could you add a sentence explaining why/how the k-nearest-neighbour 16 

clustering of the "point" coordinates in the spatial partition approach leads to different 17 

results for every replication ? Are the k group centroids chosen randomly? Are the 18 

resulting spatial units similar in size or is it possible that models are estimated and 19 

validated in two partitions of very different size? 20 

The algorithm used here is in fact the k-means algorithm, not the k-nearest-neighbour 21 

algorithm – apologies for the mistake, which has been corrected. The k-means algorithm 22 

essentially creates k Thiessen polygons. Since the algorithm starts with a random seed of 23 

initial cluster centres, different cluster locations and shapes result in each repetition. The 24 

resulting spatial units are of similar (comparable) size. Cross-validation ensures that the 25 

(approximate) proportion (k-1)/k of the data is used for training, and effectively (over all 26 

cross-validation folds and repetitions) all data are used for performance estimation, as 27 

indicated in the manuscript.  28 

Added to page 1006, line 7 29 
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Repeated k-fold cross-validation solves this problem by using, one after another, 1 

different subsets or partitions of the data set as test and training sets, thus effectively 2 

using the entire data set for performance estimation (Brenning, 2012a, 2012b). 3 

13. p1017 l1ff: Why is the IQR an estimated one? It is an empirical measure derived 4 

from 20 replications of a cross-validation procedure, i.e. of 100 empirical AUROC values 5 

(see p1016 l18f). …  6 

Empirical “calculations” are formally referred to as “estimation” in statistics. 7 

14. … Furthermore: Why does that measure have to be adjusted in order to be a 8 

measure of transferability? Perhaps you need to explain this more thoroughly, in a more 9 

step-by-step fashion. … 10 

The IQR value is influenced by the sample size used for performing the k-fold cross-11 

validation. As the sample size of each modelling domain is very different (104 to 12562 cells) 12 

the sampling variability of the AUROC varies. To provide a comparable transferability index 13 

for the entire study area this influence of the sampling variability has to be taken into account. 14 

Therefore, the IQR was adjusted for the contribution of the standard error SE of the AUROC 15 

estimator. Some more explanatory text was added in the revised version of the manuscript. 16 

Added to page 1017, line 1 17 

The non-spatial and spatial transferability were expressed by the interpretation of the 18 

estimated interquartile range (IQR) of the AUROC values resulting from the non-19 

spatial and spatial cross-validation of each modelling domain. The lower the estimated 20 

IQR the better we considered the non-spatial and spatial transferability of the model 21 

within the modelling domain. Sample size differences among modelling domains 22 

result in differences in sampling variability of AUROC estimators, which then has an 23 

influence on the IQR of AUROC among cross-validation repetitions. In order to 24 

account for this contribution to sampling variability and be able to provide a 25 

transferability measure that was comparable among modelling domains, the IQR has 26 

to be adjusted according to the sample size. 27 
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15. … Moreover, "Eq (1)" refers to the corresponding equation in the paper of Hanley 1 

and McNeil, not to Eq(1) in your study... I feel that this equation should be given here, or 2 

that "Eq(1)" should be removed. … 3 

According to your suggestions the equation (1) of Hanley and McNeil (1982) was included in 4 

the revised manuscript.  5 

Added to page 1017, line 5 6 

For this purpose, we calculated the approximate standard error SE of the AUROC 7 

(AUC) estimator on a test set of N landslide and N non-landslide samples using the 8 

equation presented by Hanley and McNeil (1982):  9 

 22

2

2

1 ))()1()()1()1(( NAUCQNAUCQNAUCAUCSE   (5) 10 

The quantities Q1 and Q2 were calculated from the AUROC (AUC) value as shown 11 

by the following equations:  12 

)2(1 AUCAUCQ         (6) 13 

)1(2 2

2 AUCAUCQ         (7) 14 

16. … Concerning equation (5) for the calculation of the T index: Not knowing "Eq 1 15 

of Hanley and McNeil", I suspect that the SE of the AUROC is estimated from the standard 16 

deviation of AUROCs, and will decrease with larger n. I do not see why T should be a better 17 

indicator of transferability than the empirical IQR, for example. A larger IQR means that a 18 

model could be very good, but also really bad, while a smaller IQR indicates that the models 19 

predict similarly well (or poorly). I feel that T should be better justified and explained. I 20 

understand from the paragraph that you "correct" a non-parametric empirical measure of 21 

AUROC variability (IQR) by subtracting a parametric, estimated measure of variability 22 

(that is multiplied by 1.35 to supposedly have the same value as IQR under the assumption 23 

of normality...). But why ? It may be correct, but it needs more explanation. 24 

We agree on the need for a clarification about the motivation of calculating a transferability 25 

index instead of using the estimated IQR values directly as a transferability measure. Please 26 

refer to our reply to the comments 14 and 15 as we clarified the questions of the current 27 

comment in our reply to the previous comments and in the corresponding changes to the 28 

manuscript.  29 
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17. p1017 l17ff: assessing the thematic consistency with an index is a good idea.  1 

The authors are thankful for the positive feedback on the thematic consistency index. 2 

18. p1019 l24: The classified susceptibility map is mentioned here, but the classification 3 

rules are introduced in the results chapter (p1020 l7ff). This should be done before/at the 4 

first instance when the classified map is introduced (here, or somewhere else in the methods 5 

section). 6 

We agree with the referee that the methodology of classifying the map has to be introduced in 7 

the methods section. However, we would like to refer to page 1015 of the original manuscript 8 

where the classification rules of the final susceptibility map were presented in the paragraph 9 

starting from line 12. There we point out that we selected the classes according to the 10 

percentage of slides contained in each class. The final thresholds of 5% of slides in the lowest 11 

susceptibility class and 70% of slides in the highest susceptibility class was a result of testing 12 

different thresholds which were checked in the field according to the best geomorphic and 13 

planning plausibility.  14 

Please refer to page 1015, line 12ff of the original manuscript for more details on the 15 

classification rules applied within this study. No changes made. 16 

19. p1021 l10f: Considering that AUROC for the spatial (more meaningful) partition is 17 

0.53 (very close to useless), the contrast to AUROC=0.79 (acceptable) for random partition 18 

is very good evidence for the consequences of using over-optimistic validation strategies!  19 

The referee correctly identifies one principal finding of our study. We extended our statement 20 

on the performance of the spatial cross-validation in the discussion section of the revised 21 

manuscript. 22 

Added to page 1028, line 6 23 

The median AUROC values estimated by spatial and non-spatial cross-validation were 24 

similarly high in this study. However, the median AUROC values and the 25 

transferability index clearly showed that non-spatial cross-validation provided a more 26 

optimistic or maybe also over-optimistic assessment of the model performance and 27 

transferability in contrast to spatial cross-validation. 28 
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20. p1021 l13: You mention a (1st quantile) AUROC value of 0.35 - but the AUROC 1 

only takes values between 0.5 and 1 (see also p1016 l23)! 2 

The authors are thankful for pointing out the source of confusion we created in the original 3 

manuscript. We rephrased the sentence on page 1016 in order to be more specific about which 4 

values the AUROC can take and which are describing the model’s ability to discriminate 5 

landslide and non-landslide cells. Values below 0.35 are worse than what would (on average) 6 

be expected to be achieved by chance alone, but of course actual estimated values can be 7 

worse than that, adding to our argument that resampling-based performance estimation by 8 

cross-validation is needed to achieve AUROC estimators of high precision (see comment 11). 9 

Added to page 1016, line 22 10 

The AUROC takes values between 0 and 1 where a value of 0.5 would be achieved by 11 

pure chance agreement between predictions and observations and a value of 1 12 

represent perfect discrimination (Brenning, 2005; Guzzetti et al., 2006); however, this 13 

may also indicate overfitting. Thus, the AUROC measures the model’s ability to 14 

discriminate landslide and non-landslide cells (Hosmer and Lemeshow, 2000). 15 

21. p1022 l12ff: "thus the transferability" - does "thus" also apply for n between 200 16 

and 400 as in line 10f ?... 17 

We agree on the need for more specific wording. The “thus” refers to the increases of the 18 

interquartile range at a sample size of about 400 and 200. As the IQR increases the 19 

transferability of the model decreases substantially, a trend which becomes stronger the 20 

smaller the sample size is.  21 

Added to page 1022, line 12 22 

; thus the transferability of the model decreased substantially for sample sizes smaller 23 

than 400 (spatial cross-validation) and 200 (non-spatial cross-validation).  24 



 14 

22. … Moreover, can you recommend from your findings a minimum sample size?If so, 1 

is it related to i) absolute sample size, or ii) to the corresponding sampling rate ? This 2 

question can possibly be answered with 16 large domains with different landslide 3 

densities... 4 

As stated in the discussion section (pages 1028 & 1029) both the sample size and the 5 

sampling rate have an influence on the transferability and on the thematic consistency of the 6 

model as analysed within the k-fold cross-validation. We found that a small sample size and a 7 

small sampling rate referring to a large modelling domain with only few landslide 8 

occurrences leads to a low transferability and consistency index. Furthermore, the minimum 9 

prediction’ standard error is lower with a large sample size.  10 

However, there are exceptions from this general trend (Tab. 3). Therefore we have to state 11 

that the minimum sample size is also always related to the topographic and geotechnical 12 

characteristics of the study area. For a domain of similar size and homogeneity in local terrain 13 

conditions, a minimum sample size around 400 sample cells is recommended. Therewith the 14 

transferability and thematic consistency showed a distinct change using spatial cross-15 

validation at this value (Fig. 5 in the original manuscript). However, the influence of a smaller 16 

sample size on the geomorphic plausibility (Bell, 2007) of the susceptibility map is unclear. It 17 

might be possible that with a smaller sample size the geomorphic plausibility of the map is 18 

lower. Nevertheless, the analysis of this was beyond the scope of this study.  19 

We inserted a new small section (7.4) on this in the discussion: 20 

Added to page 1030, line 29 21 

7.4 Considerations on sample size  22 

Summarizing the previously discussed findings some considerations on a minimum 23 

sample size might be possible. While the transferability index is less strongly related to 24 

sample size or sampling rate the thematic consistency index shows a stronger 25 

relationship to them. Generally, larger sample sizes and sampling rates result in better 26 

thematic consistency and transferability of the model. Furthermore, the minimum 27 

standard error of the prediction was lower with larger sample size (Table 3).  28 

The effect of a reduced sample size on the median and interquartile range AUROC 29 

values was assessed in the Flysch domain. We found that the median AUROC remained 30 

satisfactory high but decreased as sample size decreased, while the interquartile range of 31 
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the AUROC increased. Even with the smallest sample size the model still achieved a 1 

good discrimination between landslide and non-landslide cells according to the median 2 

AUROC value. Summarizing the results, a minimum sample size with a sum of around 3 

400 slide and non-slide cells might be recommended for the methods applied in this 4 

study. This size leads to an acceptable transferability and thematic consistency of the 5 

model in spatial cross-validation. However, examples from successfully fitting a 6 

susceptibility model with smaller sample sizes (10 landslides with 15 cells each in an 7 

area of 177km²; Demoulin and Chung, 2007) give a very contrasting result. 8 

Furthermore, the sample needs to be substantially complete which might be difficult to 9 

estimate for small samples (Malamud et al., 2004). However, increasing the sample size 10 

can only be done by enlarging the landslide inventory (e.g. by selecting a larger study 11 

area). This is challenging, as in some regions no additional data on landslides (or 12 

resources for mapping landslides) might be available.  13 

This study showed that the general trends found for sample size and sampling rate do 14 

not apply for all modelling domains. Therefore, we highlight that the resulting quality 15 

estimates (transferability index, consistency index and prediction uncertainty) might 16 

additionally be dependent on a combination of the domain size and the landslide density 17 

(landslides per km²). Also, dependencies on local terrain conditions and their 18 

homogeneity in the modelling domain might exist.  19 

Moreover, the geomorphic plausibility of the susceptibility map has to be analysed. 20 

Previous studies found that high performance measures do not always guarantee high 21 

geomorphic plausibility of the map (Bell, 2007; Trigila et al., 2013). It might be 22 

possible that with a smaller sample size the geomorphic plausibility of the map is lower. 23 

However, the influence of a small sample size on the geomorphic plausibility of the 24 

susceptibility map is unclear. Nevertheless, analysing this was beyond the scope of this 25 

study. 26 

23. p1022 l20f: "one specific random sample and variable selection repetition" - you 27 

should delete "repetition" (because the results are based on one sample and subsequent 28 

variable selection). 29 

“Repetition” was deleted in the revised manuscript according to your suggestion.  30 
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24. p1022 l27: the possible physical meaning of the variable "catchment height" is not 1 

explained, neither here nor in the section introducing the variables. See also my comment 2 

on p1010 l25ff) 3 

Please refer to our authors reply on the referee’s comment number 4. 4 

25. p1023 l8: why "on average" ? You have x model runs, and p percent of them 5 

included the variable. 6 

Changed to “on average over all modelling domains.” 7 

26. p1024 l20ff: the propagation of uncertainty to susceptibility classes is a very good 8 

idea in order not to over-interpret uncertainty while at the same time giving end-users the 9 

chance of having a closer look where uncertainty crosses the boundary of one or even two 10 

classes. 11 

The authors are thankful for the positive feedback on our proposed methodology. No changes 12 

made. 13 

27. p1028 l23ff: what does "adverse effects" mean? Does that mean that the 14 

performance measure is biased? or wrong? or that the performance could be better than 15 

estimated? 16 

This comment refers to criticism of Guzzetti et al. (2006) on the spatial partitioning of the 17 

landslide data into training and test sample. Their discussion states “splitting the study area 18 

into two adjacent sub-areas can be problematic” as this approach assumes similar 19 

characteristics of the explanatory variables (Guzzetti et al., 2006). However, the statement of 20 

Guzzetti et al. (2006) is more understood as a word of caution, pointing out the possible 21 

pitfalls of spatial partitioning of the study area. Splitting the study area into modelling 22 

domains is a major step in the modelling towards reducing possible differences in the 23 

characteristics of the explanatory variables. However, as we stated in the discussion section 24 

(7.2), it might still be possible that in some samples one terrain condition (e.g. flat areas) is 25 

overrepresented relative to others.  26 

Added to page 1028, line 25 27 

Here, similar characteristics of the explanatory variables in both training and test 28 

sample are assumed and necessary (Guzzetti et al., 2006). If this assumption is not met 29 
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by the data (e.g. a rock type or land use class is missing in the test sample) the transfer 1 

of the fitted model to the test sample and the estimation of the model performance are 2 

difficult (or impossible) (Guzzetti et al., 2006). In our study some model domains 3 

might have high contrast between stable (e.g., large flat areas) and unstable (e.g., steep 4 

areas) terrain which gives potential for greater variation of sampled terrain conditions; 5 

it may be possible that in some samples one terrain condition is overrepresented 6 

relative to others. 7 

28. p1028 l28: I slightly doubt that serious over- or underrepresentation is possible with 8 

large samples in the order of hundreds to tens of thousands of pixels. Perhaps in very 9 

inhomogeneous study areas - but that is being dealt with in your approach by establishing 10 

domains (at least with respect to lithology). 11 

The total sample size (double the number of landslides) is rather small compared to the total 12 

number of cells available in each modelling domain (represented by the area in km² of the 13 

respective modelling domain in Table 1). Therefore, we did not want to exclude the 14 

possibility of over- or underrepresentation of terrain conditions in one sample. However, the 15 

detailed analysis of this was beyond the scope of this study. No changes made. 16 

29. p1029 l27f: Does an underestimation not occur, for example, in the medium class as 17 

well ? 18 

The authors are thankful for pointing out the possible source of misunderstanding. With this 19 

sentence we wanted to refer to the main source of underestimation which is represented by the 20 

percentages indicated in Figure 6 (in the original manuscript). The overlaps mainly occur 21 

between the low and medium susceptibility class (PPULCI 6%; LLCIPP 5%) compared 22 

to the percentage of overlapping cells of the medium and high susceptibility class (PPULCI 23 

2%; LLCIPP 2%). 24 

Added to page 1029, line 27 25 

Special attention should be given to the low susceptibility class. Here, the highest 26 

percentage of overlapping classes and underestimation of the susceptibility were 27 

detected. 28 
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30. p1030 l3ff, especially l9ff: I feel that the comparison of your susceptibility map with 1 

the hazard zonation plans is not fully feasible. Risks are induced by mass movements not 2 

exclusively where they initiate, but also where they stop (in case of mass movements with a 3 

considerable runout). For some types of movement, the hazard zonation map needs to 4 

assess the runout zone as well. This might or might not be the case for earth and debris 5 

slides that represent the main focus of this paper.] 6 

The authors agree with the expressed reservations of the referee. The general limitation of 7 

susceptibility maps is the input data used for the modelling. In this study the landslide 8 

inventory consisted of a point inventory representing the main scarps. Therefore, the modelled 9 

susceptibility is also only showing the probability of the presence of main scarps. The runout 10 

zone is not considered explicitly as no runout modelling was performed. However, it might 11 

happen more or less accidently that the possible runout zone might be located in the same 12 

susceptibility class as the main scarp, due to the adjustment of the probability by the sampling 13 

ratio and the later on classification in three classes only. We did an analysis of the coverage of 14 

in the classified landslide susceptibility map by landslide polygons available in some parts of 15 

the Flysch Zone. We found the majority of the landslide polygons (65%) were located in the 16 

high susceptibility class. Furthermore, 29% were located in the medium and only 6% in the 17 

low class. Naturally, this is dependent on the selected classification method or thresholds. 18 

Accordingly, a sentence was included in the discussion section of the revised manuscript. The 19 

discussion section 7.3 was changed significantly as we put the focus more on the need of 20 

visualizing and communicating the results than on the comparison with the hazard zonation 21 

plans. This comparison was removed from the revised manuscript. The changes of the 22 

discussion in section 7.3 is presented here: 23 

Added to page 1029, line 25 24 

Some model form uncertainties within this method arise from using the lookup table 25 

for transferring the prediction standard error to all grid cells as shown by the range of 26 

resulting R². This method might be improved or substituted by a function assigning the 27 

standard errors to all grid cells.  28 

It was found that in the classified map the majority of grid cells did not change. 29 

However, there are differences between the modelling domains where some domains 30 

had larger overlaps of different susceptibility classes than others. Special attention 31 
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should be given to the low susceptibility class. Here, the highest percentage of 1 

overlapping classes and underestimation of the susceptibility were detected.  2 

The visualization of these spatially varying uncertainties is of special interest for 3 

future land-use and development planning usually performed by non-landslide experts. 4 

In the aftermath of this study each landslide susceptibility class will be related to, not 5 

legally binding, recommendations for the designation of new building areas. 6 

Therefore, a misclassification (e.g. low instead of medium susceptibility) might lead to 7 

an interpretation by the municipality or landowner that underestimated landslide 8 

susceptibility. Knowledge about the susceptibility class overlaps might outline where 9 

more caution and detailed investigations are necessary. Additionally, it also shows 10 

where no uncertainties are expected, which might help to avoid costs for slope 11 

investigations.  12 

There is also a need to communicate the research results and their quality with 13 

appropriate explanations for the local officials, environmental managers and the public 14 

to raise awareness and knowledge on it which leads to an easier understanding and 15 

incorporation of the results into the decision-making process (Knuepfer and Petersen, 16 

2002; Rogers, 2006; Brierley, 2009; Hill et al., 2013). This analysis might aid to a 17 

good acceptance of the landslide susceptibility maps in the local governments, as 18 

instead of a fuzzy statement on involved uncertainties these are clearly shown in a map 19 

on grid cell level (Guzzetti et al., 2006; Luoto et al., 2010). Furthermore, the 20 

preparation of the susceptibility maps showing the class overlaps contributes to an 21 

easier understanding of the possible effects of the prediction uncertainties.  22 

The question if the policy makers or stakeholders are really interested in knowing 23 

more about the uncertainty is discussed conversely. The study of Brugnach et al. 24 

(2006) pointed out that the confidence in modelling results is dependent on the way 25 

the uncertainties are addressed. Policy makers were missing more information on the 26 

uncertainty of any model result. Therefore, the modelling results should be presented 27 

with a measure of uncertainty or confidence indicator (Brugnach et al., 2006). In 28 

habitat suitability modelling the visualisation of uncertainty was identified as relevant 29 

to inform decision-makers about areas with extreme error, but also about areas which 30 

are particularly well modelled (Elith et al., 2002). This openly addresses the 31 

uncertainties involved in the maps instead of giving an impression of certainty (Elith 32 
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et al, 2002). However, interviews of Klimeš and Blahůt (2012) showed that local 1 

governments do not want any information on uncertainties.  2 

Nevertheless, these uncertainties might have severe consequences on buildings and 3 

their inhabitants if an event occurred within the uncertainties of the method used to 4 

delineate the hazard zones. The converse discussion shows, that more or better 5 

communication with the stakeholders or policy makers (also during the modelling 6 

process) is necessary to learn about uncertainties and enlarge confidence into the 7 

modelling (Brugnach et al., 2006). However, the way how the uncertainties are 8 

presented to the stakeholder has to be adapted by the scientist to ensure the success of 9 

the communication. The visualization of some aspects of the quality of landslide 10 

susceptibility maps, such as the spatially varying prediction uncertainty, can enhance 11 

the communication among experts and decision-makers to facilitate informed 12 

decisions (Kunz et al., 2011).  13 

Additionally, further aspects of considering and communicating the effects of 14 

epistemic uncertainty are still open research fields in susceptibility modelling. A clear 15 

assessment of these is necessary to evaluate on their consequences on the 16 

susceptibility (or hazard or risk) map. 17 

31. p1047 Fig. 4: Why does the AUROC for domain 230 scale on a 0-to-1 axis, while the 18 

AUROC has a range of [0.5,1]?? This is one of two inconsistent uses of AUROC range (see 19 

comment p1021 l13). …  20 

The authors are thankful for pointing out the inconsistencies in the original manuscript. We 21 

apologize for the inaccuracy and inserted some details on the AUROC. Please refer to our 22 

reply on comment 20 for the changes made in the revised version of the manuscript. 23 

32. … Moreover, the legend for each boxplot should be changed: either use "spCV and 24 

nspCV" or (shorter and probably better) "sp and nsp". 25 

The legend of each boxplot was changed according to the suggestion of the referee. 26 
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33. p1048 Fig. 5b: Something is wrong with the y axis labels. Either it should be the 1 

numbers from 0.00 to 0.10, or from 0.00 to 1.00. 2 

We are grateful for the careful check of our figures. The y axis labels were adjusted to range 3 

from 0.00 to 0.10. 4 

 5 

Technical Corrections 6 

34. p1013 l13ff: I suggest to split this sentence: "Among the currently available 7 

methods for landslide susceptibility modelling a GAM shows a compromise between the 8 

flexibility of machine learning algorithms and the smooth representation which results 9 

from GLMs such as logistic regression; meanwhile, it still gives the opportunity of a 10 

transparent and easy interpretable model (Brenning, 2008; Goetz et al., 2011). 11 

Alternatively: ...such as logistic regression while still giving the opportunity..." 12 

The sentence was changes according to the suggestion: 13 

Added to page 1013, line 13 14 

Among the currently available methods for landslide susceptibility modelling a 15 

generalized additive model (GAM) is a compromise between the nonlinear predictive 16 

flexibility of machine learning algorithms and the smooth, yet linear, predictions of 17 

GLMs such as logistic regression. The model fit of the GAM can be easily 18 

interpretable unlike most machine learning algorithms (Brenning, 2008; Goetz et al., 19 

2011). 20 
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