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Abstract

Predictive spatial modelling is an important task in natural hazard assessment and re-
gionalisation of geomorphic processes or landforms. Logistic regression is a multivari-
ate statistical approach frequently used in predictive modelling; it can be conducted
stepwise in order to select from a number of candidate independent variables those
that lead to the best model. In our case study on a debris flow susceptibility model,
we investigate the sensitivity of model selection and quality to different sample sizes
in light of the following problem: on the one hand, a sample has to be large enough to
cover the variability of geofactors within the study area, and to yield stable results; on
the other hand, the sample must not be too large, because a large sample is likely to
violate the assumption of independent observations due to spatial autocorrelation. Us-
ing stepwise model selection with 1000 random samples for a number of sample sizes
between n = 50 and n = 5000, we investigate the inclusion and exclusion of geofactors
and the diversity of the resulting models as a function of sample size; the multiplicity of
different models is assessed using numerical indices borrowed from information theory
and biodiversity research. Model diversity decreases with increasing sample size and
reaches either a local minimum or a plateau; even larger sample sizes do not further
reduce it, and approach the upper limit of sample size given, in this study, by the au-
tocorrelation range of the spatial datasets. In this way, an optimised sample size can
be derived from an exploratory analysis. Model uncertainty due to sampling and model
selection, and its predictive ability, are explored statistically and spatially through the
example of 100 models estimated in one study area and validated in a neighbouring
area: depending on the study area and on sample size, the predicted probabilities for
debris flow release differed, on average, by 7 to 23 percentage points. In view of these
results, we argue that researchers applying model selection should explore the be-
haviour of the model selection for different sample sizes, and that consensus models
created from a number of random samples should be given preference over models
relying on a single sample.
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1 Introduction

Spatial modelling, i.e. finding and applying a model of the spatial distribution of some
phenomenon, can be used for two slightly different purposes: first for regionalisation,
i.e. the transfer of findings from the surveyed area to some larger region. In geomor-
phology, the methodological framework for regionalising the occurrence of a process
or a landform (that is associated with the activity of geomorphic processes) is termed
“predictive geomorphological mapping” (Luoto and Hjort, 2005). It can be helpful in re-
ducing time, cost and, to some degree, subjectivity associated with area-wide geomor-
phological mapping (van Asselen and Seijmonsbergen, 2006). Second, models are ap-
plied to identify areas where the phenomenon might occur in the future (even/especially
where they is no evidence of recent activity). The probability (in space) for any spatial
unit of experiencing an event forms an important factor of the hazard term in quantita-
tive risk assessment, although for a complete formulation one also needs to consider
the temporal probability and the magnitude—frequency relationship of events (Guzzetti
et al., 2006). However, spatial modelling includes some temporal aspect as well. Specif-
ically for landslides, the most important (see Pike et al., 2003, for more) underlying
assumptions are (i) that landslides can occur and/or have occurred in the larger area
wherever the conditions are equal or similar to those in the surveyed area and (ii) that
future events will take place under the same or similar conditions as they did in the past
(e.g. Fabbri et al., 2003).

A number of different approaches are used for spatial modelling of landslides
(Guzzetti et al., 1999); they differ both with respect to spatial (presence/absence of
whole landslide body or parts of it; observations based on different terrain subdivisions)
and methodological aspects (heuristic or rule-based, statistical and physically-based
approaches). For this study, we have chosen a statistical approach on three grounds:

— Heuristic techniques achieve good results in some cases (e.g. Zimmermann et al.,
1997; van den Eeckhaut et al., 2010), especially where the data base is too poor
for the application of statistical approaches. Yet they involve a high degree of
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subjectivity (Davis, 1986) as they rely on the quality of expert knowledge. Hence,
it is not surprising that physically-based and statistical models are more common
than rule-based methods.

— Models based on quantitative approaches, i.e. physically-based and statistical
ones, are data-based, more objective and reproducible, and “calibration and vali-
dation of the models support transparency and rationality of the prediction” (Pis-
tocchi et al., 2002, p. 766). The process of establishing a quantitative model
should be guided by, but is not only based on, a-priori understanding of the target
phenomenon; moreover, it also implies an analytical procedure which might lead
to insights in the relative importance of influencing factors.

— Physically-based approaches (Montgomery and Dietrich, 1994; Pudasaini et al.,
2005) aim at modelling the processes which lead to failure. Landslide models
tend to be highly parametrized, i.e. they require a large number of parameters.
The values of these parameters are difficult or even impossible to obtain, espe-
cially for large areas and considering their spatiotemporal variability. In contrast,
statistical models do not simulate in detail the processes leading to failure, but
rely on statistical relationships between its occurrence and spatial factors (directly
measurable or “substituted” by proxy data). In debris-flow research, where ba-
sic conditions of the process are incompletely understood, statistical approaches
are often favoured over physically-based ones (Wichmann, 2006). Carrara et al.
(2008) compare physically-based and statistical models for regional debris flow
susceptibility; although all models yielded comparable results, a statistical ap-
proach (discriminant analysis) was considered the most suitable method.

In this study, we apply the method of multivariate logistic regression to the identification

of potential debris flow initiation sites in a high mountain catchment; the spatial unit is

the raster cell (as opposed to, e.g., slope units, see van den Eeckhaut et al., 2009).

Together with discriminant analysis (e.g. Baeza and Corominas, 2001), soft comput-

ing techniques such as “weights of evidence” (Bonham-Carter, 1994; Neuh&user and
2734

NHESSD
1,2731-2779, 2013

The effect of sample
size on a debris flow
susceptibility model

T. Heckmann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/1/2731/2013/nhessd-1-2731-2013-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/1/2731/2013/nhessd-1-2731-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Terhorst, 2006) or “certainty factor” (e.g. Binaghi et al., 1998), and artificial neural net-
works (e.g. Liu et al., 2006), logistic regression belongs to the most frequently chosen
approaches to spatial modelling of landslides (Atkinson et al., 1998; Ohlmacher and
Davis, 2003; Begueria and Lorente, 2003; Brenning, 2005; Ayalew and Yamagishi,
2005; Begueria, 2006b; van den Eeckhaut et al., 2006; Meusburger and Alewell, 2009;
van den Eeckhaut et al., 2010; Atkinson and Massari, 2011; Ruette et al., 2011; Guns
and Vanacker, 2012). Recently, some published studies dealt specifically with debris
flow susceptibility models on the regional scale; for the identification of potential release
areas, a range of different approaches has been used, including heuristic (Horton et al.,
2008; Kappes et al., 2011; Fischer et al., 2012) and statistical ones (Heckmann and
Becht, 2009; Blahut et al., 2010b,a). The so delineated release areas can be used as
starting points for models that predict the pathways, lateral extent, runout length and
other relevant properties of debris flows (e.g. Blahut et al., 2010b; Kappes et al., 2011),
which is important for hazard assessment and has also been used in geomorphologi-
cal applications, for example research on sediment cascades (Wichmann et al., 2009;
Heckmann and Schwanghart, 2013). In order to use a model for prediction, a sample
has to be drawn, and the model parameters of the population are estimated based on
that sample. Sampling is essential because event and non-event units show spatial au-
tocorrelation (see Sect. 1.2), and dependent data lead too easily to the rejection of null
hypotheses and the incorrect declaration of parameters as significant (Legendre, 1993,
explains this for ecological models, see also van den Eeckhaut et al., 2006). Using
a stepwise approach, the predictor variables for an effective, yet parsimonious model
are selected from a set of candidate geofactors (Sect. 3.2.2). Brenning (2005) found
that logistic regression with stepwise variable selection yielded the lowest error rates
in his comparison of different statistical methods. The choice of predictor variables will
understandably depend on the sample (Guns and Vanacker, 2012), and it is also clear
that the aim of every susceptibility model should be a reliable prediction that does not
too much depend on the sample taken to select the variables and estimate the model
parameters. Several previous studies do not involve sampling at all (e.g. Ohlmacher
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and Davis, 2003; Ruette et al., 2011), i.e. they use all available data for estimating the
model parameters. The majority of studies uses only one single sample (e.g. Atkinson
et al., 1998; van den Eeckhaut et al., 2006; Meusburger and Alewell, 2009), the size of
which usually depends on the number or size (in terms of raster cells) of landslide initi-
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ation zones (see Sect. 1.1). Recognising the dependence of model results on the sam-
ple, Brenning (2005) takes 50 samples to compare error rates across different sample
sizes and statistical methods. Begueria (2006a) and Guns and Vanacker (2012) apply
50-fold replication in order to estimate the robustness of the modelling result with re-
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spect to sampling, van den Eeckhaut et al. (2010) calculate an ensemble of 25 models
from different samples of their data. Hjort and Marmion (2008) conduct repeat sam-
pling to explore the influence of sample size on the predictive power of (among others)
multiple logistic regression models for predictive geomorphological mapping.

The present study has two main foci that will be developed in detail in the following
subsections: first, we explore the sensitivity of model selection to sample size. Sec-
tions 1.1 and 1.2 will explain why the sample size must neither be too small nor too
large. Here, the main aim of the study is to investigate if an “optimal” sampling size can
be found as a compromise between samples too small and too large. Second, we quan-
tify the uncertainty inherent in a stepwise modelling approach, with respect to (i) the
selection of geofactors, (ii) model parameters, and (iii) the spatial pattern of uncertainty
in the resulting susceptibility map. This study aim will be developed in Sect. 1.3.

1.1 Constraints on sample size 1: why the sample must not be too small

In inferential statistics, confidence intervals are calculated for population parameters
based on a sample; the width of the former depends, besides the desired confidence
level, on the sample size. Small samples result in large standard errors and wide confi-
dence intervals for the population parameters. In case of regression parameters, small
samples cause the estimation to be uncertain, and there is a higher risk of parameters
being insignificant (because the respective confidence interval includes zero). With re-
spect to replicate sampling and model selection, it is expected that the diversity of
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models (and hence the dependence of the models on the sample) will be large in this
case.

Moreover, in a large study area, a small sample is unlikely to cover the variability of
geofactors, especially if several of them are part of the model. Here, a larger sample
would include more information on the study area and would possibly provide a better
model. There are rules of thumb that estimate the minimum sample size for a regres-
sion analysis on the basis of a constant (e.g. > 50), of the ratio of observations and
predictor variables, or of a combination of the latter; such rules have been explored
in light of significance, power and effect size, e.g. by Green (1991), who found “some
support” for the rule of thumb n.,;, > 50 + 8m where n,;, is the minimum sample size
and m is the number of predictor variables.

In this study, when we speak of sample size, we always address a sample of “non-
events”, i.e. a sample of raster cells without debris flow initiation. If a random sample
referred to all raster cells, including event and non-event cells, the number of event cells
in the sample would certainly be smaller than in the original inventory, which would
cause a loss of information particularly for those cells that represent the target of the
modelling exercise; therefore, all initiation areas will be represented in the models, and
only the size of the non-event sample is varied in our investigation.

1.2 Constraints on sample size 2: why the sample must not be too large

While it is intuitive that larger samples contain more information that can be used by
the model, and the model might be better, there are several reasons why the sample
size must not be too large either.

King and Zeng (2001) argue that the non-event sample size has to be kept as small
as possible because of the disproportionate cost and effort of acquiring data for many
variables and observations not related to the target phenomenon (event). Like in politi-
cal science, the acquisition of observations is costly in ecology (with the application of
regression models to the spatial prediction of species distribution), especially given the
complexity of the investigated systems reflected in large numbers of predictors and the
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logistic difficulty of mapping the presence or absence of a species in remote areas (see
e.g. Stockwell and Townsend Peterson, 2002). An important justification for predictive
geomorphological mapping (Luoto and Hjort, 2005) is that area-wide field mapping is
time-consuming, difficult in remote or inaccessible areas, and may suffer from subjec-
tivity (van Asselen and Seijmonsbergen, 2006; Hjort and Marmion, 2008). However, in
contrast to the examples from political and ecological science, many if not most vari-
ables in predictive geomorphological mapping are easily derived from digital elevation
models (that are available globally, with ever increasing accuracy and resolution) and
remote sensing data. This does not change the effort required for mapping the target
phenomenon (“events”), but the motivation for limiting sample size of non-events ap-
pears to be quite different, as it does not so much refer to the effort of data acquisition
(quantity and quality). In our study, an empirical analysis of the stability of model selec-
tion as a function of sample size is therefore given preference over the mere adoption
of some ratio of event : non-event observations given in the literature (e.g. by King and
Zeng, 2001), mostly without justifying the particular choice of this ratio.

Other reasons for restricting sample size are overparameterisation and overfitting of
the model (Hjort and Marmion, 2008, and references therein). Increasing sample sizes
cause standard errors and confidence intervals in parameter estimation to decrease.
In a stepwise model selection, very large samples are expected to cause parame-
ter significance (as a criterion for variable inclusion), and hence the number of included
variables, to increase (risk of overparameterisation). Such inclusion of more information
does not necessarily lead to better model performance; Stockwell and Townsend Peter-
son (2002) describes “plateaus” wherein new data add little to model performance. In
some cases, inclusion of more data even causes worse performance, because a model
fit to a very specific set of information may perform poorly on new data (risk of overfit-
ting, see Stockwell and Townsend Peterson, 2002, and references therein). Brenning
(2005), however, states that overfitting is “not a serious problem for logistic regression”.

The most serious reason for limiting the sample size is spatial autocorrelation. Lo-
gistic regression generally requires few assumptions to be met; the most important
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are (i) the independence of observations and (ii) uncorrelated independent variables.
While violations of the second assumption can be avoided by testing for multicollinear-
ity and excluding variables (see Sect. 3.2.1), the first assumption proves to be critical
when dealing with spatial data. Geofactors tend to have very similar values in a close
neighbourhood, a property called spatial autocorrelation. If several observations from
nearby sites are included in a model, the independence assumption will not hold. In
case of the generalised linear modelling approach adopted in this study, the maximum
likelihood method that is used to estimate the model parameters strictly requires the
observations to be independent (e.g., Hosmer and Lemeshow, 2000). Moreover, Atkin-
son and Massari (2011) explain that (spatial) autocorrelation of the geofactors causes
the model residuals to be spatially autocorrelated (which is not acceptable as model
residuals have to be uncorrelated), and that this may lead to “incoherent significance
estimates for the parameters” (see also Brenning, 2005). In previous studies applying
logistic regression to landslide susceptibility analysis, this problem is frequently ignored
(no sample is used at all, see above). In some instances, the risk of autocorrelation is
dealt with for “events” only, as geofactors tend to be homogeneous (and consequently
strongly autocorrelated) on landslide terrain (Atkinson and Massari, 2011). In order to
mitigate the issue of spatial autocorrelation, some authors choose one raster cell for
each landslide source area on a systematic basis. Atkinson et al. (1998) and van den
Eeckhaut et al. (2006), for example, use the center of each landslide source area. Sim-
ilarly, Vanwalleghem et al. (2008) use the center of each topographic depression, and
the center of each gully in their study predicting the spatial distribution of closed de-
pressions and gullies under forest. Different authors sample source areas on different
grounds; besides spatial autocorrelation, Atkinson et al. (1998) explain their approach
with the aim of preventing model bias towards larger landslides (in a full sample of
events, more data would enter the model from larger source areas than from smaller
ones). Begueria and Lorente (2003) use one raster cell for each debris flow initiation
zone because the raster size (10 m) of the data in their study corresponds to the size
of a typical debris flow scar. All approaches have in common that they prevent a con-
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tiguous (and hence potentially strongly spatially autocorrelated) sample of hundreds
of landslide initiation cells from entering the model. Spatial autocorrelation has also
been accounted for in model validation (Brenning, 2005). However, as Atkinson and
Massari (2011) point out, autocorrelation in the geofactors is frequently not adequately
accounted for in the regression model. While the latter study proposes an autologistic
model (see also Brenning, 2005), we will try to warrant independence of observations
through the choice of an adequate sampling size (see Sect. 3.3.2): as the number of
sampled raster cells in a finite study area increases, the average distance between
those cells will decrease, and finally the independence assumption will no longer hold
given the spatial autocorrelation of the geofactors.

Normally, a logistic regression model is fit to a sample where the ratio of event : non-
event cases is approximately 1 : 1. Then, the so-called cutoff, the value of the model re-
sult that discriminates between event and non-event, equals 0.5. King and Zeng (2001)
explain that the number of non-events should be typically 2-5 times higher than that
of events. In this case, the cutoff needed to translate the model result to a classifi-
cation (event or non-event) would need to be adjusted accordingly. Because the ratio
of event : non-event spatial units (raster cells, but also lumped spatial units, Begueria
and Lorente, 2003) usually is by far smaller (in our study areas, the ratio of release
area cells to the total study area is 1:200 and 1: 500, respectively), a bias towards
small probabilities arises; this problem has been addressed by the development of
“rare events logistic regression” (King and Zeng, 2001). Besides endogenous stratified
sampling (including all events and a random sample of non-events in the model), these
authors propose corrections for the intercept and for the estimated probabilities. Rare
events logistic regression was applied in landslide susceptibility modelling by van den
Eeckhaut et al. (2006) and Guns and Vanacker (2012). In many studies, endogenous
stratified sampling has been adopted, and the authors chose event : non-event ratios
of 1:1 (e.g. Brenning, 2005; Meusburger and Alewell, 2009; van den Eeckhaut et al.,
2010), 1:2 (Wang and Sassa, 2005), 1:5 (van den Eeckhaut et al., 2006), or 1: 10
(Begueria and Lorente, 2003; Begueria, 2006a; Guns and Vanacker, 2012). Finally,

2740

NHESSD
1,2731-2779, 2013

The effect of sample
size on a debris flow
susceptibility model

T. Heckmann et al.

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/1/2731/2013/nhessd-1-2731-2013-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/1/2731/2013/nhessd-1-2731-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Atkinson et al. (1998), who use only the central cell of each landslide as the event
sample, sample as many non-event cells as it is required to attain the ratio of landslide
to non-landslide area.

In our study, we adopt stratified random sampling by a random sample of one cell
for each debris flow initiation zone, and a random sample of non-event cells. The size
of the latter is then varied in order to explore the effect on stepwise model selection;
hence, we do not pre-select an event : non-event ratio. Rare event correction according
to King and Zeng (2001) is not applied.

1.3 Uncertainty: model selection, parameters, spatial patterns

The result of the investigations motivated in the previous subsections is a suitable
sample size reaching a compromise between sample sizes too small and too large,
seeking above all a stable model selection (i.e. low diversity of geofactors remaining
in the repeat stepwise selection), and also sample independence (i.e. avoiding spatial
autocorrelation). Even with an optimised sample size in that respect, the selection of
predictor variables will still depend on the specific sample. As different predictor vari-
ables, with their distinct spatial structure, will be part of the model when the procedure
is repeated with a different sample, the spatial pattern of the resulting susceptibility
map will also differ from time to time, and the predictive power of the model might be
different as well. The second main goal of this study is to elucidate three aspects of this
uncertainty: (i) geofactors and how often they are included after stepwise selection, (ii)
the range of model parameters estimated for the replications, and (iii) the spatial dis-
tribution of differences in the estimated susceptibility. This is important because in the
majority of studies employing sampling for model calculation, only one sample is taken;
on the other hand, all studies involving repeat sampling concentrate on the set of geo-
factors, the parameters and the predictive ability of the models, and do not investigate
how this affects the spatial distribution of susceptibility.
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2 Study area

This study has been conducted in two adjacent subcatchments of the Horlachtal valley,
a tributary of the Oetztal valley, located in the Austrian central Alps (Stubai Alps). The
two valleys, the Zwieselbachtal (ZBT, ca. 19km2), and the Larstigtal (LT, ca. 7km2),
strike approximately S-N and have a typical trough cross-section. Due to their adja-
cency, they are similar in their natural characteristics. Figure 1 shows the location and
and an overview of the catchments. The most important properties of the study areas
are listed in Table 1; the Horlachtal and its subcatchments are described in more detail
by Rieger (1999) and Geitner (1999).

The lithology of both valleys is dominated by gneiss and mica schist, metamorphic
granites can also be found. Pleistocene glaciations have shaped the valleys and are
evidenced by glacial landforms (e.g. moraines, cirques, roches moutonnées). Glacial
cirques are concentrated on the east-facing valley sides whereas the west-facing valley
sides are marked by extensive scree slopes. Currently, the two catchments are formed
primarily by fluvial and gravitational processes such as rock falls and debris flows.
Sediment transport through the catchments is limited as the valleys exhibit largely dis-
connected subsystems (at least with respect to the transport of coarse sediment, see
Heckmann and Schwanghart, 2013) separated by alluvial reaches of the Zwieselbach
and Larstigtal creeks, respectively. These reaches are located immediately upstream
of the terminal moraines of the Little Ice Age and of the particularly well-preserved ter-
minal moraines of the Egesen stadial (corresponding to the Younger Dryas, ca. 11 to
12 ka BP, recent datings for the European Alps are listed by Ivy-Ochs et al., 2008).

Debris flows in both study areas can be termed slope-type debris flows of type 2
according to Zimmermann et al. (1997). Events of this type initiate on scree slopes
following failure caused by positive pore water pressure following intense rainfall and
progressive erosion. This is often the case at the base of rock walls where debris flow
formation is triggered by the so-called “firehose-effect” (Johnson and Rodine, 1984)
which describes concentrated flux of water out of the rockface onto the talus. Slope type
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debris flows can be regarded as transport-limited processes, thus their frequency is
primarily controlled by hydroclimatic events (Bovis and Jakob, 1999). In the study area,
rain intensities of around 20 mm within half an hour have been reported to trigger debris
flows (Becht, 1995; Rieger, 1999), while Zimmermann et al. (1997) suggest regional
intensity-duration thresholds of about 11 mm per hour. The threshold is comparatively
low, which has been attributed to the low mean annual precipitation (Hagg and Becht,
2000) of ca. 1000 mm (Becht, 1995).

Vegetation primarily consists of dwarf shrub heath, alpine meadows and pioneer
vegetation. At elevations of > 2300-2500 m, bedrock and scree are predominant. In
general, more than 60 % of the study area are completely lacking vegetation cover.

3 Data and methods
3.1 Data and data preparation
3.1.1 Debris flow inventory

As every statistical approach, logistic regression requires an inventory of targets (here:
a map of debris flow initiation areas) for the dependent variable, and maps of (poten-
tially) influencing factors as independent variables, hereafter referred to as geofactors.
The dependent variable (here: debris flow initiation) is observed as a binary variable (1:
presence, 0: absence). The debris flows inventory of the Zwieselbachtal and Larstig-
tal catchment was compiled using orthophoto and field maps (Thiel, 2013), updating
an earlier inventory for which debris flows had been surveyed using a total station
(Rieger, 1999). It contains 81 events within the Zwieselbachtal, and 64 events within
the Larstigtal. Debris flows areas are represented by polygon features (which had to
be converted to raster format for the pixel-based approach of this study), and divided in
three zones related to geomorphic activity: erosion (indicated by incision), transition (in-
dicated by a channelised reach accompanied by levées) and the depositional lobe(s).
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Conceptionally, as the susceptibility map specifically aims at predicting potential initi-
ation zones, the “event” samples for the regression models should be taken from the
erosional zones, preferably from the uppermost part as the latter represents the area
where events typically started (and probably will also initiate in the future). The strategy
of using only the detachment zone of a mass movement for susceptibility modelling has
been advocated by several workers (see for example van den Eeckhaut et al., 2006;
Heckmann and Becht, 2009), Magliulo et al. (2008), however, report that this restriction
does not automatically lead to better results.

The initial idea of manually setting one raster cell for each debris flow initiation zone
was discarded, because placing this raster cell in the channelised part would introduce
a bias towards larger catchment areas and concave plan curvature. Therefore, a GIS
procedure was used to select, for each debris flow erosional zone, the area that is
higher than the P75 percentile of elevation, i.e. the uppermost 25 %. The raster cells
belonging to the initiation zone of each debris flows are coded with an ID, allowing
for a stratified random sampling of one cell per debris flow event for each regression
model.

3.1.2 Digital terrain model

Before model selection (see Sect. 3.2.2), geofactors conceptually related to debris flow
initiation have been preselected. Debris flow initiation is related to (i) the availability of
mobile debris (ii) on steep slopes and (iii) large amounts of water, typically provided by
intense rainfall. Not all influencing factors in these three groups (material, relief, water)
can be directly measured or calculated; many of them, however, can be derived from
a DEM, either directly or as proxies. Although geological and landcover maps were
available, we tried to use only geofactors that can be derived from (high-quality) digital
elevation models (DEM) in order to test the feasibility of DEM-based modeling (such
high-quality DEMs are increasingly available for large parts of the world).

For the derivation of several topographical parameters used as geofactors for the
regression models, we used a raster digital elevation model (DEM) with a resolution of
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1 m that was interpolated from an airborne LiDAR survey in the year 2006. For most
applications, and for the modelling itself, the original DEM (DEM1) was resampled to
a raster resolution of 5m (DEMS5). Apart from saving memory and computing time,
the resampling smoothes the DEM so that very fine-scale topography is no longer
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contained in the resulting DEM5. This effect is desired, as debris flow initiation is not
expected to result from microscale topography.

Information on available sediment is usually provided by landcover and/or geolog-
ical maps. The former mainly contain information on vegetation (that might in cases
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stabilise soils and sediments), the latter focus on different types of bedrock. In this
study, the “available sediment” group is represented by one single geofactor (rough-
ness class). This geofactor is derived from a cluster analysis of slope (DEM5, see
below) and roughness. Roughness was calculated as the “vector ruggedness mea-
sure” (Sappington et al., 2007) on the DEM1 within a moving window of radius 5m,
and the result was resampled to the same resolution and extent as the DEM5 using
the nearest neighbour approach. This analysis yields two clusters closely representing
(i) bedrock and (ii) areas covered by sediments. For the Zwieselbachtal, this unsuper-
vised classification could be validated with a very detailed landcover map created from
orthophoto imagery; the ¢ coefficient of the mapped vs. the DEM-based classification
was 0.78. The reason for the satisfactory fit is the characteristic fine-scale roughness1
of bedrock areas that can easily be discerned on a shaded relief map, together with the
existence of a sharp threshold of slope (resembling the angle of internal friction) above
which an area cannot be covered by unconsolidated scree. Leaving out the informa-
tion on landcover/vegetation is not expected to be decisive in our case study, because
the study areas are only sparsely covered with vegetation, mostly grass, and forest is
widely missing, at least in the areas relevant for debris flow genesis.

Relief parameters were derived from the DHM5 using the algorithm of Zevenbergen
and Thorne (1987) implemented in SAGA GIS (http://www.saga-gis.org). As slope sta-

'As the roughness is derived from the DEM1, the cluster analysis can make use of sub-grid
scale roughness for the classification of DEM5 raster cells.
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bility, especially for scree, is a function of slope, this parameter is expected to be very
important for debris flow initiation. As both valley axes have a north to south orientation
(resulting in a strong bias towards east- and west-facing slopes), and as the physical
role of aspect cannot be described unambiguously, it was not included in the analysis.
Plan and profile curvatures were derived with the same algorithm as slope, but from
a DEM1 smoothed with a moving window mean filter with a radius of 10m. This was
deemed necessary because of the extremely noisy character of fine-scale curvature;
medium-scale curvature is expected to be a better proxy variable for convergent flow
of water (plan curvature) and changes in flow velocity (profile curvature).

Relief parameters related to the local catchment area are derived from the DEM5
as proxies for the availability of water for debris flow initiation. We calculated the spe-
cific catchment area (SCA) as the local flow accumulation per unit contour length using
a multiple flowdirection algorithm (Freeman, 1991). Heavy rainfall on steep bedrock
slopes is expected to be converted almost entirely to Hortonian overland flow; on
talus slopes bordering steep rockfaces, this runoff can cause the initiation of debris
flows, especially were it enters the talus in a channelised manner (“firehose effect”, see
e.g. Johnson and Rodine, 1984; Coe et al., 2008). However, if the sediment is coarse
grained, large amounts of water are expected to infiltrate; this leads to a decrease of
hydrological connectivity, and at least to an attenuation of the increase of runoff with
increasing catchment size. Therefore, we re-calculated the catchment area, accumu-
lating only bedrock cells in the roughness class map instead of every DEMS5 raster cell.
The modified SCA map hence refers to the size of the bedrock catchment draining into
each raster cell.

3.2 The susceptibility model

Multivariate logistic regression (Hosmer and Lemeshow, 2000) forms part of the family
of generalised linear models (GLM); in contrast to ordinary linear models, a function
of the expected value of a response variable is modelled by a linear combination of
continuous or discrete predictor variables. In logistic regression, the response variable
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is binary (Bernoulli distribution); here, it takes the values 0 (no debris flow initiation) and
1 (debris flow initiation). The response function is the logit transform of the probability
p €]0,1[ that the response variable takes the value 1:

- p
f(p) = logit(p) = In : (1)
(1-p)
Since the logit is within the interval ]— oo, ool it can be modelled as a linear combination
of predictor variables X;...X,:

f(p) = Bo + B1X1 + PoXa + ...+ BXy, (2)

where [, is the intercept and g,.. .8, are the model parameters. These are estimated
using a maximum likelihood approach.

The spatial data are generated and managed in SAGA GIS, including the derivation
of relief parameters (Sect. 3.1.2); for the statistical analysis, they can be directly read
from the SAGA native data format using the RSAGA package (Brenning, 2009) for
the statistical software R (R Development Core Team, 2012). Logistic regression is
then performed using the gim and stepAIC functions of the MASS package (Venables
and Ripley, 2002). For reasons explained in the introduction, we estimate the model
parameters for a sample (the size of which we will try to optimise in this study) of
“event” (debris flow initiation) and “non-event” cells; sampling is also performed in R.
The resulting susceptibility maps are written back to SAGA data format for visualisation
and further spatial analysis. They contain the probability that the dependent variable
takes the value 1, i.e. that debris flow initiation will take or has taken place.

3.2.1 Multicollinearity analysis

Besides sample independence, an important prerequisite for the application of GLM
is the absence of multicollinearity, i.e. that the predictor variables are not correlated
with each other. In order to test for multicollinearity, we applied the vif function of the
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car package (Weisberg and Fox, 2010) to a full model (i.e. including all geofactors
described in Sect. 3.1), yielding the variance inflation factors (VIF) of each geofactor.
Although no binding rules exist for their interpretation, several authors who conduct
a multicollinearity analysis apply a very strict threshold of 2 above which variables
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are considered multicollinear, and are excluded from the model (e.g. van den Eeck-
haut et al., 2006, 2010; Guns and Vanacker, 2012). However, the most common rule
of thumb is reported to be the “rule of 10” (using VIF =10 as a threshold for severe
multicollinearity), and the use of strict thresholds of VIF appears to be questionable
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(O’brien, 2007). The analysis of VIFs yields values of 1.18 and 1.47 for the two curva-
ture variables, and 1.77 for SCA. Roughness and slope have VIFs of 2.06 and 2.76,
respectively, which is only slightly above the threshold used in other studies, so we
decided to keep all candidate variables.

3.2.2 Stepwise selection of predictor variables

An important task in susceptibility modelling is model building, i.e. the selection of the
independent variables (geofactors). In Sect. 3.1, several candidate variables are de-
scribed that conceptionally explain the spatial distribution of debris flow initiation. Model
building is achieved in this study through an automatic stepwise variable selection
(function stepAIC Venables and Ripley, 2002). Starting from a full model, i.e. a model
including all variables, variables are removed (or re-included) in order to minimise the
Akaike Information Criterion (AIC, Akaike, 1973) which is calculated from the likelihood
function of the model and the number of predictor variables. The AIC penalises for
the number of predictor variables, i.e. it increases with the number of variables, and it
decreases with a larger likelihood function indicating a better model. Hence, although
there is no theoretical justification of the AIC (Sachs and Hedderich, 2006), this pro-
cedure is suitable in practice for selecting a parsimonious model, i.e. a best-fit model
using as few variables as possible (Brenning, 2005). Menard (2002) states that step-
wise model selection is inappropriate for theory testing, but this is not the goal of our
study. Landslide susceptibility models include theoretical considerations, but aim at ef-
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fectively predicting landslide occurrence rather than explaining it. If, for example, the
geofactor slope was excluded from a model, we would not conclude that slope was no
factor of debris flow initiation. However, the results of stepwise logistic regression are
often used to rank the controlling factors by importance (e.g. van den Eeckhaut et al.,
2006). Stepwise procedures can be applied as a backward selection, as in this study
(and, e.g., in Brenning, 2005; Ruette et al., 2011), but also as a forward selection (Be-
gueria, 2006b; Meusburger and Alewell, 2009; Atkinson and Massari, 2011). Menard
(2002) explains that backward selection is in some cases superior to the forward proce-
dure. Note that the stepwise procedure used here and in Brenning (2005) differs from
other studies where the decision of keeping of dropping predictor variables is based
on significance of model improvement (e.g. Begueria, 2006b; Meusburger and Alewell,
2009; Guns and Vanacker, 2012), not on an information criterion. Recently, alternative
approaches for model selection have been proposed (e.g. Calcagno and Mazancourt,
2010), they will be tested in future research.

3.2.3 Model validation

It has been stressed that a modelling study without proper validation is useless (Chung
and Fabbri, 2003). Many studies in susceptibility modeling use spatial or temporal
cross-validation (space or time partition, cf. Chung and Fabbri, 2003) within the same
study area, i.e. the data are split either systematically or randomly into training and test
datasets (Chung and Fabbri, 2003; Begueria, 2006a) according to their location or time
of occurrence. Here, we estimate model parameters based on samples drawn from the
Zwieselbachtal catchment, and apply the resulting models to the neighbouring Larstig-
tal catchment. Hence, training and test areas are completely independent. For each
model run, the predictive ability is evaluated using receiver operating curves (ROC) or
prediction-rate curves sensu Chung and Fabbri (2003), plotting true positive against
false positive rates. The advantage of ROC is that they yield a threshold-independent
measure of predictive ability; in our case, we do not have to define a threshold of mod-
elled landslide probability below which we do not recognise susceptibility. Additionally,
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as a single measure of predictive ability, the area under the curve (AUC) is calculated
(Hosmer and Lemeshow, 2000; Begueria, 2006a); this parameter falls in the range
[0.5,1], where 0.5 is equivalent to random prediction and 1 to a perfect prediction.

3.3 Exploring the effect of sample size

In the introduction, we have argued why the sample size should be neither too small
nor too large. Here, we describe (i) how the effect of sample size on the diversity of
models is explored, and (ii) how we constrain the upper limit of sample size.

3.3.1 Sample size and model diversity

For small sample sizes, the geofactor composition of the resulting model depends ex-
tremely on the random sample, because small samples cannot sufficiently cover the
diversity of geofactors within the study area. We hypothesise that with increasing sam-
ple size, the diversity of relevant models (selected by the stepwise procedure) first
decreases towards a plateau that can be explained with the overall variability of geo-
factors in the study area; when the sample size approaches the size of the study area,
the variability of models will eventually decrease to zero. Such a behaviour is similar
to the dependence on sample size of the predictive power of predictive geomorpho-
logical models explored by Hjort and Marmion (2008). We analyse model diversity by
repeating the stepwise model selection 1000 times with independent samples of dif-
ferent sample sizes (between 50 and 5000). Specifically, a stratified sampling scheme
has been adopted; one single raster cell is randomly selected from each debris flow
initiation zone, and the sample size of non-event cells (from the remaining area) is
varied. The choice of non-event sample sizes in relation to event sample size ranges
from1:1.61060: 1, thus including the recommendations of King and Zeng (2001) and
the alternatives chosen in landslide susceptibility studies, e.g. 5: 1 (van den Eeckhaut
et al., 2006), or 10 : 1 (Begueria, 2006b; Guns and Vanacker, 2012).
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For each of the 1000 replications, the geofactors that remain in the “best” model
(with respect to the AIC) after stepwise selection are saved in a table. Each geofac-
tor can then be evaluated by the percentage of replications which it was part of (cf.
Guns and Vanacker, 2012). A model consisting of a distinct set of geofactors defines
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a “model species”; theoretically, 29 different model species exist for g geofactors. The
diversity of the 1000 replicate models calculated for each sample size is evaluated us-
ing the proportions of model species using three measures: (i) the number k of model
species (“species richness”), (ii) the Shannon diversity index, also known as Shannon
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information entropy, and (iii) the Simpson index. The Shannon index was developed in
information theory (Shannon, 1948) and has been widely applied in ecology as an in-
dex measure of biodiversity (e.g. Magurran, 2004). In geomorphology, it has been used
to assess the uncertainty of drainage routing and watershed delineation (Schwanghart
and Heckmann, 2012). In our study, it is calculated as

H=-2 p;-In(p)), 3)

where / = 1...k represents the /-th of k different model species, and p; is the proba-
bility of occurrence of the i-th species, estimated by n;/N, the proportion of the /-th
model species found in N individual stepwise modeling runs (here: 1000). The log-
transformed Simpson index (Simpson, 1949) has been developed for measuring biodi-
versity; it is considered superior to the H as it is independent of sample size (Magurran,
2004). It is calculated as

_ n;-(n; =1)
D——|n2m, (4)

where n; is the absolute frequency of the /-th model species and N is the number of

individual models (here: 1000). H and D combine the number of model species and

their relative frequency in one single number: both a large number of different models

and an even distribution of the latter (i.e. each model species has more or less the same

share of the 1000 individual models) cause H and D to increase, while it decreases with
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smaller numbers of different model species and a high degree of dominance of one or
few species.

3.3.2 Sample size and spatial autocorrelation

In our study, the spatial autocorrelation of a dataset is explored with the empirical semi-
variogram, which is typically used for geostatistical interpolation techniques such as
Kriging (Webster and Oliver, 2007). It is derived from point measurements by evaluat-
ing the semivariance of values of a variable (geofactor) for pairs of points separated by
a specific distance. One important property of the semivariogram is the range; points
separated by a distance below this range are autocorrelated. Brenning (2005) uses the
range of the empirical correlogram of the residuals of a logistic regression model (180 m
in his study) to constrain the minimum distance between training and test data points
in spatial cross-validation. Similarly, we estimate the range parameter of the variogram
of each geofactor to constrain the sample size: we argue that the average distance
between raster cells in the (hon-event) sample should not fall within the autocorrela-
tion range(s) of the geofactors included in the model in order to keep the non-event
sample as uncorrelated or independent as possible. As the average distance implies
that some points in the sample will be closer neighbours, we concede that this strategy
minimises spatial autocorrelation rather than preventing it. Assuming a set of randomly
distributed points (here: raster cells), the average distance d to the nearest neighbour
can be estimated by Eq. (5):

1
2-\/p
(Clark and Evans, 1954), where p is the density of the sample, i.e. the sample size
n divided by the study area (here: the number of raster cells within the study area
multiplied with 25 m2, the area of each cell). For each study area, d is calculated as
a function of n and used to estimate the upper boundary for the “suitable sample size”.

Instead of using the highest autocorrelation range (i.e. that of the geofactor with the
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most far-reaching spatial autocorrelation) as a crisp, absolute upper limit of sample
size, we take into account d (n) as it progressively falls below the autocorrelation range
of more and more geofactors, and we regard the corresponding n as progressively less
acceptable. An upper limit is finally reached when the smallest autocorrelation range
from the set of geofactors is undercut.

Figure 2 shows the empirical geofactor semivariograms and the practical range pa-
rameter (i.e. the range where 95 % of the sill is reached) of the fitted variogram models.
Depending on the geofactor, spherical and exponential models were used. It is obvious
that some geofactors, e.g. slope, are autocorrelated on multiple scales. In these cases,
the lower range is used; however, it appears that a sample which is independent with
respect to all geofactors is not possible.

3.4 Variability of model results

The investigations described in the previous sections have the aim of quantifying and
reducing the dependence of the results on the sample while maintaining sample inde-
pendence. Once a suitable sample size is estimated, we investigate the variability of
model results (both quantitatively and with respect to its spatial distribution). In order to
do so, we repeat 100 times the sampling, model selection, fitting and application for the
Zwieselbachtal area, creating a stack of 100 gridded susceptibility maps of the whole
study area. The median of 100 probabilities in each raster cell is taken as a consensus
model (Marmion et al., 2009) and the final susceptibility map. The interquantile range
IQR90 = py g5 — Py 05, that encompasses 90 % of the modelled susceptibility values as
a non-parametric measure of dispersion, quantifies the uncertainty caused by sampling
and stepwise model selection. As this measure is calculated for each raster cell, the re-
spective map can be used to visualise the spatial distribution of model uncertainty (not
with respect to the true probability, but with respect to model variability). In addition, the
distribution of the parameter coefficients of the 100 models, and their predictive power
(ROCs and AUC, see Sect. 3.2.3) can be displayed and analysed.
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4 Results and discussion
4.1 Investigation of sample size effects

Before we approach the question of an optimal range of sample sizes, we take a look at
the results of model selection as a function of sample size. Specifically, Fig. 3 shows,
for each geofactor, the number of models that retained this geofactor after the AIC-
based selection procedure. The six geofactors that were eligible for model selection
were slope, specific catchment area (SCA), the interaction of the latter factors (de-
noted “Slope*SCA” in Fig. 3), the roughness category which distinguishes bedrock
from debris-mantled slopes, and the two curvature variables. The first row of the dia-
gram shows positive changes in the selection. While roughness and profile curvature
gradually increase their membership with larger sample sizes (roughness starting from
almost zero), the interaction term Slope*SCA quickly attains 100 % (i.e. all of the 1000
samples lead to models containing this variable) already with small samples. Here,
it is important to mention that interaction terms may only be part of a model if their
marginals (here: slope and SCA) are also contained. This is the case, as the latter vari-
ables are contained in all models, irrespective of sample size (second row of Fig. 3).
The proportion of models containing the geofactor plan curvature is very low, starting
with about 20 % and decreasing in larger samples.

If the “success” of a geofactor in the model selection procedure is a measure of its
importance, then the most important variables are slope, SCA, the interaction of the
latter, and profile curvature. The importance of roughness and plan curvature is low,
but the number of models containing roughness surpasses that of models containing
plan curvature already at sample sizes below 1000. These findings are consistent with
previous work on (slope type) debris flow susceptibility: Heckmann and Becht (2009)
and Wichmann et al. (2009), for example, use slope, landcover, and a variable called
the CIT index (Montgomery and Foufoula-Georgiou, 1993). The latter is calculated as
the specific catchment area times the squared tangent of slope. Similarly to the CIT
index, the interaction term slope*SCA can be interpreted physically (mathematically,
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it is the product of the two geofactors) as a geofactor predicting high erosion potential
(slope and catchment areas as proxies for the abundance and energy of surface runoff;
see also discussion in Sect. 4.2.1). In comparing several models (discriminant analysis
and logistic regression) Carrara et al. (2008) observed that factors relating to slope
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gradient (here: slope), landcover and availability of detrital material (here: roughness
as a proxy), and active erosional processes (here: slope and SCA) best described
debris flow initiation.

Figure 4 evaluates the diversity of models selected by the AIC-based procedure as
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a function of sample size. The diversity is expressed as the number of model species
(i.e. models defined by a given combination of geofactors) in 1000 samples (cen-
ter), and is quantified using the Shannon and Simpson diversity measures (bottom).
The number of model species declines exponentially to reach a stable minimum of 8
species at a sample size of n = 1000. Even for the largest sample size in our analy-
sis (n = 5000), differences between the 1000 samples result in as many as 8 different
model species. The diversity measures show a local minimum at n = 300 and n = 350,
respectively; for these sample sizes, the number of model species is higher, but the
distribution of the 1000 models across this number of species is more uneven, i.e. few
species make up the lion’s share of the selections, and the rest is represented only
by a few cases. For larger sample sizes, model diversity slightly increases again and
reaches a more or less stable value. Sample sizes much larger than 5000 (not shown)
lead to a decrease of the diversity indices; when the sample size approaches the size of
the population (i.e. the complete study area), the stepwise procedure of course yields
only one model species, and the diversity indices attain their absolute minimum (0). The
plateau of the diversity measures is also reflected in the model composition shown in
Fig. 3 where all geofactors (except roughness) exhibit only slight changes with sample
sizes larger than ca. 1000.

We interpret the minimum of the diversity indices as a minimum of the dependence
of model selection on the sample and therefore the corresponding sample size (300—
350) as a data-based recommendation (for our case study) which is, in our opinion,
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better than the adoption of arbitrary recommendations with respect to absolute or
relative sample sizes. As to the latter, the sample size of 300-350 (non-event) cells
corresponds to a ratio of event: non-event of 1:3.7 to 1: 4.3, which is approximately
consistent with the 1 : 5 ratio used by van den Eeckhaut et al. (2006) and with the rec-
ommendation (1:2-1:5) of King and Zeng (2001). It is also in the range of the ratio
of event to non-event cells in our study areas (about 1:500 in ZBT, 1:200 in LT), a ra-
tio that has been used by Atkinson et al. (1998). Considering Green’s rule of thumb
(Green, 1991) reported in the introduction (Sect. 1.1), the six candidate geofactors in
our case study would require a minimum sample size of ca. 100. Hjort and Marmion
(2008), who investigate the predictive power of different models estimated with differ-
ent sample sizes, state that a “level of robust predictions” is attained, with all statistical
techniques, at a sample size of n = 200. The local minima, however, do not appear to
be always present, depending on the choice of geofactors and the study area used
for model selection (not shown), but there is always at least a conspicuous knickpoint
in the empirical diversity diagram where an increase in sample size does not lead to
a significant reduction of model diversity. The analysis of the LT data, for example,
shows a plateau, not a local minimum, of model diversity, and this is only reached be-
tween n = 1000 and n = 2000, a sample size which is already becoming problematic
with respect to spatial autocorrelation (see next paragraph). The LT is smaller than the
ZBT, has a smaller number of debris flows, but a higher debris flow density (events per
square kilometer), hence there does not appear any conspicuous relationship of the
existence and location of plateaus or local minima and the aforementioned study area
properties, a problem which is left open to future research.

In Sect. 3.3.2, we proposed the mean distance between sampled locations in relation
to ranges of spatial autocorrelation as an upper constraint of sample size. Figure 4
(top) shows the expected mean distance between nearest neighbours as a function
of sample size (see Sect. 3.3.2). Additionally, the horizontal dashed lines indicate the
autocorrelation ranges of the geofactors mentioned above (cf. Fig. 2). As the red curve
intersects the autocorrelation ranges of more and more geofactors, the sample of the
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corresponding size is more and more likely to violate the independence assumption.
The decreasing suitability of larger samples to this end is visualised across the whole
Fig. 4 through darker shades of grey. The optimal sample sizes indicated by the red
arrows in the bottom part of the diagram belong to a range of sample sizes that are
within the autocorrelation range of one single geofactor only. In this case, it is the
“large scale” range of slope (ca. 800 m, slope is autocorrelated also at smaller spatial
scales with a range of ca. 200 m; see Fig. 2). We consider this only a minor violation of
the independence assumption, so that the sample size recommended above remains
optimal also with respect to the spatial autocorrelation issue raised in Sect. 1.2.

From the observations reported here, we recommend to look at the behaviour of
model diversity with sample size, to select a sample size with respect to a local mini-
mum or a plateau in model diversity, and to keep in mind the upper constraint of sample
size with respect to spatial autocorrelation.

4.2 Model results
421 Model parameters

In this section, the results of the procedure described in Sect. 3.4 are evaluated. Fig-
ure 5 shows the distribution of the estimated coefficients for each of the geofactors.
Additionally, the percentage below the parameter name gives the proportion of models
that contained the respective geofactor after stepwise selection. The coefficients were
estimated using 100 independent random samples of n = 81 + 350 (event + non-event
sample) in the ZBT area. The geofactors slope, SCA, and their interaction are part
of every model, followed in decreasing order by profile curvature, plan curvature, and
roughness class. The spread of the coefficients is low for most of the geofactors, with
the exception of the two curvature parameters. The coefficient for plan curvature has
the largest range, and it takes positive and negative values, which makes the interpreta-
tion very difficult; this is probably caused by the fact that the random sampling of event
cells from the upper erosional zones in the debris flow inventory will select locations in
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the center of channelised debris flow paths (with highly concave plan curvature), but
also at the boundary of these areas, which are highly (plan) convex. Conversely, the
profile curvature coefficient is strictly negative, which means that a concavity in the long
profile increases the probability of debris flow initiation. The explanation for this finding
is a morphological one: the typical locations of debris flow initiation (facilitated by the
firehose effect, see Sect. 1) at the contact of steep rock faces and the corresponding
talus cones are marked by large negative (i.e. concave) profile curvatures. The mostly
negative coefficients for slope and SCA are difficult to interpret, as one would expect
that the probability of debris flow initiation would increase with steeper slopes and with
larger catchment areas. However, this problem appears to be only a mathematical one,
as the interaction term of slope and SCA is present in the model. Therefore, the coef-
ficient of slope (alone) models the effect of slope where SCA is zero (and vice versa);
the coefficient for the interaction term is positive, indicating higher probabilities with
steep slopes and large catchment areas, which is conceptionally correct. The interac-
tion term plays an important role in the model: without it, the positive relationship of
SCA with debris flow release causes the modelled susceptibility to increase even in
the comparatively flat valley bottoms. Under these conditions, slope-type debris flows
cannot occur; Rickenmann and Zimmermann (1993) report starting zone slopes for
type 2 debris flows (that type which occurs in our study areas) between 26.5 and 38°,
with catchment sizes of up to 1 km?; Takahashi (1981) gives a lower threshold for de-
bris flow initiation of 15°. Generally, there appears to be a trend that the minimum slope
angle required for debris flow release decreases with larger catchment areas (Ricken-
mann and Zimmermann, 1993; Heinimann et al., 1998; Horton et al., 2008), so there
is, besides the CIT index (cf. Sect. 4.1), one more theoretical justification for including
the interaction of slope and SCA.

4.2.2 Susceptibility maps

The previous analyses have shown the dependence of models found through AIC-
based model selection on the respective sample and its size. The spatial pattern of
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a model result (here: the susceptibility map containing the debris flow initiation prob-
ability) depends on the spatial pattern of the geofactors that form part of the model.
Figure 6 shows a section of the susceptibility map that can be seen as a consensus
model (see Marmion et al., 2009) as every raster cell contains the median of 100 model
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predictions, the coefficients of which have been summarised in the previous chapter
(Fig. 5). Susceptibility in both valleys has been predicted using the model estimated
with ZBT data only. The whole map is part of the Supplement of this paper. On the
map, debris cones are highlighted by yellowish to reddish colours indicating medium to
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high probability of debris flow release. The distal parts of the cones are characterised
by lower (if any) susceptibility, while their apices, and channel-like portions of the ups-
lope area show the highest values. Most of the valley floor and most steep parts of the
rockwalls have very low to zero susceptibility. This can be seen in detail in the upper row
of Fig. 7; virtually all mapped debris flows (including not only the depositional lobes, but
the whole process area) have high to very high susceptibility values in their upper part,
and it can be stated that the spatial pattern of debris flow occurrence appears to be
reproduced well by the model. This visual validation also reveals problems. The zones
of highest susceptibility, indicated by violet colours, extend very far upslope along very
steep channel-like features within the rockwalls. Many of these locations appear to be
too steep for debris to accumulate (one of the preconditions for debris flow generation);
for this problem, we offer two explanations: first, an analysis of slope values within the
mapped starting zones (see Sect. 3.1.1) reveals that ca. 75 % of slope values within the
initiation areas are within a physically meaningful range (below ca. 40°), while the re-
maining values clearly speak against the accumulation of debris in these location. This
can be attributed in part to mapping errors (Ardizzone et al., 2002), where the upper
portion of a debris flow area is spuriously extended into very steep bedrock channels
that are in part poorly identifiable on aerial imagery. Another source of this error, prob-
ably to a lower degree, is a mismatch in the exact location of the rockwall-talus contact
between the DEM (which is decisive for the model) and the aerial photo. Second, a lin-
ear modelling approach is not capable of modelling complex non-linear relationships
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such as the one of slope and debris flow release: conceptionally, susceptibility should
increase, starting from some minimum slope, up to a maximum and then decrease
again, until the susceptibility reaches zero at slope gradients that are prohibitive for the
formation and persistence of sediment storage needed for debris flow generation. The
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GLM approach, however, only handles monotonic relationships between independent
and dependent variables, e.g. an increase of susceptibility with slope. Problems of this
kind could be solved by using other approaches, for example the weights-of-evidence,
certainty factor, or generalised additive models (GAM, see e.g. Hjort and Luoto, 2011).
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A novel output of our model replication exercise is the quantification of the variation
in model results and the assessment of its spatial distribution. The model uncertainty
addressed here is due to the sampling and model selection procedure only. For each
raster cell of the susceptibility map, we computed not only the median, but also the
interquantile range (IQR90) between the py o5 and pg o5 quantiles; the corresponding
map can be seen in the Supplement and on Fig. 7, bottom row. In the whole study area,
the IQR90 has a highly positively skewed distribution that ranges from 0.0 to 0.98; it
has a mean of 0.081, i.e. debris flow release probability predicted by the 100 models
varies by 8 percentage points, on average. In the ZBT area (that was used to estimate
the models) this value equals 0.073, while in the LT area it is slightly higher (0.103).
For samples taken according to the “1: 1 event to non-event” rule (n = 81 non-event
cells), the average IQR90 is 0.190 (ZBT), 0.230 (LT) and 0.200 (total study area), re-
spectively. The expected variability is consistently higher for smaller samples, and with
the application of a model to another area. Generally, the lowest uncertainty is found
for both the lowest and the highest susceptibility values. On the uncertainty maps, the
largest standard deviations occupy spatially coherent areas along the zones of high
susceptibility, but additionally in considerable portions of the valley bottom where the
slope gradient is low. In some places, the spatial pattern of uncertainty is consistent
with the fact that profile curvature is included in only about 60 % of the models; here,
zones of high curvature (both concave and convex) are characterised by high IQR90
values. Such zones of high uncertainty may generally occur where a high (or low) pre-
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dicted susceptibility relies on one parameter only, that is not part of all models. In our
opinion, the map adds information to the susceptibility map that can be useful for its
interpretation.

4.2.3 Validation

The variability of model parameters and predictions is also reflected in the valida-
tion. A first, qualitative, validation is done by visually inspecting the susceptibility map
(here: the median of 100 models, Figs. 6 and 7). Each model is quantitatively validated
by means of a receiver-operating-curve (ROC, see Sect. 3.2.3) using data from the
Larstigtal (LT) only; hence, the data used to estimate the model parameters (from the
ZBT area) and the validation data are completely independent, and the corresponding
diagram represents a “prediction curve” (Chung and Fabbri, 2003). Split-sample valida-
tion approaches such as cross-validation, spatial and temporal partitions (Chung and
Fabbri, 2003) do not warrant such independence when, for example, subsets of the
same inventory are used to estimate model parameters and to validate the resulting
model in one study area.

Figure 8 top shows the prediction curves for the 100 models, and the distribution of
the corresponding area under the curve (AUC). The 100 curves are located quite close
to each other, and there are no conspicuous extreme outliers. The AUC reaches 0.83,
on average; the predictive ability of a model calculated in the LT area and applied to
the ZBT (not shown) is even higher with AUC = 0.9. In total, the observed AUCs are
within the range of many published studies (e.g. 0.69—-0.8; Ruette et al., 2011, 0.84,
Ayalew and Yamagishi, 2005, 0.89-0.93; van den Eeckhaut et al., 2010) and can be
regarded as satisfying. Interestingly, the sample size did not influence the predictive
ability of the model ensemble — both n =81 and n = 350 have very similar mean AUC
values. However, the smaller sample size leads to a much larger spread of the differ-
ent prediction curves and consequently also of the AUC values. In our case, a single
sample of events and non-events at a ratio of 1: 1 (see, for example, Brenning, 2005;
Meusburger and Alewell, 2009) could have resulted in a good (AUC 0.84), but also in
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a comparatively poor model (AUC 0.75), although the expected AUC is approximately
the same. We deduce from our results a recommendation to create susceptibility maps
from model ensembles, because they are supposed to yield a more reliable result on
the one hand and an estimation of (sample-induced) uncertainty on the other. Similarly,
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Marmion et al. (2009) propose “consensus models”; in their study, results from different
predictive modelling approaches are combined using several methods, among them
the median that was used in our study to combine the results of 100 models generated
with the same method, but from independent random samples.
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5 Conclusions

In this paper, we investigated the effect of sample size on a logistic regression model
with a parameter selection procedure that is based on an information criterion (AIC).
The case study aims at predicting the spatial distribution of slope-type debris flow re-
lease zones in the Larstigtal (LT) and Zwieselbachtal (ZBT) catchments in the Austrian
Central Alps.

The procedure of random sampling and model selection was replicated 1000 times
for different samples between n =50 and n =5000 non-event raster cells. For each
candidate geofactor, the number of models it was part of after stepwise model selec-
tion was recorded. The diversity of models as a function of sample size was determined
using the number of different models and two diversity indices (Shannon Entropy and
Simpson diversity index). In our case study, model diversity decreased with increasing
sample size and reached a local minimum at n = 300-350 before if slightly increased
again to a stable level. In some cases, no local minima were detected, but model diver-
sity always reached a plateau on which even much larger samples could not improve
(= decrease) model diversity. While we were unable to discern a dependence of local
minima or plateau on properties of the debris flow inventories and/or study areas, we
recommend to explore the behaviour of model selection and diversity dependent on
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sample size in order to determine an optimised sample size. The latter is constrained
by the range of spatial autocorrelation found in variogram analyses for each geofactor.

Most importantly, our results show that even with large sample sizes (that will pro-
gressively violate the independence assumption), there will still be a variety of different
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models and, hence, also diverse model results depending on the sample. We argue
that single-sample studies run the risk of accidentally yielding a poor model, and there-
fore strongly advocate the calculation of multiple models based on independent random
samples; the results of these models are used (i) to construct a consensus susceptibil-
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ity map (in our case study, we used the median of 100 models on each raster cell) and
(i) to investigate, both statistically and spatially, the variation in model results caused
by the sampling and model selection procedure. In our study, the median of 100 mod-
els was used as the consensus model, and variation was quantified using the IQR90
interquantile range as a non-parametric dispersion measure. The latter was clearly in-
fluenced by sample size (less variation for larger samples) and study area (more varia-
tion in LT if the ZBT model was applied). Predictive power of the models was measured
using receiver operating curves (area under the curve); all models yielded satisfying
results that are in the range of other published landslide susceptibility models. Sample
size did apparently not influence the average predictive power of the model ensem-
ble, but smaller samples increased the range of AUC and hence also the proportion of
comparatively poor models.

Supplementary material related to this article is available online at:
http://www.nat-hazards-earth-syst-sci-discuss.net/1/2731/2013/
nhessd-1-2731-2013-supplement.pdf.
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Fig. 4. Mean distance between neighbouring sample points (top), number of model species
in 1000 samples (center), and two model diversity measures (bottom) as a function of sample
size. Shades of grey denote the degree to which the raster cells in a sample of size n lie, on
average, within the autocorrelation range of geofactors. Red arrows indicate the sample sizes
for which the Shannon and Simpson indices reach a local minimum, respectively.
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Fig. 5. Distributions of model coefficients estimated from 100 random samples (n = 350 non-
event cells) in the ZBT area. The percentages below the parameter name refer to the proportion

of the 100 models that contain the respective geofactor.
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Fig. 6. Part of the susceptibility map (full extent: see Supplement) of the ZBT and LT areas. The
susceptibility values represent a model ensemble, specifically the median value of 100 models
estimated from 100 random samples (n = 350 non-event cells) in the ZBT area. Insets A and B
refer to map sections in Fig. 7.
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Fig. 7. Map sections (full extent: see Supplement) from the ZBT (B) and LT (A) areas. The
maps show the susceptibility map (see Fig. 6) and a map of the IQR90 calculated from the
model ensemble. The latter map represents the uncertainty of the susceptibility map that is
due to the sampling process.

2778

Jaded uoissnosiq | Jadeq uoissnosiq | Jeded uoissnosiq | Jaded uoissnosiqg

NHESSD
1,2731-2779, 2013

The effect of sample
size on a debris flow
susceptibility model

T. Heckmann et al.

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< |
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/1/2731/2013/nhessd-1-2731-2013-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/1/2731/2013/nhessd-1-2731-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

True positive rate

100 models
| n=81+350
(1:

4.3)

0.9

0.8

True positive rate

0.7

@0.83

_—
———

100 models
{ n=81+81
{(1:

1)

0.9

0.8

0.7+

. | =t
0 02040608 1

Fig. 8. Evaluation of the predictive ability of 100 models (top: n = 350 non-event cells, bottom:
n =81 non-event cells) by means of the area under the curve. As the model training (ZBT)
and validation area (LT) are independent, the diagrams on the left represent prediction curves

(Chung and Fabbri, 2003).
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