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Abstract. This study investigated the efficiency of an ar-
tificial neural network (ANN) in predicting and determin-
ing failure load and failure displacement of multi story re-
inforced concrete (RC) buildings. The study modeled a RC
building with four stories and three bays, with a load bearing
system composed of columns and beams. Non-linear static
pushover analysis of the key parameters in change defined
in Turkish Earthquake Code (TEC-2007) for columns and
beams was carried out and the capacity curves, failure loads
and displacements were obtained. Totally 720 RC buildings
were analyzed according to the change intervals of the pa-
rameters chosen. The input parameters were selected as lon-
gitudinal bar ratio (ρ`) of columns, transverse reinforcement
ratio (Asw/sc), axial load level (N /No), column and beam
cross section, strength of concrete (fc) and the compression
bar ratio (ρ′/ρ) on the beam supports. Data from the nonlin-
ear analysis were assessed with ANN in terms of failure load
and failure displacement. For all outputs, ANN was trained
and tested using of 11 back-propagation methods. All of the
ANN models were found to perform well for both failure
loads and displacements. The analyses also indicated that a
considerable portion of existing RC building stock in Turkey
may not meet the safety standards of the Turkish Earthquake
Code (TEC-2007).

1 Introduction

Within developing countries, earthquakes have been the most
significant reported cause of failure of RC buildings during
the last 30 years, resulting in the greatest losses of life and
property. The literature suggests [1–7] that this is not sim-
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ply the result of flawed construction technology but of inade-
quate inspection and lack of information during the construc-
tion phase.

Turkey has experienced serious loss of life and property
after each large scale earthquake, not only because more than
70% of its’ building stock is of RC construction, but also be-
cause of its’ location on the Northern Anatolian Fault which
is one of the world’s most active seismic zones. The Kocaeli
earthquake of 1999 caused more than 20 000 fatalities, left
45 000 injured or homeless and caused damage or total col-
lapse in 350 000 buildings. It is critically important to assess
the probable performance, failure load and failure displace-
ment of existing RC buildings and to decide on a strategy
for strengthening these building, if required, in order to re-
duce the damage and collapses that may occur after proba-
ble earthquakes. Due to this requirement, the Turkish Earth-
quake Code (TEC-2007) was revised in 2007 in line with the
codes developed by the US Federal Earthquake Management
Agency (FEMA 356 [8]; FEMA 440 [9]), which are regarded
as the global benchmark for evaluating the design and struc-
tural performance of building stock for earthquake events.

The analyses and observations made by researchers [6,
11–12] after Turkey’s recent earthquakes have shown that
most of the RC buildings that were seriously damaged or col-
lapsed, were 3 to 7 storey RC buildings lacking shear walls
in their load bearing systems. Many weaknesses exist such
as insufficient casing reinforcement in the intersections of
columns and beams, low compression strength, insufficient
dimensions of columns and beams and defective reinforce-
ment details in the damaged or collapsed buildings. All of
these structural defects have been shown to contribute to the
failure of many Turkish RC buildings to meet the required
levels of ductility and lateral rigidity as set out in the codes,
resulting in serious damage to buildings (Fig. 1).

In order to evaluate the existing building stock, the code
requires appraisal of the potential damage at the ends of the
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Fig. 1. A seriously damaged RC building in Marmara region.

structural elements that form the load bearing system such as
columns, beams and shear walls. Thus, a general assessment
can be provided for the element, each storey and the complete
load bearing system. Parallel to FEMA-356, TEC-2007 also
assesses levels of damage for the columns and beams accord-
ing to the parameters specified in Table 1.

The objective of this study is (1) to determine failure load
and failure displacement of multi-storey RC buildings in
which the load bearing system is formed only by columns
and beams (2) to investigate the usability of artificial neu-
ral network (ANN) models in predicting the failure load and
failure displacement of RC buildings. (3) Such buildings are
reported to be the type most at risk of serious earthquake
damage, according to the column and beam parameters spec-
ified in the TEC-2007, FEMA-356 and other building codes
[13–14]. The research further aims to analyze the extent to
which these parameters explain and predict failure load and
failure displacement.

For these aims, first of all a database was created by us-
ing non-linear static pushover analysis of RC buildings. 720
frames were analyzed according to the change intervals of
the parameters chosen (given in Table 1). Failure load and
failure displacement of each of the frames has been calcu-
lated using capacity curves (lateral load-lateral displacement
curves) obtained by pushover analysis. After obtaining fail-
ure load and failure displacement values of each frame, the
results of the analyses have been investigated and verified by
a mathematical model controlling with the assistance of 11
different artificial neural network (ANN) algorithms.

2 Methodology for failure load and failure
displacement evaluation

Within Seismic Codes, the earthquake safety of exist-
ing RC buildings is determined based on the concept of
performance-based design. Generally this takes the form of
desired performance outcomes, such as withstanding minor
earthquakes undamaged; withstanding medium-scale earth-
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Fig. 2. Load-displacement curve and performance levels of a struc-
ture.

quakes with limited damage and; withstanding large-scale
earthquakes without total collapse. The critical outcome is
the prevention of total structural collapse. This means that
the upper level withstands total collapse (CP); The sub level,
for the crucial structures, may be slightly damaged but re-
mains fit for immediate occupancy (IO). Between the sub and
upper levels there is Life Safety (LS) level situation. Multiple
performance objectives for these levels, including the seismic
transformation periods, have been specified in Table 2.

Seismic performance of the load bearing system is de-
fined as the sum of seismic damage levels of the structural
elements (beam, column, etc.) which form the load bear-
ing system. The damage level of the elements of the load
bearing system differs according to the method of analysis.
In common with FEMA 356, the Turkish Earthquake Code
(TEC-2007) states that the seismic performance of build-
ings can be determined using linear or nonlinear analysis.
The design engineer is free to utilize either linear or non-
linear analysis approaches. The seismic codes also include
a number of analysis methods, such as “incremental equiv-
alent seismic load method”, “incremental mode superposi-
tion method” and “analysis method in time domain” which
are suitable to be used for both approaches. In the present
study, the structures were evaluated using nonlinear analysis
with the incremental equivalent seismic load method (static
pushover analysis method).

Static pushover analysis is frequently used within the liter-
ature as the preferred performance measure. Pushover anal-
ysis is a numerical method of calculating a building’s lateral
load capacity under the influence of increasing lateral loads.
Gravity loads are in place during lateral loading. Structure
reaction in pushover analysis is defined by a capacity curve
describing the relationship between the base shear force and
lateral roof displacement. Load-displacement and moment –
rotation (curvature or deformation) curves that show levels
of performance of the load bearing system and cross section
are given in Figs. 2 and 3, respectively.
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Table 1. Parameters required for damage prediction in RC structural elements.

Type of element Parameters Damage occures

Beams
– Transverse reinforcement

– Amount of compression bars at the
support

– Longitudinal reinforcement ratio

– Dimensions

– Concrete compressive strength
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Table 2. Required seismic performance levels for design earthquakes (EQ).

Purpose of structure and class of buildings

Exceeding probability of EQ

50 years 50% 50 years 10% 50 years 2%

Average return period

75 year 475 year 2500 year

Buildings to be utilized after the EQ – IO LS
Intensively and long-term occupied buildings – IO LS
Intensively and short-term occupied buildings IO LS –
Buildings containing hazardous materials – IO CP
Other buildings LS –

As a part of the static pushover analysis, it is necessary
to define the cross-sectional damage level according to the
deformation of each of the structural elements in order to
determine the global performance of the load bearing system
(Tables 3–4). In the Table 3, according to the TEC-2007,
the cross sectional damage types are given. Based on these
damage levels, the structural performance can be obtained as
given in Table 4.

2.1 Calculating failure load and failure displacement

– In order to obtain lateral load – lateral top displace-
ment curve of the sample building, static pushover anal-
ysis method is selected. For this purpose, researchers
and engineers use linear and nonlinear dynamic anal-
ysis programs such as DRAIN, IDARC and SAP2000
[15–17].
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Fig. 3. Component damage levels.
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Table 3. Cross sectional damage levels.

Cross-sectional damage level Maximum strain for concrete (εc) Maximum strain for steel (εs)

Slight Damage (SD) 0.0035 0.010

Moderate Damage (MD) 0.0035+0.01
(

ρs
ρsm

)
≤0.0135 0.040

Heavy Damage (HD) 0.004+0.014
(

ρs
ρsm

)
≤0.018 0.060

Table 4. Structure performance based on damage.

Performance Level Performance Criteria

Immediate occupancy (IO)
– The ratio of beams in Slight Damage (SD) and Moderate Damage (MD) shall not exceed 10% in

any story.

– There must not be any columns beyond Slight Damage (SD).

– There must not be any beams beyond Heavy Damage (HD).

Life Safety (LS)
– The ratio of beams in Moderate Damage (MD) and Heavy Damage (HD) shall not exceed 20%in

any story.

– In any storey, the shear force carried by columns in Heavy Damage (HD) shall not exceed 30%
of story shear.

Collapse Prevention (CP)
– The ratio of beams in Heavy Damage (HD) must not exceed 20% in any story.

– In any story, the shear force carried by column that passed Slight Damage (SD) must not exceed
%30 of story shear force.

Collapse (C)
– If the failure can not be prevented, it is under failure condition.

– Beam and column elements are modeled as nonlinear
frame elements with lumped plasticity by defining plas-
tic hinges at both ends of the beams and columns.

– To define plastic hinge properties, moment-curvature
analyses are carried out taking section properties and
axial load level for every column and beams into ac-
count.

– The input required for the above mentioned programs
is moment-rotation instead of moment curvature there-
fore transformation is needed. Transformations of bi-
linear diagramsM−ϕ (Moment-curvature) which are
obtained in aforementioned procedure, in bilinear dia-
gramsM−φ (Moment-rotations) implements (Eq. 1).

θ`p =

`p∫
o

ϕdx (1)

In this step, a suitable plastic hinge length`p is used to
obtain ultimate rotation values from the ultimate curvatures.
In the literature several̀p length are proposed [18–23] In the
structural modeling, Eq. (2) was used for the plastic hinge
length definition. This equation is also used in TEC-2007
and FEMA-356. In Eq. (2), H is the column and beam section
depth.

`p = 0.5H (2)

The structural elements possess effective flexural stiff-
ness values as TEC-2007: beams and low axial loaded
columns (columns under tension failure)EIef =0.4EIg, high
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Fig. 4. Typical load-displacement relationship for RC structures.

axial loaded columns (columns under compression failure)
EIef =0.8EIg.

– After completing plastic hinge length and effective flex-
ural stiffness values, the gravity loads are applied on the
systems. The pushover analysis takes from the gravity
loads and a monotonically increasing pattern of lateral
static forces. The first mode shape (inverted triangular)
has been selected for loading as general. In the analysis,
P−1 effects were taken into account.

– Fy andδy are defined graphically (see Fig. 4).

– The areas under the original and idealizing curve are
approximately equal.

– Since the original pushover curve is known from analyt-
ical data, the two curves cross at a force equal to about
60 per cent of the yield strength (0.6Fy).

– The failure displacement is there where the slump 25%
of the strength is appeared.

3 Brief description of the selected sample RC structures

In this study, a 4 story reinforced concrete frame building was
selected. The selected building was typical beam-column RC
frame building with no shear wall. The 4 story frame build-
ing was 12 m by 12 m in plan. It has 3@4 m bays along X di-
rection and 4@3 m bays along Y direction (Figs. 5–6). Typi-
cal floor height was 3.0 m. The column and beam dimensions
used in this study were typical frame element proportions in
practice. The building doesn’t have any vertical irregularities
as soft story, short column, heavy overhangs etc.

At every story, column and beam dimensions were the
same. All columns were selected as 400 mm×400 mm
and 500 mm×500 mm. All beams had 200×500 mm and
250×600 mm cross section. In practice, especially in Turkey,
while column dimensioned are generally changed from one
story to another, beam dimensions remained the same. In
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Fig. 6. Selected interior frame.

this study, the column section changes were neglected be-
tween the stories. The parameters investigated within the
scope of this study were (1) concrete strength, (2) amount
of column’s longitudinal reinforcement, (3) amount of trans-
verse reinforcement at the confinement zone for beam and
column, (4) axial load level on the column, (5) dimensions
of column and beam and (6) amount of compression bars at
the support section of beams. Table 5 summarizes the range
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Table 5. Range of parameters used.

Transverse reinforcement Amount of compression Cross Section Longitudinal Axial load level Concrete compressive
(mm/mm) bars at the support section (mm/mm) reinforcement ratio strength (MPa)

f /sc ρ′/ρ ρ` N /No fc

Columns

φ8/250 – 400/400 0.01 0.1 10
φ8/200 – 500/500 0.02 – 20
φ8/150 – – – 0.5 30
φ8/100 – – – – –
φ8/50 – – – – –

Beams

φ8/250 0.2 200/500 – – 10
φ8/200 0.4 250/600 – – 20
φ8/150 0.6 – – – 30
φ8/100 – – – – –
φ8/50 – – – – –

of the parameters used in the structural and cross sectional
analyses. According to the Table 5;

– The longitudinal reinforcement ratio of the columns
varies between 1% and 2%. In the codes [10, 13–14],
the longitudinal rebar ratio (ρl) ranges between 1%–4%,
generally. Selection of low steel ratio is encouraged be-
cause; low steel ratio is an amplification of larger cross
section. The use of larger cross section effects lateral
stiffness to increase.

– The proportion of compression bars and tensile bar of
the beams’ support varies between 0.2 and 0.6. In order
to obtain adequate ductility at the end of beam, codes
stipulate the requirement minimum compression bar’s
(bottom bar) ratio as 30 % of tension bar’s (top bar).

– Axial load ratio ranges between 0.1 and 0.5 for columns.
In the codes, the axial load level of column changes in
this gap. Maximum value of this level given in the codes
ranges from 0.50 to 0.65. The reason for this is to satisfy
minimum rigidity, decrease the axial load level, and thus
increase in ductility.

– Transverse reinforcement spacing in critical region is
selected as 50∼250 mm. In all codes including TEC-
2007, transverse bars spacing and special seismic hooks
is important to obtain plastic hinge formation and high
ductility. According to author observation after the
earthquakes, especially in Turkey, the spacing of trans-
verse ties is typically 200–250 mm uniform along the
clear height of the column and beam. The wide spacing
of the ties resulted in shear failures buckling of longitu-
dinal rebar and poor confinement of the core concrete.

– Concrete strength parameter is selected as 10, 20 and
30 MPa. In the all codes, it is stipulated that the mini-
mum characteristic strength of concrete must be 20 MPa
for structures which will be built on earthquake prone
regions. Poor quality of material may have been one

of the main factors that caused the collapse of many
structures. Damage due to poor quality of material
was reported many of other country’s earthquakes [24–
26]. Lack of anchorage of beams and insufficient splice
lengths is secondary affected by low quality level of
concrete.

4 Database of evaluated RC buildings

In the study, the grouping of the RC buildings, of which eval-
uation has been performed, has been made according to the
parameters specified in Table 5. As can be seen from the ta-
ble, 720 frame types have been arranged according to their
performance characteristics. Among these frames the lowest
performance level in terms of section, reinforcement and ma-
terial is designated as Type-1, and the highest performance in
respect of the same features is designated as Type-720. The
features of Type-1 and Type-720 have been specified in Ta-
ble 6.

The failure load and failure displacement of the all
frames with static pushover analysis was conducted using
the SAP2000 three-dimensional structural analysis program.
The results are shown in Table 7. Because the decrease of
25% after the maximum load, which defines failure load, is
not seen in the curves of lateral load-lateral displacement of
both frames, the ultimate point of the curve has been taken
as the failure load and failure displacement. Lateral drift ca-
pacities (%) in performance areas of sample RC frames are
also specified in Table 7. Load displacement curves for both
sample frames are also specified in Fig. 7.

5 ANN-Based models for estimating the failure load and
failure displacement of the RC structures

The use of artificial neural network (ANN) provides an al-
ternative way to estimate and determine failure load and
displacement of the RC structures. The ANN has been

Nat. Hazards Earth Syst. Sci., 9, 967–977, 2009 www.nat-hazards-earth-syst-sci.net/9/967/2009/
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Table 6. Features based on related parameters of two sample RC frames.

Transverse
reinforcement
(mm/mm)

Amount of compres-
sion bars at the sup-
port section

Beam Cross Section
(mm/mm)

Column Cross
Section (mm/mm)

Longitudinal
reinforcement
ratio

Axial load
level

Concrete
compressive
strength
(MPa)

f /sc ρ′/ρ ρ` N /No fc

Type-1 φ8/250 0.2 200/500 400/400 0.01 0.5 10
Type-720 φ8/50 0.6 250/600 500/500 0.02 0.1 30

Table 7. Failure point and global displacement drift capacities (%) of the sample buildings obtained for considered performance levels.

Structure Type Values of failure point of the structures Performance Level

δfailure (mm) Vfailure (kN) Immediate
Occupancy (IO)

Life Safety
(LS)

Collapse Prevention
(CP)

Type-1 83.13 194 0.23 0.44 0.62
Type-720 177.05 561 0.61 1.05 1.32
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 Fig. 7. Capacity curves of the Type-1 and Type-720.

successfully applied to a number of areas of structural en-
gineering that is an important branch of civil engineering. In
the recent literature, structural analysis and design [27–32],
structural dynamics and control [33] and structural damage
assessment [34, 35] are good examples for the application of
ANN. In this study, a three-layered feed-forward neural net-
work was used and trained with the error back propagation
method. The structure of feed-forward multilayer network
is given in Fig. 8. As it seen from the Fig. 8, general struc-
ture of the neural network consists of an input layer, one or
more hidden layer(s) and an output layer. Layers are fully
interconnected, as shown by lines. The input data are pre-
sented to the ANN at the input layer, which are processed in
a forward direction through the hidden layer(s), and the out-
put from the ANN is computed at the output layer. This is
known as “feed-forward mechanism”. In a feed-forwarded
operation, the flow of information is from left to right [27].
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Fig. 8. Feed forward multilayer network consisting of an input
layer, a hidden layer and an output layer.

In the ANN model, 720 different RC structures having
different material and sectional parameters were analyzed to
calculate the failure load and displacement of the RC struc-
tures. These material and sectional parameters included; (1)
Transverse reinforcement ratio (Asw/sc), (2) Amount of com-
pression bars at the support section of beams (ρ′/ρ), (3) Iner-
tia moment of beam (Ib), (4) Inertia moment of column (Ic),
(5) Longitudinal reinforcement ratio for column (ρ`), (6) Ax-
ial load level on column (N /No) and (7) Concrete compres-
sive strength (fc). The range of datasets is listed in Table 8.
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Table 8. Data range.

Transverse reinforce-
ment ratio

Amount of
compression bars at
the support section

Inertia Moment of
Beam

Inertia Moment of
Column

Longitudinal reinforce-
ment ratio

Axial load
level

Concrete
compressive strength

Asw/sc
(mm)

ρ′/ρ Ib
(mm4)×108

Ic
(mm4)×108

ρ` N /No fc

(MPa)
Minimum 0.2 0.2 20.8 21.33 0.01 0.5 10
Maximum 1.0 0.6 45.0 52.08 0.02 0.1 30
Increment Variable 0.2 None None None None 10

Table 9. The network training parameters.

Parameter Value

Number of Training examples (randomly) 360
Number of Testing examples (randomly) 360
Iteration Number (Maximum) 5000
Learning Rate (lr) 1.0
Momentum Constants 0.2
Error tolerance 0.0001
ANN structure 7:HN:1

Totally 720 data were scaled to be presented to the net-
work. A simple linear normalization function within the val-
ues of 0 to 1 is given by Eq. (3) [27],

sx =
(x − xmin)

(xmax − xmin)
(3)

In the Eq. (1),sx is the normalized value of variable,x,
xmin andxmax are variable minimum and maximum values
respectively. In this study, MATLAB neural network tool-
box [36] was used to estimate and determine failure load and
displacement of the RC structures. The MATLAB neural net-
work toolbox needs some parameters to start simulation as;
(1) number of training data; (2) number of hidden layers; (3)
number of iteration (epocs); (4) learning rate; (5) number of
nodes of input; output and hidden; (6) error tolerance and;
(7) momentum constant. There are no acceptable general-
ized rules to determine the size of the training data. From the
set of 720 design data, 360 data sets were selected for neural
network training. Required parameter and its selected values
are given in Table 9.

In the simulation process, the 11 neural network configu-
rations that are given in Table 10 were selected. In all sim-
ulations one hidden layer was chosen. Maximum training
cycles, learning rate, error tolerance and momentum coeffi-
cient were kept constant. The number of neurons in the hid-
den layer was changed 2 to 16. In Table 9, 7: HN: 1 refers
to 7 input nodes, HN optimum number of hidden nodes and
1 output node.

6 Comparison of analysis results

The results of ANN models for failure load and displace-
ment of RC structure are given in Tables 11–12. The op-
timum number of hidden layer nodes that is obtained after
many trials is also provided in the second column of the ta-
bles. Performance of Back-Propagation Methods for failure
load (Vfailure) is given in Table 11. It is obvious from the Ta-
ble 11 that the performances of the BFG algorithm performed
the best estimation concerning correlation coefficients (R2),
even though training time is quite long due to the training cy-
cles. CGF algorithm made classification process in less time
than other algorithms forVfailure. In addition to these, as seen
from the Table 11, all of back-propagation methods were ob-
tained between 90.27% and 97.59 % averaged accuracy rate
(100% – error %) for test phase of neural network and also
87.37% and 92.25% averaged accuracy rate (100% – error
%) for training phase of neural network. As demonstrated
in Table 12, the best estimation was performed by SCG al-
gorithm for theδfailure similar toVfailure performance. In the
estimation ofδfailure, CGF also made classification process
in less time than the others. The averaged accuracy rate was
between 94.53% and 97.54% for test phase and 84.85% and
89.95% for training phase. The comparison of pushover re-
sults as calculated and ANN results as estimated for failure
load and failure displacement of RC structures is plotted in
Figs. 9 and 10. In the figures, a BFG algorithm’s data was
used because it has better performance (estimation power)
than the other algorithms.

7 Results

The research has examined the performance of a sample RC
frame with 4 storeys and 3 spans, according to a range of
parameters. This represents the multi-storey RC structures
which have been seriously damaged during earthquakes and
which constitute the majority of Turkey’s building stock. The
parameters considered for columns were longitudinal bar ra-
tio, transverse reinforcement ratio, axial load level, column
cross section and strength of concrete. The parameters con-
sidered for beams were the compression bar ratio on the sup-
port, transverse reinforcement ratio, beam cross section and
strength of concrete. In order to obtain lateral load – lateral
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Table 10.Back propagation training algorithms used in NN training.

Category 1

GDA Gradient descent with adaptive linear back propagation
GDM Gradient Descent BP with Momentum
GDX Gradient descent w/momentum and adaptive linear back propagation
RP Resilient back propagation

Category 2

CGF Fletcher – Powell conjugate gradient back propagation
CGP Polak-Ribiere conjugate gradient back propagation
CGB Powell – Beale conjugate gradient algorithm
SCG Scaled conjugate gradient back propagation
BFG BFGS quasi – Newton back propagation
OSS One step secant back propagation
LM Levenberg – Marquart back propagation

Table 11.Performance of back-propagation methods for values of failure point of the structures (Vfailure).

Back-
Propagation
Methods

Optimum
Number
of HN

ANN
structure

Training Error
(%)

Test Error
(%)

Iteration
Number

Training Time
(second)

R2

(%)

BFG 12 7:12:1 5.49 7.75 3871 89.41 91.73
CGB 10 7:10:1 6.25 7.79 2274 18.93 89.13
CGF 10 7:10:1 2.41 8.27 948 15.72 88.75
CGP 10 7:10:1 2.44 8.11 851 21.63 89.27
GDA 8 7:8:1 9.59 11.12 5000 31.07 79.75
GDM 8 7:8:1 8.57 10.29 5000 35.13 82.11
GDX 10 7:10:1 7.34 10.06 5000 39.42 83.35
LM 12 7:12:1 5.27 7.78 4150 19.08 89.41
OSS 10 7:10:1 9.73 9.21 5000 73.22 87.16
RP 10 7:10:1 6.70 12.63 5000 33.71 87.71
SCG 10 7:10:1 5.24 8.51 5000 42.77 90.05

top displacement curve (capacity curve) of the sample build-
ing, static pushover analysis method was selected.

In this study, following points have been noted by com-
paring the values of failure load and failure displacement to
the results obtained by using 11 different artificial neural net-
works approaches;

– Nonlinear and compex behavior of RC buildings un-
der seismic action makes quantification of their perfor-
mance a difficult task. This study explored the feasibil-
ity of the potential use of artificial neural networks in
failure load and failure displacement of RC buildings.

– This study demonstrates that the efficiency of feed for-
ward back-propagation neural network to predict failure
load and failure displacement. It was found that the se-
lected parameters explain a high proportion of the re-
sults (91.73% for failure force and 90.95% for failure
displacement). That means; the percentage of influence
of mentioned variant on the result is very high.
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Figure 8. Feed Forward Multilayer Network Consisting of an Input Layer, a Hidden Layer 
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Fig. 9. Comparison of pushover and ANN results for failure load
(Vfailure) of RC structures.

– The estimation capacity and estimation duration of each
algorithm show significant differences. It is obvious
that the selection of the data used in the training set
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Table 12.Performance of back-propagation methods for values of failure point of the structures (δfailure).

Back-
Propagation
Methods

Optimum
Number
of HN

ANN
structure

Training Error
(%)

Test Error
(%)

Iteration
Number

Training Time
(second)

R2

(%)

BFG 12 7:12:1 6.51 10.05 2755 93.12 90.95
CGB 8 7:8:1 7.48 11.21 1251 21.77 87.43
CGF 10 7:10:1 3.48 14.28 927 16.36 85.82
CGP 10 7:10:1 2.46 13.12 713 24.21 86.93
GDA 10 7:10:1 9.62 15.15 5000 33.45 73.06
GDM 10 7:10:1 9.25 14.25 5000 37.12 77.23
GDX 10 7:10:1 8.68 13.56 5000 41.43 81.41
LM 14 7:14:1 6.47 11.21 3750 21.25 87.75
OSS 8 7:8:1 9.91 14.26 5000 84.27 85.24
RP 10 7:10:1 6.82 13.76 5000 43.61 85.76
SCG 10 7:10:1 5.47 13.57 5000 45.71 86.32
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Figure 8. Feed Forward Multilayer Network Consisting of an Input Layer, a Hidden Layer 
and an Output Layer. 
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Fig. 10. Comparison of pushover and ANN results for failure dis-
placement (δfailure) of RC structures.

and algorithm directly influences the accuracy and rate.
Therefore, selection of the algorithm most appropriate
for each data set is a crucial factor in the solution of the
problem.

– It should be noted that selected ANN models presented
above are valid only for the ranges of database given
in Table 5 and for the sample frame (4-storey R/C
plane frames which are a very common building type
in Turkey) given in Figs. 5–6. Therefore, the estimation
capacity and estimation duration of each algorithm will
be expected to be lower than calculated in this study, in
case of selecting frames with different number of stories
and bays, different columns as (450/450) and beams as
(250/500).

– Previous observations made by the author [6] indicate
that RC buildings in Turkey have some structural de-
ficiencies, such as (a) the end zones of beams and
columns were inadequately confined (inadequate trans-

verse reinforcement ratio,Asw/sc) (b) the bottom rein-
forcement of the beam supports did not have sufficient
anchorage length and amount (Amount of compression
bars at the support section,ρ′/ρ) (c) concrete strength
was very low (fc). (d) Inadequate column cross section
(inadequate lateral rigidity) (e) high longitudinal rein-
forcement ratio (ρ`) and high axial load level (N /No) (f)
the ends of the ties were bent 90◦. (g) Excessive beam
strength. (i) No transverse reinforcement was used in
joints. The present study has demonstrated that all of
these selected parameters directly affected the seismic
performance of building, which is a function of lateral
load carrying capacity, failure load level and failure dis-
placement. The analyses also indicated that a consid-
erable portion of existing RC building stock in Turkey
may not meet the safety standards of the Turkish Earth-
quake Code (TEC-2007).
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