
NHESSD
1, 6923–6959, 2013

Forecasting
wind-driven wildfires

using an inverse
modelling approach

O. Rios et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Nat. Hazards Earth Syst. Sci. Discuss., 1, 6923–6959, 2013
www.nat-hazards-earth-syst-sci-discuss.net/1/6923/2013/
doi:10.5194/nhessd-1-6923-2013
© Author(s) 2013. CC Attribution 3.0 License.

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

This discussion paper is/has been under review for the journal Natural Hazards and Earth
System Sciences (NHESS). Please refer to the corresponding final paper in NHESS if available.

Forecasting wind-driven wildfires using
an inverse modelling approach

O. Rios1, W. Jahn2, and G. Rein3

1CERTEC: Centre d’Estudis del Risc Tecnològic (Centre for Studies on Technological Risk)
Department of Chemical Engineering, Universitat Politècnica de Catalunya, Av. Diagonal, 647,
08028 Barcelona, Catalonia, Spain
2Raindance Science International, Santiago, Chile
3Department of Mechanical Engineering, Imperial College London, SW72AZ, London, UK

Received: 30 September 2013 – Accepted: 4 November 2013 – Published: 4 December 2013

Correspondence to: G. Rein (g.rein@imperial.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

6923

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/1/6923/2013/nhessd-1-6923-2013-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/1/6923/2013/nhessd-1-6923-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
1, 6923–6959, 2013

Forecasting
wind-driven wildfires

using an inverse
modelling approach

O. Rios et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

A technology able to rapidly forecast wildlfire dynamics would lead to a paradigm shift
in the response to emergencies, providing the Fire Service with essential information
about the on-going fire. The article at hand presents and explores a novel methodology
to forecast wildfire dynamics in wind-driven conditions, using real time data assimilation5

and inverse modelling. The forecasting algorithm combines Rothermel’s rate of spread
theory with a perimeter expansion model based on Huygens principle and solves the
optimisation problem with a tangent linear approach and a forward automatic differenti-
ation. Its potential is investigated using synthetic data and evaluated in different wildfire
scenarios. The results show the high capacity of the method to quickly predict the lo-10

cation of the fire front with a positive lead time (ahead of the event). This work opens
the door to further advances framework and more sophisticated models while keeping
the computational time suitable for operativeness.

1 Towards an operative forecasting tool

Current computational wildfire dynamics simulators are not fast enough to provide valid15

predictions on time (Sullivan, 2009) and require data that are difficult to acquire and
sense during an emergency situation. A potential solution to develop an operational
forecasting tool is to assimilate real-time sensor data (Cowlard et al., 2010), which
has been shown to greatly accelerate fire simulations without loss of forecast accu-
racy (Mandel et al., 2008; Jahn et al., 2011; Rochoux et al., 2013). The cornerstone to20

reach such a tool is to find a computational algorithm that combines a physical model
with sensor data that reliably delivers an accurate forecast within a positive lead time
(i.e. enough time before the event), and enables emergency responders to make better
tactic decisions. At the same time, it has to be versatile enough to be adapted in dif-
ferent fire situations (range of fuels, complex topography, weather conditions). Ideally,25

it would also be able to incorporate the effect of fire fighting actions (e.g. water lines,
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fire breaks, back fires) and weather forecasts. More important, it must not require high
computational resources (i.e. high performance computing or super computers) so that
it can be developed flexibly in portable devices by fire responders.

1.1 Data assimilation and inverse modelling

Inverse modelling consists in studying the observed measurements from sensor data5

to gain information about the physical system behind them using a variety of math-
ematical models and techniques. Instead of just looking at the outputs of the model,
inverse modelling knows the output and aims to unveil the parameters inside the phys-
ical system and the initial and boundary conditions of the problem.

The inverse method is particularly appropriate for wildfire modelling due to the large10

amount of unknowns in fires. The fuel properties and location, shape and the area
covered by foliage, moisture content, meteorological conditions and topography are
necessary variables to initialise a physical fire model but can hardly ever be measured.
By contrast, the inverse approach can use any kind of available data if the forward
model is tweaked accordingly.15

Despite its promising capacity for coping with complex problems with a large number
of variables, just few authors have tried to apply forecasting techniques to fire science.
Among these, Jahn et al. (2011, 2012) successfully pioneered this approach to fore-
cast fires in enclosures using both simple and complex models (two-zones model and
computational fluid dynamics). In the field of wildfire, Mandel et al. (2009) explored this20

technique to predict the time-temperature curve of a sensor placed in the way of an ad-
vancing wildfire. They examined a reaction-diffusion equation and a semi-empirical fire
line propagation model coupled with a Eulerian level-set-based equation. Additionally,
they coupled weather forecast information to the model demonstrating the potential of
data assimilation. Despite this progress, their implementation was found to be unstable25

due to the generation of spurious fires that cause non-physical results.
Rochoux et al. (2013) pioneered the application of real-time data assimilation to

predict the location and spread of the wildfire front using infra-red sensors. Data were
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assimilated with a Kalman filter to balance computational and sensor errors. Rochoux
et al.’s model assimilates perimeter locations at different times and uses the fuel depth
as an input. The propagating model used two components: the rate of spread (RoS)
represented by a product between the fuel depth (δ) and a constant (Γ) to be quantified
as part of the forecasting problem (RoS = Γ ·δ). Their model uses a level-set-based5

equation to cast the fire perimeter. Rochoux et al. tested the model in a controlled
small scale experiment assimilating one fire front and delivering 30 s forecast.

1.2 Forecasting algorithm

We formulate the inverse problem based on the premise that some invariant exists by
following the contributions of Jahn et al. (2012) on forecasting fire dynamics in enclo-10

sures. Invariants are the set of governing parameters that are mutually independent
and constant for a significant amount of time. Therefore, our implementation relies on
the assumption that some physical attributes of the system remain constant at least
during some time. Those attributes can be uniform, a scalar or a vector field with spa-
tial dependency. Examples of such quantity are initial fuel’s moisture content or fuel15

depth. However, the invariants are not restricted to physical variables but can repre-
sent mathematical attributes of the system as well. For instance, if the wind speed
changes but its effect on the RoS remains constant (boundary layer regime is main-
tained) the proper invariant will be its effect to the rate of spread rather than the wind
speed itself.20

After assimilating data during a period of time (assimilation windows) the invariants
are estimated and used to forecast the perimeter evolution in the subsequent time inter-
val. This forecast is then accurate until any of the invariants change significantly, which
would be detected with the help of the continuous data feed from sensors. The sensor
errors in the assimilated data are considered to be smaller than the model accuracy25

and therefore their influence is not directly considered here. This is a complementary
approach to that of Rochoux et al. (2013) who balance data errors with model errors.
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Regarding sensor data feeds, in the present work we considered fire fronts positions
hypothetically supplied by air-born observations, or ground crews. However, additional
data such as flame height or spreading rate (recently measured by infra-red images
and stereo vision Rossi et al., 2013) could be considered in future developments.

2 Building up the forward model5

The initial step when posing an inverse modelling problem is to determine the forward
model and its invariants. The forward model is the set of equations that relates the
invariants to the observables. Its importance in the forecasting model is twofold: it is
first used iteratively to quantify the invariants and then run again to deliver a forecast
valid until the invariants change or the next assimilation process is started.10

To create our forward model we combined Rothermel (1972) and Richards (1990)
models. The Rothermel’s model estimates the RoS of any point in the fire front whereas
the Richard’s model uses these RoS to generate the elliptical wavelets – firelets – that
expand the fire front and computes its location at any time.

2.1 Rothermel’s model15

Rothermel’s model is based on an energy balance equation where the heat sources
and sinks are identified to estimate the RoS of a surface fire. The original formulation
uses several experimental correlations deduced from data obtained in wind-tunnel ex-
periments using fuel beds of varying conditions. The model was derived for fires that
are in a quasi-steady spread state. This means that any acceleration of the fire is not20

considered. The shape of the fire front is assumed to have no influence on the RoS.
Rothermel’s equation can be recast with three invariants (Ix), defined as follows:

RoS = Imf(1+ Iu · Iw ) (1)

Imf captures the effect of all the fuel properties; ovendry fuel loading (wo), surface-area-
to-volume ratio (σ), moisture content (Mf), moisture of extinction (Mx) and fuel depth25
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(δ).

Imf = F (σ,wo,δ,Mf,Mx) (2)

The wind speed is directly equal to Iu:

Iu = U (3)

The effect of the wind speed on the fire spread also depends on fuel properties5

such as layout, bulk density, surface-area to volume ratio and fuel depth. Its effect is
embedded in Iw as:

Iw =K(σ,wo,δ) ·UB−1 (4)

Where B is an empirical coefficient determined by Rothermel (1972).

2.2 Huygens principle10

Although Rothermel’s model can estimate the RoS of any point, it is a mean value
for the head fire only (Rothermel, 1972) and does not inform about different directions
of spread. Therefore, it is not sufficient in predicting the fire front shape and location.
In parallel to RoS estimation, some other model must be used to represent the fire
perimeter expansion. We used Huygens principle – originally postulated to explain light15

wavefront propagation – with elliptical expansion, as proposed by Richards (1993).
Applying it to wildfire, this principle considers every point in the fire perimeter at time t
as a new ignition source that spreads during a time dt following an elliptical template
shape – known as firelet. The corresponding fire front line at time t+dt is the outer
curve that envelopes the firelets centred on the rear focus as showed in Fig. 1.20

The details of the Huygens firelet model can be found in Richards (1990, 1993), but
an overview of the main concepts and equations is provided here.
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Considering the initial ignition point situated at {X0,Y0} and using a parameterisation
variable s ∈ [0−2π], the {(xi (t),yi (t)} coordinates of fire front vertexes can be analyti-
cally calculated by integrating a set of partial differential equations:

x(s, t̂) = X0 +

t̂∫
0

a2(t)cosθ(t)cos(K )+b2(t)sinθ(t)sin(K )√
a2(t)cos2(K )+b2(t)sin2(K )

·c(t)sinθ(t)

dt (5)

y(s, t̂) = Y0 +

t̂∫
0

a2(t)sinθ(t)cos(K )+b2(t)cosθ(t)sin(K )√
a2(t)cos2(K )+b2(t)sin2(K )

·c(t)cosθ(t)

dt (6)5

Where,

K = θ(t)+ s (7)

Where θ is the wind direction and b and c are lateral and backwards propagation
velocities that can vary spatially and are calculated by imposing Rothermel’s rate of10

spread for the head fire from the new ignition point:

b(s,t)+c(s,t) ≡ RoS(s,t) (8)

The lateral front velocity a, however, is directly related to the eccentricity of the firelet.
It was originally estimated using an experimental correlation found by Anderson (1983)
that relates the ratio between the major and the minor firelet’s axis, and thus, the ratio15

between b and a (independent of the time step ∆t used). Its value depends on the
wind speed (U) in accordance with the equation:

a
b
= 0.936e0.2566U +0.461e−0.1548U −0.397 ≡ LB (9)

Note that the power coefficients in this empirical equation have units of [sm−1] and LB
is called length-to-breadth ratio and accounts for the eccentricity of the elliptical firelets.20
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The constant 0.397 is a modification of Anderson’s original formula to ensure that the
fire expands circularly (LB = 1) under no-wind conditions (U = 0).

Once the length-to-breadth ratio is known, a, b, c velocities can be calculated using
Eq. (8) and the elliptical geometry properties:

a = RoS
1+1/HB

2LB
(10)5

b = RoS
1+1/HB

2
(11)

c = b− RoS
HB

(12)

where,

HB =
LB+

√
LB2 −1

LB−
√
LB2 −1

10

If the invariant Iu = U , introduced in Rothereml’s model, is reused in Huygens’ firelets
expansion, only one additional invariant is required to account for the principal direction
of spreading determined by the wind direction:

Iθ = θ (13)

The forward model is then a function of four invariants:15

M(Iu, Iw , Imf, Iθ,T ) =

{
RoS =Rt(Iu, Iw , Imf)

{x,y} =H(RoS, Iu, Iθ,T )
(14)

Where T is the time when the fire front is estimated, R represents Rothermel’s model
with cast invariants (Eq. 1) and Ht the firelet expansion (from Eq. 5 to 6).
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Depending on the acquirable sensor data, the invariants can be turned into input
data for the problem. For example, if reliable wind speed data arrive, there is no need to
solve for it but instead it is directly used as input in the forward model. The assimilating
data algorithm actually imbibes both, measured and forecasted data, to deliver the
most accurate forecast.5

2.3 Cost function

The invariants are calculated by minimizing a cost function J that measures the differ-
ence between the model output and the sensor observations. The cost function pro-
posed is the Euclidean norm summed over the different assimilation times.

J (p) =
tf∑

t=ti

√[
xi − x̂i (p)

]T Wi
[
xi − x̂i (p)

]
(15)10

Where {xi} ∈R2 are the N-coordinates set of the observed fire front position in a given
time step i and x̂i (p) =Mx(p) are the corresponding model output position for a set of
invariants (p). Wi is a weigh function that could be used to give more value to the latest
assimilation on time in order to better capture the invariants to create the forecasting.
However, in the present work no weighting function is used (Wi = I) but the framework15

is set to allow introductions of non-uniform weights to the sensors in future work (for
example to give more importance to IR images than to in-situ visual observations).

Equation (15) can be simplified if the x−y coordinates (both, observables and model
output) are concatenated as 1-row vector yi and ỹi =Mi (p):

J (p) =
tf∑

t=ti

√[
yi − ỹi (p)

]T [
yi − ỹi (p)

]
(16)20

Although the square root gives the correct Euclidean norm, it does not effect the
minimisation and therefore we removed it from the computational implementation.
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2.4 Optimisation

There are two main approaches to minimize Eq. (16); the gradient-free and the
gradient-based (Nocedal and Wright, 1999). The first group are stochastic algorithms
that evaluate the cost function J (p) at many random points to find the absolute min-
imum, whereas the second group use an initial guess (called background vector, pb)5

and follow the gradient direction towards the closest minimum. Although gradient-free
algorithms can sweep a broader search space to find the absolute minimum, they have
to evaluate the cost function multiple times which might be computationally costly if the
forward model M(p) is complex. On the other hand, when the cost function is con-
tinuous and the possible domain of the invariants (p) is known and delimited (as it10

is in our problem), the gradient-based algorithms are more suitable and efficient. It is
true that gradient-based algorithms can converge to a local minima instead of a global
one. However, the extended sensitivity analysis performed on our problem showed that
the system is benign in the sense that all the functions involved behave smoothly and
therefore the convergence to the absolute minima will depend on the initial guess.15

If the forward model J (p) is linear then the cost function is quadratic and can be min-
imised by easily solving a system of linear equations (as will be shown in the following
sections). For forward models that are not linear – as it is the case – the Tangent Linear
Model (TLM) has been widely used to tackle the problem (Griewank, 2000).

2.5 Tangent Linear Model20

TLM consist in linearising the forward model M(p) in the vicinity of an initial guess p
b.

This linearisation can be done if the model is weakly non linear as the one at hand. The
viability of the TLM relies on the initial guess and the fact that the procedure is iterated
until convergence. To calculate the TLM we use first order Taylor’s series expansion
around p

b:25
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The gradient of the linearized function is then:

∇pJ (p) = 2
tf∑

t=ti

[(
∇pMi (p

b)(p−pb)
)]T [

yi −
(
Mi (p

b)+∇pMi (p
b)(p−pb)

)]
(17)

Applying the first order condition for minimisation and introducing the following notation:

Mi =Mi (p
b)

Hi = ∇pMi (p
b)5

pi = (p−pb)

Becomes:

tf∑
t=ti

HT
i Hip =

tf∑
t=ti

HT
i (yi −Mi ) (18)

which is a linear system that can be easily solved by using a QR factorisation with10

column pivoting (Nocedal and Wright, 1999).

2.6 Automatic differentiation

Calculating the jacobian multiplication term HT
i Hi in Eq. (18) requires partially differen-

tiating the model with respect to the different invariants. This has to be done p×2n× t
times, where p is the number of invariants used, 2n the coordinates of the fire front and15

t the assimilating time.
The simplest way to numerically evaluate the jacobian is by finite centred differences:

Hj
k,i =

∂Mj
i (p

b)

∂pk
'

Mj
i

(
p

b +εk

)
−Mi (p

b)

||εk ||
6933
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where εk ∈Rp = {0,0, . . .ε, . . .0} has a perturbation ε in the position k.
Despite its simplicity, this approach has multiple downsides: the forward model has

to be evaluated twice each time, and ε should be reduced as much as possible which
introduces numerical truncation errors when ε is too small (Griewank, 2000). For these
reasons we chose an automatic differentiation approach.5

Automatic differentiation allows us to directly calculate the jacobian matrix Hi (nor-
mally called Tangent Linear or Forward) or HT

i (called Adjoint). It consists in iteratively
applying the chain rule used in differentiation calculus to script the differentiated model
that gives all the partial derivative.

Automatic differentiation is also suitable to differentiate numerical integral evaluations10

– as is our case – since all the statements can be split down to elemental mathematical
operations.

The tangent linear differentiation is preferable when the number of observables (i.e.
model outputs) is much larger than the quantity of independent variables (i.e. the num-
ber of invariants in our case). By contrast, calculating the Adjoint Differentiation is more15

convenient and efficient when there is a large number of independent variables. There-
fore, in the present work, we use forward differentiation approach.

Nevertheless, in the future expansion of the methodology, if the number of degrees
of freedom of the forward model (i.e. number of invariants) is increased, the Adjoint
Automatic Differentiation should be explored to keep the computational efficiency and20

maximise the lead time.

2.7 Forecasting program structure

The following diagram (Fig. 2) summarises the principal parts of the assimilating and
inverse modelling program:

First, fire front positions y are assimilated during a specific period of time (called as-25

similation windows). Meanwhile, an educated guess estimates the first set of invariants
p

b. This first guess is based on roughly estimated data and the influence of the model
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is explored in Sect. 3.1. This invariants guess is input into the forward model together
with the assimilated time information and one fire front position (or the initial ignition
point) M(pb,T ,y0). The consequent first prediction set of fronts ỹi is compared with
the assimilated data by means of the cost function J (ỹ −y) (see Eq. 16). If the fronts
do not match (i.e. the cost function is not zero) the program starts the optimisation5

iteration loop.
The first statement in the loop is to run the differentiated forward model to calculate

the jacobian terms in Eq. (16). The solution to this equation gives a new set of invariants
p
k that is input to the forward model again to get a new estimated set of fire fronts. If

the convergence criteria are reached, then the best estimated invariants vector is found10

(p∗) and thus the forecast is delivered by running the forward model with the forecasting
time. Otherwise, the loop is iterated again.

The fact that a loop is needed to estimate the invariants reduces the inaccuracy
added by applying a tangent linear approach to a non-linear model since in every new
iteration the model is linearized (i.e. the differentiated forward model is run) in a new15

state point (pk+1). In addition, if any of the new invariant values in the vector p
k+1

exceeds the physical range, its value is set back to the initial guess to prevent non-
physical results.

Note that every time that the differentiated forward model is run, the forward model
is also evaluated. Thus the forward model is always evaluated at the same time as20

the differentiated model, speeding up the simulations and enabling the use of complex
forwards models.

Regarding convergence, two criteria can be requested. The first is to state the max-
imum discrepancy between simulated and observed fire perimeters (i.e. the value of
the cost function) whereas the second imposes convergence between consecutive es-25

timations of the invariant vector. While the first ensures the simulation matches the
observation, it might not always happen. By contrast, the second condition will always
be fulfilled (if there is any local minimum) although the perimeter might not be always
fully simulated. In the following sections, both criteria will be explored and compared.
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2.8 Synthetic data

In order to better to investigate in detail all the capabilities of the forecasting model, it is
validated with synthetic data that works as an controlled-experiment before challeng-
ing it with real complex data. The synthetic data were generated also by a Rothermel–
Huygens firelet expansion model with all the correlated formulas and experimental val-5

ues embedded. Fuels properties provided by Scott and Burgan (2005) were used to
initialise the model. The synthetic data are input to the forecasting algorithm in due
time trying to mimic the data acquisition in a real situation.

3 Results

The forecasting algorithm developed in this article is investigated in different situations10

where synthetic data simulates the observations to assimilate. The tests are performed
varying different parameters like the assimilation window, assimilated data (fire fronts
locations and feeding frequency) and initial guess. Then we look at several features
like convergence of the invariant, minimisation of the cost function, effect of the initial
guess, effect of the assimilating window width, the computing time and the leading15

times obtained.
However, the same methodology is applied and explored with alternative invariants

to handle more realistic situations where some of the physical quantities assumed as
constant are allowed to vary.

In all of the following tests, punctual ignition source is considered as the initial inte-20

gration point for the fire front expansion. This ignition point source is depicted as a red
spot in all the perimeter-expansion plots and is a required piece of information to run
the forecasting algorithm. In a real wildfire situation, it could be identified as the first
reported location of the fire – the bottom of the smoke plume, as an example. If the
fire has spread out before the first bit of information arrives and it is no longer a point25
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source, the first assimilated fire front can be also used as a virtual ignition perimeter by
considering the whole fire front as a set of initial ignition sources.

3.1 Initial guess

Apart from the assimilated data, the forecasting algorithm needs an initial guess of
the invariant value where the first Tangent Linear Approximation (TLM) is performed.5

This first educated guess can be directly generated within the range of validity of each
invariant – without considering any hint from the actual wildfire – or by using Rothermel
equivalent equations (Eqs. 2–4 and 13) and guesstimating the six physical underlying
quantities δ, Mf, Mx, σ, W0 and θ which can be roughly done by observing the fuel and
wind.10

To perform a rigorous study of the effect of the initial guess, the six initialising vari-
ables were swept according to operational-based considerations. For instance, the fuel
depth δ was considered to be an easily estimable variable in a real wildfire (it can
be easily distinguished between 5 cm pine needle litter or 1 m tall grass) and thus,
its offset in the initial guess is considered to be lower than 1.50 m. In contrast, some15

other variables such as moisture content (Mmf) or ovendry fuel loading (wo), cannot
be estimated with such accuracy and therefore the educated guess exploration covers
a larger differing range.

3.2 Quantifying the invariants

The first scenario investigated here assimilates 15 fire fronts with a window width of20

15 min. (i.e. one fire front per min.). The invariants converge within 3 iterations (i.e. 3
runs of TLM and thus, 3 estimations of the invariants). Figure 3 shows the observed
data (black triangles), the fronts generated with the initial invariants guess (red dashed
lines) and the respective fire fronts after each iteration (dashed lines) until convergence
is reached (green solid line). The invariants and cost function convergence are depicted25

in Fig. 4. The cost function (dashed line) shows a rapid decrease towards zero. Its slope
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quantifies the converging rate. At the first iteration the slope is steep which indicates
that the algorithm quickly corrects the large discrepancies. As the cost decreases so
does the steepness indicating that convergence is achieved since in a minimum the
steepness flattens.

In the case shown in Fig. 4 (bottom) all invariants converge to true value within 2 %5

of percentage difference.

3.3 Assimilation window width

The window width (WW) is the amount of time while the forecasting algorithm is being
fed data (i.e. fire front location in the case at hand). The time between consecutive fire
front observations is called assimilation period (T ) and can be directly related to the10

assimilating frequency (F = 1/T ).
The main effect of the number of assimilated fronts (WW/T ) is the resolution of

multiplicity. The value of the cost function tends to increase as the assimilation window
increases and more fronts are assimilated. The error of the initial guess amplifies with
the propagation (the previous fire front position is required to calculate the new one)15

and therefore the forecasting algorithm is more sensitive to the wrong identification of
invariants. This is shown in Fig. 5 where instead of assimilating 15 min (and 15 fire
fronts) – as in the converging example above – we assimilate front positions during
3 min (i.e. 3 front positions). The cost function rapidly drops to zero but in this case the
value estimated for both Imf and Iw differs from the true value by 10 %. The reason is20

that now the initial cost function has a lower absolute value since the propagation of
an inaccurate estimation is truncated in time and therefore the effects of an incorrect
assimilation are hidden. It is worth mentioning that despite the possibility of Imf and Iw
misconverging, RoS is always correctly estimated as it has no multiplicity in the forward
model and only one value can fit the observations.25

One way to deal with multiplicity is by defining only one invariant for the RoS. This
approach, however, does not allow for the forecasting algorithm to be ameliorated if any
extra data are available (as will be done in Sect. 3.4) since no information about par-
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ticular contributions is achieved. Thus, a more interesting way to diminish multiplicity is
to recast the invariants and input extra data in a way that the invariants become func-
tionally independent. For instance, if the fuel-moisture invariant is somehow multiplied
by any measurable quantity (as fuel depth or moisture content) that varies spatially or
over time, then, its value is no longer exchangeable with the wind factor. The same5

strategy could be used for this second invariant if wind speed is known. This approach
is successfully explored in the following sections.

The third way to deal with multiplicity is by assimilating additional quantities that are
predicted by the forward model. It is worth pointing out the difference between inputting
additional values and assimilating more information. The first consists of extra inputs10

to run the forward model and allows it to handle more complex situation. Examples
of this could be information of moisture content, fuel properties or wind speed. Data
assimilation, in contrast, requires the quantifiable information to be the output of the
forward model. Thus, in our case, only the positions of the fronts can be assimilated but
the forward model can be complemented so it delivers additional characteristics such15

as flame height or fire intensity. By assimilating this additional information the invariant
multiplicity is narrowed down since each invariant is then part of different equations
and they are no longer dependent.

3.4 Forecasting the fire spread

Once the invariants are identified, the forecasting algorithm predicts the location of the20

fire by running the forward model again with the correct invariants. The forecast will be
valid as long as the conditions present when assimilating the data remain constant.

In order for it to be an operative tool, the forecasting algorithm must deliver the fore-
cast ahead of the event, thus, any forecast must meet the positive lead time require-
ment. The lead time is defined as the amount of time between the delivery of the25

forecast and the predicted event. If the forecasting algorithm needs 1 min (computing
time) to deliver a 20 min forecast then the lead time is 19 min.

6939

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/1/6923/2013/nhessd-1-6923-2013-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/1/6923/2013/nhessd-1-6923-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
1, 6923–6959, 2013

Forecasting
wind-driven wildfires

using an inverse
modelling approach

O. Rios et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The lead time principally depends on the number of assimilated fronts and the initial
guess (i.e. iterations required for convergence). The forecasting time (either we ask for
a 15 min or 45 min forecast) also plays a role when the forward model is computationally
demanding. However, due to the simplicity of the forward model used in the case at
hand, its contribution is limited as shown in Fig. 6.5

3.5 Different data contexts

The invariants can be adapted to different data situations. To show the versatility of our
model two different cases with different available data are presented as example.

In the first case wind speed and direction are provided and assumed to be spa-
tially independent – same wind speed and direction for all the fire perimeter – although10

can vary on time. By contrast, in the second case, the fuel depth δ is allowed to vary
spatially, which increases the validity of the model for heterogeneous situations. Both
cases rely on realistic measuring capabilities in a real fire. Wind speed and direction
can be gathered from deployed units as well as from weather stations spread over the
fire area. Regarding the information about fuel, forest managers usually map forest15

areas in advance to list their spatially distributed characteristics. New techniques re-
cently brought into the field such as the use of LIDAR – Light Detection and Ranging
(Mutlu et al., 2008), potentially increases the accuracy and availability of this informa-
tion and opens the door for preparing operative measuring systems for the situations
when these data are not known.20

3.5.1 Wind speed as sensor data

The first step is to recast the invariants related to wind speed and wind direction which
can be directly done by reversing Iu and Iθ into input variables. Then Iw is redefined
using the wind factor functional relation from Rothermel:

Φw = CUB
(
β
β0

)−E
= P (σ,β,wo,δ) ·UB = Iw1

·U Iw2 (19)25
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Thus,

Iw1
= P (σ,wo,δ) = C

(
β
β0

)−E
(20)

Iw2
= F (σ) = B (21)

Where C and B are calculated with experimental correlations derived by Rothermel5

and β,β0 are the nominal and the optimal packing ratio respectively.
The other invariant Imf remain the same and, thus, the model is described by three

invariants plus the simulation time T .

M(Iw1
, Iw2

, Imf,T ) =

{
RoS =Rt(Iw1

, Iw2
, Imf)

{x,y} =H(RoS, Iu, Iθ,T )
(22)

10

The reason why three degrees of freedom are needed despite the new assimilated
data is because the effect of the wind in the RoS and the firelets shape is still unknown
as it depends on several fuel parameters as such the packing ratio or ovendry bulk
density. However, the important difference is that now the wind is allowed to change (is
not an invariant any more) and, therefore, the forecasting algorithm can deal with more15

complicated – less idealised – situations.
Despite this recast being, to some extent, more complicated than the previous one,

it allows to identify the invariants more accurately than the previous recast. Neverthe-
less, on average, more iterations are needed to reach the required convergence which
slightly increases the computing time. Figure 7 shows the perfect convergence of the20

invariants to true value with this recast.
Besides considering observed values for wind speed and direction, the forecast al-

gorithm can also consider meteorological predictions to deliver a more accurate fore-
cast when these quantities vary. To illustrate this, five fire fronts are assimilated during
25 min (at a frequency of 1 fire front every 5 min). The invariants are perfectly identified25

with six iterations as shown in Fig. 7. Then, a forecast is launched for the next 25 min
with a synthetic prediction of wind speed and direction.
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3.5.2 Fuel depth as input data

We consider now the case where fuel depth information is available and varies spatially.
To cast the new invariants we use the information obtained with a sensitivity analysis
performed on Rothermel’s model. The analysis reveals that RoS is linearly related to
fuel depth δ as first approximation. Thus, the RoS can be written now as:5

RoS = Imfw ·δ(x,y) (23)

where fuel depth δ(x,y) varies spatially.
The wind contribution is now included in RoS = Imfw and therefore we have to create

a new parameter that accounts for the shape of the elliptical firelets (i.e. the eccentric-
ity): ILB. Where LB stands for length-to-breadth ratio. This invariant also depends on10

wind speed and, thus, it is not independent of Imfw. This does not affect the capacity of
our forecasting model since ILB could be interpreted as a shaping factor and the way it
is used in the forward model (only in the Huygens expansion part) prevents it from be-
ing mixed with Imfw. As in the previous cases the wind direction invariant Iθ is required
to close the invariants cast.15

The influence of assimilating space dependent variable is that RoS now also de-
pends on the location. This adds an extra non-linear behaviour to the model, since
now when the fire front location changes, the RoS changes as well. Despite this higher
complexity, our algorithm handles it in the optimisation loop and correctly matches the
observations (Fig. 8) and identifies the invariants (Fig. 9).20

3.6 Lead time

The lead time for the different implementations discussed above is investigated by
assimilating different number of fire fronts and recording the computing time to deliver
a 30 min forecast. The number of assimilated fronts is not the total assimilating time
since it depends on the assimilation frequency (i.e. the number of assimilations per unit25

of time). Changing this frequency has a minor influence on the computing time since
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its contribution is linear in our forward model but might be important if more complex
forward models are to be used (such as CFD based, for example). The Rothermel’s
variables that generate the synthetic data and the educated guess were kept constant
for all the scenarios when they were not an input parameter (as wind speed, wind
direction or fuel depth).5

Figure 10 depicts the computing time vs. the number of assimilated fronts. The in-
variant cast for the situation when wind speed and direction are known parameters (red
solid line) turns out to be the faster case. As expected, decreasing the number of invari-
ants to be identified, speeds up the model since the dimension of the matrices involved
in the optimisation process decreases. The exception is when fuel information is input10

(light blue lines). The spatial dependency of the fuel depth and the fact that RoS has
to be recalculated in every node raises the computing time and thus, this case is the
slower one. The effect of feeding the algorithm with wind speed becomes noticeable
above 16 assimilated fronts when the complexity of the fire fronts shapes increases the
number of iterations required to reach convergence.15

Despite these significant differences, when eight fronts are assimilated the forecast
is delivered in less than one min and even when 24 fronts are assimilated the lead time
is well above 25 min for a 30 min forecast.

A laptop with dual processor core of 2.2 GHz is used as a computational tool since
(as stated in the initial requirements) the forecasting algorithm must be suitable for20

desktop computers.

3.7 Effect of errors in the data

The fact that the synthetic data is generated with a Rothermel’s–Huygens model im-
plies that it exists at least one true invariant vector that exactly generates the observed
fronts. However, this is not the case in reality since the forward model used is only25

an approximation of the real fire dynamics. Thus, to test the forecasting algorithm in
a situation where such a true vector does not exist any more (thus, perfect conver-
gence is then impossible), the synthetic data used in the fuel depth input data case
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(Sect. 3.5.2) have been randomly perturbed with an error uniformly distributed in the
range of [0±10] m. Apart from exploring the response of the forecasting algorithm in
a case where the forward model cannot properly describe the fire locations, this test
can be seen as a sensitivity check of the errors and accuracy involved in data acquisi-
tion.5

As expected, the best optimisation does not match now the observations perfectly
and, thus, the cost function converges to a value of 2500 m2 instead of zero (see
Fig. 11). Despite this fact the convergence of the invariants – towards the values used
to generate the unperturbed synthetic data – is still reached with an error lower than
5 %.10

Figure 12 shows the observed fronts and the corresponding optimisation after four
iterations. The sharp corners in the observed perimeters are due to both; the random
distribution of the fuel depth and the added error. More tests performed while extending
the error added to observation demonstrate that the algorithm manages to assimilate
the observations with up to 20 m of perturbations. The invariants also converged in this15

case which demonstrates the potential of this forecasting algorithm even when scarce
and inaccurate data are available. These results open the door to further development
the algorithm in these circumstances.

4 Conclusions

A simple but powerful methodology to forecast wildfire dynamics based on data assim-20

ilation is implemented and explored focusing on wind-driven wildfires. The algorithm
framework is general enough to be valid to different sensor data or forward models. In
the work at hand the forward model is composed by Rothermel’s spread theory and
Huygens expansion and is challenged with synthetically generated front locations. The
forecasting algorithm uses direct automatic differentiation and a tangent linearization25

of the forward model to solve the optimisation problem. This strategy showed great
efficiency finding the invariants within less than 10 iterations (runs of TLM) although
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special attention must be taken regarding multiplicity in the determination of the invari-
ants. Multiplicity can be avoided by extending the forward model so it predicts extra
parameters (as flame hight or heat release rate) and assimilate them, or including ex-
tra information about the system to break the multiplicity. The later was implemented
and illustrated in 2 different scenarios. All the invariants were then correctly identified,5

even when the first guess greatly differed from the true value. All the implementations
had a positive lead time (time ahead of the event). The most computing expensive im-
plementation is the one that uses fuel depth since the RoS varies in each node of the
front.

After all the evaluations performed to the different implementation of the operational10

forecasting algorithm, we can conclude that we set up the framework for a promising
forecasting tool and proposed first simple yet powerful implementations.

The next required step to make this algorithm operational is to check it with real data.
To keep developing the methodology some identified limitations should be tackled as
spotting fires – which does not follow classical (i.e. Rothermel’s) fire spread – and the15

capacity of the forecasting algorithm to deal with uncertainties caused by the lack of
reliable data, and deliver probabilistic values as outputs. To pursue this, we propose
to explore more sophisticated forward models (pyrolisis, CFD) and greatly increase
the number of invariants to several dozen. Then the automatic direct differentiation
should be switched to adjoint differentiation (adjoint modelling approach) to keep the20

low computational cost requirement.
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The effect of the wind speed on the fire spread also de-
pends on fuel properties such as layout, bulk density, surface-
area to volume ratio and fuel depth. Its effect is embedded in
Iw as:

Iw =K(σ,Wo,δ) ·UB−1 (4)

Where B is an empirical coefficients determined by
Rothermel (1972).

2.2 Huygens principle

Although Rothermel’s model can estimate the RoS of any
point, it is an mean value for the head fire only (Rother-
mel, 1972) and does not inform about different directions of
spread. Therefore, it is not sufficient in predicting the fire
front shape and location. In parallel to RoS estimation, some
other model must be used to represent the fire perimeter ex-
pansion. We used Huygens principle -originally postulated
to explain light wavefront propagation- with elliptical expan-
sion, as proposed by Richards (1993). Applying it to wild-
fire, this principle considers every point in the fire perimeter
at timet as an new ignition source that spreads during a time
dt following an elliptical template shape -known asfirelet-.
The corresponding fire front line at timet+ dt is the outer
curve that envelopes the firelets centred on the rear focus as
showed in figure 1.

420 440 460 480 500 520 540 560 580
−40

−20
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m

Fig. 1. Example of huygens expansion with elliptical firelets (grey
lines) from an ignition point (red dot in the center). Ten firefronts
with heterogeneous fuel depth and changing wind speed and direc-
tion at every time step. This Rothermel-Huygens model is also used
in FARSITE (Finney (1998)).

The details of the Huygens firelet model can be found in
Richards (1990) and Richards (1993), but an overview of the
main concepts and equations is provided here.

Considering the initial ignition point situated at{X0,Y0}
and using a parameterisation variables ∈ [0− 2π], he
{(xi(t),yi(t)} coordinates of fire front vertexes can be ana-
lytically calculated by integrating a set of partial differential

equations:
x(s, t̂) =X0+

t̂
∫

0

(

a2(t)cosθ(t)cos(K)+ b2(t)sinθ(t)sin(K)
√

a2(t)cos2(K)+ b2(t)sin2(K)
· c(t)sinθ(t)

)

dt

(5)

y(s, t̂) = Y0+

t̂
∫

0

(

a2(t)sinθ(t)cos(K)+ b2(t)cosθ(t)sin(K)
√

a2(t)cos2(K)+ b2(t)sin2(K)
· c(t)cosθ(t)

)

dt

(6)

Where,

K = θ(t)+ s (7)

Whereθ is the wind direction andb and c are lateral and
backwards propagation velocities that can vary spatially are
calculated by imposing Rothermel’s rate of spread for the
head fire from the new ignition point:

b(s,t)+ c(s,t)≡RoS(s,t) (8)

The lateral front velocitya, however, is directly related to the
eccentricity of the firelet. It was originally estimated using
an experimental correlation found by Anderson (1983) that
relates the ratio between the major and the minor firelet’s
axis, and thus, the ratio betweenb anda (independent of the
time step∆t used). Its value depends on the wind speed (U )
in accordance with the equation:

a

b
= 0.936e0.2566U +0.461e−0.1548U − 0.397≡ LB (9)

Note that the power coefficients in this empirical equation
have units of [s/m] andLB is called length-to-breadth ratio
and accounts for the eccentricity of the elliptical firelets.
The constant 0.397 is a modification of Anderson’s original
formula to ensure that the fire expands circularly (LB = 1)
under no-wind conditions (U = 0).

Once the length-to-breadth ratio is known,a,b,c veloci-
ties can be calculated using eq. 8 and the elliptical geometry
properties:

a=RoS
1+ 1/HB

2LB
(10)

b=RoS
1+ 1/HB

2
(11)

c= b− RoS

HB
(12)

where,

HB =
LB+

√
LB2 − 1

LB−
√
LB2 − 1

Fig. 1. Example of huygens expansion with elliptical firelets (grey lines) from an ignition point
(red dot in the center). Ten fire fronts with heterogeneous fuel depth and changing wind speed
and direction at every time step. This Rothermel–Huygens model is also used in FARSITE
(Finney, 1998).
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which is a linear system that can be easily solved by using a
QR factorisation with column pivoting (Nocedal and Wright
(1999)).

2.6 Automatic Differentiation

Calculating the jacobian multiplication termHT
i Hi in eq.

18 requires partially differentiating the model with respect to
the different invariants. This has to be done p×2n× t times,
where p is the number of invariants used, 2n the coordinates
of the fire front and t the assimilating time.
The simplest way to numerically evaluate the jacobian is by
finite centred differences:

H
j
k,i =

∂Mj
i (p

b)

∂pk
≃ Mj

i (p
b + ǫk)−Mi(p

b)

‖ ǫk ‖

whereǫk ∈ R
p = {0,0, ..ǫ, ..0} has a perturbationǫ in the

positionk.

Despite its simplicity, this approach has multiple down-
sides: The forward model has to be evaluated twice each
time, andǫ should be reduced as much as possible which
introduces numerical truncation errors whenǫ is too small
(Griewank (2000)). For these reasons we chose an automatic
differentiation approach.

Automatic differentiation allows us to directly calculate
the jacobian matrixHi (normally calledTangent Linearor
Forward) orHT

i (calledAdjoint). It consists in iteratively ap-
plying the chain rule used in differentiation calculus to script
the differentiated model that gives all the partial derivative.

Automatic differentiation is also suitable to differentiate
numerical integral evaluations -as is our case- since all the
statements can be split down to elemental mathematical
operations.

The tangent linear differentiation is preferable when the
number of observables (i.e. model outputs) is much larger
than the quantity of independent variables (i.e. the numberof
invariants in our case). By contrast, calculating the Adjoint
Differentiation is more convenient and efficient when there
is a large number of independent variables. Therefore, in the
present work, we use forward differentiation approach.
Nevertheless, in the future expansion of the methodology, if
the number of degrees of freedom of the forward model (i.e.
number of invariants) is increased, the Adjoint Automatic
Differentiation should be explored to keep the computational
efficiency and maximise the lead time.

2.7 Forecasting program structure

The following diagram (figure 2) summarises the principal
parts of the assimilating and inverse modelling program:

Fire Front

Observation

Invariants' 

First Guess

Cost Function 
Meets

Convergece? 
No 

Yes 

Invariants  

Forecast

TLM

Differentiated

Forward Model

New set of Invariants 

Optimization loop

Forward ModelAdditional Data

Forward Model Rothermel's

Huygens'

Predictions

Measurements

Fig. 2. Program structure flow diagram. Orange boxes are the re-
quired inputs, green box is the output and red box shows additional
inputs.

First, fire front positionsȳ are assimilated during a
specific period of time (called assimilation windows).
Meanwhile, an educated guess estimates the first set of
invariantspb. This first guess is based on roughly estimated
data and the influence of the model is explored in section
3.1. This invariants guess is input into the forward model
together with the assimilated time information and one fire
front position (or the initial ignition point)M(pb,T,y0).
The consequent first prediction set of frontsỹi is compared
with the assimilated data by means of the cost function
J (ỹ− ȳ) (see eq. 16). If the fronts do not match (i.e. the
cost function is not zero)the program starts the optimisation
iteration loop.

The first statement in the loop is to run the differentiated
forward model to calculate the jacobian terms in eq. 16. The
solution to this equation gives a new set of invariantspk that
is input to the forward model again to get a new estimated
set of fire fronts. If the convergence criteria are reached,then
the best estimated invariants vector is found (p∗) and thus the
forecast is delivered by running the forward model with the
forecasting time. Otherwise, the loop is iterated again.
The fact that a loop is needed to estimate the invariants re-
duces the inaccuracy added by applying a tangent linear ap-
proach to a non-linear model since in every new iteration the
model is linearized (i.e. the differentiated forward modelis
run) in a new state point (pk+1). In addition, if any of the
new invariant values in the vectorpk+1 exceeds the physical
range, its value is set back to the initial guess to prevent non-
physical results.
Note that every time that the differentiated forward model is
run, the forward model is also evaluated. Thus the forward
model is always evaluated at the same time as the differenti-
ated model, speeding up the simulations and enabling the use
of complex forwards models.

Regarding convergence, two criteria can be requested. The
first is to state the maximum discrepancy between simulated
and observed fire perimeters (i.e. the value of the cost
function) whereas the second imposes convergence between
consecutive estimations of the invariant vector. While the

Fig. 2. Program structure flow diagram. Orange boxes are the required inputs, green box is the
output and red box shows additional inputs.
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Fig. 3. Guess, observation, and optimisation iterations of fire fronts
in an x-y plane (plan view of a wildfire). The black triangles are
the 15 observed positions. The red dashed lines are the fire fronts
generated with the first guess and the dashed lines are the following
iterations of invariants. The last iteration is depicted with green solid
lines.
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Fig. 4.Convergence of cost function (dashed line, right axis) and in-
dividual convergence of each invariant to the true value (solid lines,
left axis) as a percentage difference. Assimilation windows = 15
min. (1 assimilation/min)

ing example above- we assimilate front positions during 3
min. (i.e. 3 front positions). The cost functions rapidly drops
to zero but in this case the value estimated for bothImf and
Iw differs from the true value by 10%. The reason is that now
the initial cost function has a lower absolute value since the
propagation of an inaccurate estimation is truncated in time
and therefore the effects of an incorrect assimilation are hid-
den. It is worth mentioning that despite the possibility ofImf

andIw misconverging, RoS is always correctly estimated as
it has no multiplicity in the forward model and only one value
can fit the observations.
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Fig. 5. Convergence of cost function (dashed line, right axis) and
individual convergence of each invariant to true value (solid line,
left axis). Assimilation windows= 3 min. (1 assimilation/ min).

One way to deal with multiplicity is by defining only one
invariant for the RoS. This approach, however, does not al-
low for the forecasting algorithm to be ameliorated if any ex-
tra data is available (as will be done in section 3.4) since no
information about particular contributions is achieved. Thus,
a more interesting way to diminish multiplicity is to recast
the invariants and input extra data in a way that the invariants
become functionally independent. For instance, if the fuel-
moisture invariant is somehow multiplied by any measurable
quantity as fuel depth or moisture content that varies spa-
tially or over time, then, its value is no longer exchangeable
with the wind factor. The same strategy could be used for
this second invariant if wind speed is known. This approach
is successfully explored in the following sections.
The third way to deal with multiplicity is by assimilating ad-
ditional quantities that are predicted by the forward model.
It is worth pointing out the difference between inputting ad-
ditional values and assimilating more information. The first
consists of extra inputs to run the forward model and allows
it to handle more complex situation. Examples of this could
be information of moisture content, fuel properties or wind
speed. Data assimilation, in contrast, requires the quantifi-
able information to be the output of the forward model. Thus,
in our case, only the positions of the fronts can be assimilated
but the forward model can be complemented so it delivers ad-
ditional characteristics such as flame height or fire intensity.
By assimilating this additional information the invariantmul-
tiplicity is narrowed down since each invariant is then partof
different equations and they are no longer dependent.

3.4 Forecasting the fire spread

Once the invariants are identified the forecasting algorithm
predicts the location of the fire by running the forward model
again with the correct invariants. The forecast will be valid

Fig. 3. Guess, observation, and optimisation iterations of fire fronts in an x–y plane (plan view
of a wildfire). The black triangles are the 15 observed positions. The red dashed lines are the
fire fronts generated with the first guess and the dashed lines are the following iterations of
invariants. The last iteration is depicted with green solid lines.
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Fig. 3. Guess, observation, and optimisation iterations of fire fronts
in an x-y plane (plan view of a wildfire). The black triangles are
the 15 observed positions. The red dashed lines are the fire fronts
generated with the first guess and the dashed lines are the following
iterations of invariants. The last iteration is depicted with green solid
lines.
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Fig. 4.Convergence of cost function (dashed line, right axis) and in-
dividual convergence of each invariant to the true value (solid lines,
left axis) as a percentage difference. Assimilation windows = 15
min. (1 assimilation/min)

ing example above- we assimilate front positions during 3
min. (i.e. 3 front positions). The cost functions rapidly drops
to zero but in this case the value estimated for bothImf and
Iw differs from the true value by 10%. The reason is that now
the initial cost function has a lower absolute value since the
propagation of an inaccurate estimation is truncated in time
and therefore the effects of an incorrect assimilation are hid-
den. It is worth mentioning that despite the possibility ofImf

andIw misconverging, RoS is always correctly estimated as
it has no multiplicity in the forward model and only one value
can fit the observations.
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Fig. 5. Convergence of cost function (dashed line, right axis) and
individual convergence of each invariant to true value (solid line,
left axis). Assimilation windows= 3 min. (1 assimilation/ min).

One way to deal with multiplicity is by defining only one
invariant for the RoS. This approach, however, does not al-
low for the forecasting algorithm to be ameliorated if any ex-
tra data is available (as will be done in section 3.4) since no
information about particular contributions is achieved. Thus,
a more interesting way to diminish multiplicity is to recast
the invariants and input extra data in a way that the invariants
become functionally independent. For instance, if the fuel-
moisture invariant is somehow multiplied by any measurable
quantity as fuel depth or moisture content that varies spa-
tially or over time, then, its value is no longer exchangeable
with the wind factor. The same strategy could be used for
this second invariant if wind speed is known. This approach
is successfully explored in the following sections.
The third way to deal with multiplicity is by assimilating ad-
ditional quantities that are predicted by the forward model.
It is worth pointing out the difference between inputting ad-
ditional values and assimilating more information. The first
consists of extra inputs to run the forward model and allows
it to handle more complex situation. Examples of this could
be information of moisture content, fuel properties or wind
speed. Data assimilation, in contrast, requires the quantifi-
able information to be the output of the forward model. Thus,
in our case, only the positions of the fronts can be assimilated
but the forward model can be complemented so it delivers ad-
ditional characteristics such as flame height or fire intensity.
By assimilating this additional information the invariantmul-
tiplicity is narrowed down since each invariant is then partof
different equations and they are no longer dependent.

3.4 Forecasting the fire spread

Once the invariants are identified the forecasting algorithm
predicts the location of the fire by running the forward model
again with the correct invariants. The forecast will be valid

Fig. 4. Convergence of cost function (dashed line, right axis) and individual convergence of
each invariant to the true value (solid lines, left axis) as a percentage difference. Assimilation
windows = 15 min (1 assimilationmin−1).
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iterations of invariants. The last iteration is depicted with green solid
lines.
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Fig. 4.Convergence of cost function (dashed line, right axis) and in-
dividual convergence of each invariant to the true value (solid lines,
left axis) as a percentage difference. Assimilation windows = 15
min. (1 assimilation/min)

ing example above- we assimilate front positions during 3
min. (i.e. 3 front positions). The cost functions rapidly drops
to zero but in this case the value estimated for bothImf and
Iw differs from the true value by 10%. The reason is that now
the initial cost function has a lower absolute value since the
propagation of an inaccurate estimation is truncated in time
and therefore the effects of an incorrect assimilation are hid-
den. It is worth mentioning that despite the possibility ofImf

andIw misconverging, RoS is always correctly estimated as
it has no multiplicity in the forward model and only one value
can fit the observations.
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Fig. 5. Convergence of cost function (dashed line, right axis) and
individual convergence of each invariant to true value (solid line,
left axis). Assimilation windows= 3 min. (1 assimilation/ min).

One way to deal with multiplicity is by defining only one
invariant for the RoS. This approach, however, does not al-
low for the forecasting algorithm to be ameliorated if any ex-
tra data is available (as will be done in section 3.4) since no
information about particular contributions is achieved. Thus,
a more interesting way to diminish multiplicity is to recast
the invariants and input extra data in a way that the invariants
become functionally independent. For instance, if the fuel-
moisture invariant is somehow multiplied by any measurable
quantity as fuel depth or moisture content that varies spa-
tially or over time, then, its value is no longer exchangeable
with the wind factor. The same strategy could be used for
this second invariant if wind speed is known. This approach
is successfully explored in the following sections.
The third way to deal with multiplicity is by assimilating ad-
ditional quantities that are predicted by the forward model.
It is worth pointing out the difference between inputting ad-
ditional values and assimilating more information. The first
consists of extra inputs to run the forward model and allows
it to handle more complex situation. Examples of this could
be information of moisture content, fuel properties or wind
speed. Data assimilation, in contrast, requires the quantifi-
able information to be the output of the forward model. Thus,
in our case, only the positions of the fronts can be assimilated
but the forward model can be complemented so it delivers ad-
ditional characteristics such as flame height or fire intensity.
By assimilating this additional information the invariantmul-
tiplicity is narrowed down since each invariant is then partof
different equations and they are no longer dependent.

3.4 Forecasting the fire spread

Once the invariants are identified the forecasting algorithm
predicts the location of the fire by running the forward model
again with the correct invariants. The forecast will be valid

Fig. 5. Convergence of cost function (dashed line, right axis) and individual conver-
gence of each invariant to true value (solid line, left axis). Assimilation windows = 3 min
(1 assimilationmin−1).
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as long as the conditions present when assimilating the data
will remain constant.
In order for it to be an operative tool, the forecasting algo-
rithm must deliver the forecast ahead of the event, thus, any
forecast must meet the positive lead time requirement. The
lead time is defined as the amount of time between the deliv-
ery of the forecast and the predicted event. If the forecasting
algorithm needs 1 min. (computing time) to deliver a 20 min.
forecast then the lead time is 19 min.
The lead time principally depends on the number of assim-
ilated fronts and the initial guess (i.e. iterations required for
convergence). The forecasting time (either we ask for a 15
min. or 45 min. forecast) also plays a role when the forward
model is computationally demanding. However, due to the
simplicity of the forward model used in the case at hand, its
contribution is limited as shown in figure 6.
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Fig. 6.Computing time required for 4 different forecasting windows
(10, 20, 30 and 40min) versus the number of assimilated fire fronts

3.5 Different data contexts

The invariants can be adapted to different data situations.To
show the versatility of our model two different cases with
different available data are presented as example.
In the first case wind speed and direction are provided and
assumed to be spatially independent -same wind speed and
direction for all the fire perimeter- although can vary on time.
By contrast, in the second case, the fuel depthδ is allowed to
vary spatially, which increases the validity of the model for
heterogeneous situations. Both cases rely on realistic mea-
suring capabilities in a real fire. Wind speed and direction
can be gathered from deployed units as well as from weather
stations spread over the fire area. Regarding the information
about fuel, forest managers usually map forest areas in ad-
vance to list their spatially distributed characteristics. New
techniques recently brought into the field such as the use of
LIDAR -Light Detection and Ranging- (Mutlu et al. (2008)),
potentially increase the accuracy and availability of thisin-

formation and opens the door for preparing operative measur-
ing systems for the situations when these data are not known.

3.5.1 Wind speed as sensor data

The first step is to recast the invariants related to wind speed
and wind direction which can be directly done by reversing
Iu andIθ into input variables. ThenIw is redefined using the
wind factor functional relation from Rothermel:

Φw = CUB

(
β

β0

)
−E

= P(σ,β,w0, δ) ·UB = Iw1 ·U Iw2

(19)

Thus,

Iw1 = P(σ,w0, δ) = C

(
β

β0

)
−E

(20)

Iw2 = F(σ) =B (21)

WhereC andB are calculated with experimental correla-
tions derived by Rothermel andβ,β0 are the nominal and the
optimal packing ratio respectively.
The other invariantImf remain the same and, thus, the model
is described by three invariants plus the simulation timeT .

M(Iw1, Iw2, Imf ,T ) =

{
RoS =Rt(Iw1, Iw2, Imf )

{x,y}=H(RoS,Iu, Iθ,T )

(22)

The reason why three degrees of freedom are needed despite
the new assimilated data is because the effect of the wind
in the RoS and the firelets shape is still unknown as it de-
pends on several fuel parameters as such the packing ratio or
ovendry bulk density. However, the important difference is
that now the the wind is allowed to change (is not an invari-
ant any more) and, therefore, the forecasting algorithm can
deal with more complicated -less idealised- situations.
Despite this recast being, to some extent, more complicated
than the previous one, it allows to identify the invariants more
accurately than the previous recast. Nevertheless, on average,
more iterations are needed to reach the required convergence
which slightly increases the computing time. Figure 7 shows
the perfect convergence of the invariants to true value with
this recast.
Besides considering observed values for wind speed and

direction, the forecast algorithm can also consider meteoro-
logical predictions to deliver a more accurate forecast when
these quantities vary. To illustrate this, five fire fronts are as-
similated during 25 min. (at a frequency of 1 fire front every
five min). The invariants are perfectly identified with six iter-
ations as shown in figure 7. Then, a forecast in launched for
the next 25 min. with a synthetic prediction of wind speed
and direction.

Fig. 6. Computing time required for 4 different forecasting windows (10, 20, 30 and 40 min) vs.
the number of assimilated fire fronts.
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Fig. 7. Convergence of the cost function and the invariants when
wind speed and direction are used as an input. The peak in the third
iteration of the cost function is due to the correcting algorithm that
resets negative values.

3.5.2 Fuel depth as input data

We consider now the case where fuel depth information is
available and varies spatially. To cast the new invariants we
use the information obtained with a sensitivity analysis per-
formed on Rothermel’s model. The analysis reveals that RoS
is linearly related to fuel depthδ as first approximation. Thus,
the RoS can be written now as:

RoS = Imfw · δ(x,y) (23)

Where fuel depthδ(x,y) varies spatially.
The wind contribution is now included inRoS = Imfw and
therefore we have to create a new parameter that accounts for
the shape of the elliptical firelets (i.e. the eccentricity): ILB .
Where LB stands for length-to-breadth ratio. This invariant
also depends on wind speed and, thus, it is not independent
of Imfw. This does not affect the capacity of our forecasting
model sinceILB could be interpreted as a shaping factor and
the way it is used in the forward model (only in the Huygens
expansion part) prevents it from being mixed withImfw. As
in the previous cases the wind direction invariantIθ is re-
quired to close the invariants cast.
The influence of assimilating space dependent variable is that
RoS now also depends on the location. This adds an extra
non-linear behaviour to the model, since now when the fire
front location changes, the RoS changes as well. Despite this
higher complexity, our algorithm handles it in the optimisa-
tion loop and correctly match the observations (figure 8) and
identifies the invariants (figure 9).

3.6 Lead time

The lead time for the different implementations discussed
above is investigated by assimilating different number of fire
fronts and recording the computing time to deliver a 30 min.
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Fig. 8. Five assimilated fire fronts with 1 minute intervals (black
solid lines). The first guess (red dashed line) is taken to be far from
the true invariants vector to check the algorithm capability to con-
verge to the true invariants value. A ten min. forecast (bluesolid
lines) is also calculated using fuel depth as an input.
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Fig. 9.Cost function and invariants convergence when fuel depth is
input

forecast. The number of assimilated fronts is not the total
assimilating time since it depends on the assimilation fre-
quency (i.e. the number of assimilations per unit of time).
Changing this frequency has a minor influence on the com-
puting time since its contribution is linear in our forward
model but might be important if more complex forward mod-
els are to be used (such as CFD based, for example). The
Rothermel’s variables that generate the synthetic data andthe
educated guess were kept constant for all the scenarios when
they were not an input parameter (as wind speed, wind direc-
tion or fuel depth).
Figure 10 depicts the computing time versus the number of
assimilated fronts. The invariant cast for the situation when
wind speed and direction are known parameters (red solid
line) turns out to be the faster case. As expected, decreasing
the number of invariants to be identified, speeds up the model
since the dimension of the the matrices involved in the opti-
misation process decreases. The exception is when fuel in-

Fig. 7. Convergence of the cost function and the invariants when wind speed and direction are
used as an input. The peak in the third iteration of the cost function is due to the correcting
algorithm that resets negative values.
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Fig. 7. Convergence of the cost function and the invariants when
wind speed and direction are used as an input. The peak in the third
iteration of the cost function is due to the correcting algorithm that
resets negative values.

3.5.2 Fuel depth as input data

We consider now the case where fuel depth information is
available and varies spatially. To cast the new invariants we
use the information obtained with a sensitivity analysis per-
formed on Rothermel’s model. The analysis reveals that RoS
is linearly related to fuel depthδ as first approximation. Thus,
the RoS can be written now as:

RoS = Imfw · δ(x,y) (23)

Where fuel depthδ(x,y) varies spatially.
The wind contribution is now included inRoS = Imfw and
therefore we have to create a new parameter that accounts for
the shape of the elliptical firelets (i.e. the eccentricity): ILB .
Where LB stands for length-to-breadth ratio. This invariant
also depends on wind speed and, thus, it is not independent
of Imfw. This does not affect the capacity of our forecasting
model sinceILB could be interpreted as a shaping factor and
the way it is used in the forward model (only in the Huygens
expansion part) prevents it from being mixed withImfw. As
in the previous cases the wind direction invariantIθ is re-
quired to close the invariants cast.
The influence of assimilating space dependent variable is that
RoS now also depends on the location. This adds an extra
non-linear behaviour to the model, since now when the fire
front location changes, the RoS changes as well. Despite this
higher complexity, our algorithm handles it in the optimisa-
tion loop and correctly match the observations (figure 8) and
identifies the invariants (figure 9).

3.6 Lead time

The lead time for the different implementations discussed
above is investigated by assimilating different number of fire
fronts and recording the computing time to deliver a 30 min.
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Fig. 8. Five assimilated fire fronts with 1 minute intervals (black
solid lines). The first guess (red dashed line) is taken to be far from
the true invariants vector to check the algorithm capability to con-
verge to the true invariants value. A ten min. forecast (bluesolid
lines) is also calculated using fuel depth as an input.
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Fig. 9.Cost function and invariants convergence when fuel depth is
input

forecast. The number of assimilated fronts is not the total
assimilating time since it depends on the assimilation fre-
quency (i.e. the number of assimilations per unit of time).
Changing this frequency has a minor influence on the com-
puting time since its contribution is linear in our forward
model but might be important if more complex forward mod-
els are to be used (such as CFD based, for example). The
Rothermel’s variables that generate the synthetic data andthe
educated guess were kept constant for all the scenarios when
they were not an input parameter (as wind speed, wind direc-
tion or fuel depth).
Figure 10 depicts the computing time versus the number of
assimilated fronts. The invariant cast for the situation when
wind speed and direction are known parameters (red solid
line) turns out to be the faster case. As expected, decreasing
the number of invariants to be identified, speeds up the model
since the dimension of the the matrices involved in the opti-
misation process decreases. The exception is when fuel in-

Fig. 8. Five assimilated fire fronts with 1 min intervals (black solid lines). The first guess (red
dashed line) is taken to be far from the true invariants vector to check the algorithm capability
to converge to the true invariants value. A ten min. forecast (blue solid lines) is also calculated
using fuel depth as an input.
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Fig. 7. Convergence of the cost function and the invariants when
wind speed and direction are used as an input. The peak in the third
iteration of the cost function is due to the correcting algorithm that
resets negative values.

3.5.2 Fuel depth as input data

We consider now the case where fuel depth information is
available and varies spatially. To cast the new invariants we
use the information obtained with a sensitivity analysis per-
formed on Rothermel’s model. The analysis reveals that RoS
is linearly related to fuel depthδ as first approximation. Thus,
the RoS can be written now as:

RoS = Imfw · δ(x,y) (23)

Where fuel depthδ(x,y) varies spatially.
The wind contribution is now included inRoS = Imfw and
therefore we have to create a new parameter that accounts for
the shape of the elliptical firelets (i.e. the eccentricity): ILB .
Where LB stands for length-to-breadth ratio. This invariant
also depends on wind speed and, thus, it is not independent
of Imfw. This does not affect the capacity of our forecasting
model sinceILB could be interpreted as a shaping factor and
the way it is used in the forward model (only in the Huygens
expansion part) prevents it from being mixed withImfw. As
in the previous cases the wind direction invariantIθ is re-
quired to close the invariants cast.
The influence of assimilating space dependent variable is that
RoS now also depends on the location. This adds an extra
non-linear behaviour to the model, since now when the fire
front location changes, the RoS changes as well. Despite this
higher complexity, our algorithm handles it in the optimisa-
tion loop and correctly match the observations (figure 8) and
identifies the invariants (figure 9).

3.6 Lead time

The lead time for the different implementations discussed
above is investigated by assimilating different number of fire
fronts and recording the computing time to deliver a 30 min.
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Fig. 8. Five assimilated fire fronts with 1 minute intervals (black
solid lines). The first guess (red dashed line) is taken to be far from
the true invariants vector to check the algorithm capability to con-
verge to the true invariants value. A ten min. forecast (bluesolid
lines) is also calculated using fuel depth as an input.
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Fig. 9.Cost function and invariants convergence when fuel depth is
input

forecast. The number of assimilated fronts is not the total
assimilating time since it depends on the assimilation fre-
quency (i.e. the number of assimilations per unit of time).
Changing this frequency has a minor influence on the com-
puting time since its contribution is linear in our forward
model but might be important if more complex forward mod-
els are to be used (such as CFD based, for example). The
Rothermel’s variables that generate the synthetic data andthe
educated guess were kept constant for all the scenarios when
they were not an input parameter (as wind speed, wind direc-
tion or fuel depth).
Figure 10 depicts the computing time versus the number of
assimilated fronts. The invariant cast for the situation when
wind speed and direction are known parameters (red solid
line) turns out to be the faster case. As expected, decreasing
the number of invariants to be identified, speeds up the model
since the dimension of the the matrices involved in the opti-
misation process decreases. The exception is when fuel in-

Fig. 9. Cost function and invariants convergence when fuel depth is input.
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formation is input (light blue lines). The spatial dependency
of the fuel depth and the fact that RoS has to be recalculated
in every node raises the computing time and thus, this case is
the slower one. The effect of feeding the algorithm with wind
speed becomes noticeable above 16 assimilated fronts when
the complexity of the fire fronts shapes increases the number
of iterations required to reach convergence.
Despite these significant differences, when eight fronts are
assimilated the forecast is delivered in less than one min.
and even when 24 fronts are assimilated the lead time is well
above 25 min. for a 30 minutes forecast.
A laptop with dual processor core of 2.2GHz is used as
a computational tool since (as stated in the initial require-
ments) the forecasting algorithm must be suitable for desktop
computers.
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Fig. 10.Computing time for all the implementations of the forecast-
ing algorithm studied.

3.7 Effect of errors in the data

The fact that the synthetic data is generated with a
Rothermel’s-Huygens model implies that it exists at least
one true invariant vector that exactly generates the observed
fronts. However, this is not the case in reality since the for-
ward model used is only an approximation of the real fire dy-
namics. Thus, to test the forecasting algorithm in a situation
where such a true vector does not exist any more (thus, per-
fect convergence is then impossible), the synthetic data used
in the fuel depth input data case (section 3.5.2) have been
randomly perturbed with an error uniformly distributed in the
range of[0± 10]m. Apart from exploring the response of the
forecasting algorithm in a case where the forward model can-
not properly describe the fire locations, this test can be seen
as a sensitivity check of the errors and accuracy involved in
data acquisition.
As expected, the best optimisation does not match now the
observations perfectly and, thus, the cost function converges
to a value of2500m2 instead of zero (see figure 11). Despite
this fact the convergence of the invariants -towards the val-
ues used to generate the unperturbed synthetic data- is still
reached with an error lower than 5%.

Figure 12 shows the observed fronts and the corresponding
optimisation after four iterations. The sharp corners in the
observed perimeters are due to both; the random distribution
of the fuel depth and the added error. More tests performed
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Fig. 11. Convergence of cost function (black dashed line) and in-
variants (solid lines) when perturbed data is assimilated

INFO: Assimilation time/period: 32/2 (min) // Itrue:[1.00 20.16 0.79 2.00] // Iguess:[47.01 0.17 

400 450 500 550 600 650 700 750 800

400

450

500

550

600

650

700

750

800

xdistance [m]

yd
is

ta
nc

e 
[m

]

 

 
iteration 4
observed

Fig. 12.Perturbed fire fronts (black lines) correctly assimilated after
4 integrations. The invariants cast used is this of section 3.5.2 where
fuel depth is used as an input and three invariants are identified.

while extending the error added to observation demonstrate
that the algorithm manages to assimilate the observations
with up to 20m of perturbations. The invariants also con-
verged in this case which demonstrates the potential of this
forecasting algorithm even when scarce and inaccurate data
is available. These results open the door to further develop-
ment the algorithm in these circumstances.

4 Conclusions

A simple but powerful methodology to forecast wildfire
dynamics based on data assimilation is implemented and
explored focusing on wind-driven wildfires. The algorithm
framework is general enough to be valid to different sensor

Fig. 10. Computing time for all the implementations of the forecasting algorithm studied.
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formation is input (light blue lines). The spatial dependency
of the fuel depth and the fact that RoS has to be recalculated
in every node raises the computing time and thus, this case is
the slower one. The effect of feeding the algorithm with wind
speed becomes noticeable above 16 assimilated fronts when
the complexity of the fire fronts shapes increases the number
of iterations required to reach convergence.
Despite these significant differences, when eight fronts are
assimilated the forecast is delivered in less than one min.
and even when 24 fronts are assimilated the lead time is well
above 25 min. for a 30 minutes forecast.
A laptop with dual processor core of 2.2GHz is used as
a computational tool since (as stated in the initial require-
ments) the forecasting algorithm must be suitable for desktop
computers.
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Fig. 10.Computing time for all the implementations of the forecast-
ing algorithm studied.

3.7 Effect of errors in the data

The fact that the synthetic data is generated with a
Rothermel’s-Huygens model implies that it exists at least
one true invariant vector that exactly generates the observed
fronts. However, this is not the case in reality since the for-
ward model used is only an approximation of the real fire dy-
namics. Thus, to test the forecasting algorithm in a situation
where such a true vector does not exist any more (thus, per-
fect convergence is then impossible), the synthetic data used
in the fuel depth input data case (section 3.5.2) have been
randomly perturbed with an error uniformly distributed in the
range of[0± 10]m. Apart from exploring the response of the
forecasting algorithm in a case where the forward model can-
not properly describe the fire locations, this test can be seen
as a sensitivity check of the errors and accuracy involved in
data acquisition.
As expected, the best optimisation does not match now the
observations perfectly and, thus, the cost function converges
to a value of2500m2 instead of zero (see figure 11). Despite
this fact the convergence of the invariants -towards the val-
ues used to generate the unperturbed synthetic data- is still
reached with an error lower than 5%.

Figure 12 shows the observed fronts and the corresponding
optimisation after four iterations. The sharp corners in the
observed perimeters are due to both; the random distribution
of the fuel depth and the added error. More tests performed
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Fig. 11. Convergence of cost function (black dashed line) and in-
variants (solid lines) when perturbed data is assimilated

INFO: Assimilation time/period: 32/2 (min) // Itrue:[1.00 20.16 0.79 2.00] // Iguess:[47.01 0.17 

400 450 500 550 600 650 700 750 800

400

450

500

550

600

650

700

750

800

xdistance [m]

yd
is

ta
nc

e 
[m

]

 

 
iteration 4
observed

Fig. 12.Perturbed fire fronts (black lines) correctly assimilated after
4 integrations. The invariants cast used is this of section 3.5.2 where
fuel depth is used as an input and three invariants are identified.

while extending the error added to observation demonstrate
that the algorithm manages to assimilate the observations
with up to 20m of perturbations. The invariants also con-
verged in this case which demonstrates the potential of this
forecasting algorithm even when scarce and inaccurate data
is available. These results open the door to further develop-
ment the algorithm in these circumstances.

4 Conclusions

A simple but powerful methodology to forecast wildfire
dynamics based on data assimilation is implemented and
explored focusing on wind-driven wildfires. The algorithm
framework is general enough to be valid to different sensor

Fig. 11. Convergence of cost function (black dashed line) and invariants (solid lines) when
perturbed data is assimilated.
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Fig. 12. Perturbed fire fronts (black lines) correctly assimilated after 4 integrations. The invari-
ants cast used is this of Sect. 3.5.2 where fuel depth is used as an input and three invariants
are identified.
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