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Abstract. Trajectory analysis models are increasingly used
for rockfall hazard mapping. However, classical approaches
only partially account for the variability of the trajectories.
In this paper, a general formulation using a Taylor series ex-
pansion is proposed for the quantification of the relative im-
portance of the different processes that explain the variability
of the reflected velocity vector after bouncing. A stochastic
bouncing model is obtained using a statistical analysis of a
large numerical data set. Estimation is performed using hier-
archical Bayesian modeling schemes. The model introduces
information on the coupling of the reflected and incident ve-
locity vectors, which satisfactorily expresses the mechanisms
associated with boulder bouncing.

The approach proposed is detailed in the case of the impact
of a spherical boulder on a coarse soil, with special focus on
the influence of soil particles’ geometrical configuration near
the impact point and kinematic parameters of the rock before
bouncing. The results show that a first-order expansion is
sufficient for the case studied and emphasize the predomi-
nant role of the local soil properties on the reflected velocity
vector’s variability. The proposed model is compared with
classical approaches and the interest for rockfall hazard as-
sessment of reliable stochastic bouncing models in trajectory
simulations is illustrated with a simple case study.

1 Introduction

Trajectory simulation models classically use Digital Eleva-
tion Models that define the topography, and geographic in-
formation systems that provide information on the rockfall
sources and the spatial distribution of the parameters neces-
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sary to calculate the bouncing of the falling rocks at each
point of the study site. The models classically used for
bouncing calculations are based on restitution coefficients
that express the dependence of the kinematic parameters of
the rock after impact (reflected kinematic parameters) on
the kinematic parameters of the rock before impact (inci-
dent kinematic parameters). However, experimental studies
have proved the complexity of simulating this dependence by
means of reasonably simple mechanical models (Wu, 1985;
Bozzolo and Pamini, 1986; Chau et al., 1998; Ushiro et al.,
2000; Chau et al., 2002; Heidenreich, 2004). In addition,
deterministic prediction of boulder bouncing remains highly
speculative because the available information on the mechan-
ical and geometrical properties of the soil and the boulder is
not sufficient. Indeed, the spatial distributions of the param-
eters of the bouncing model integrated into the geographic
information system result from a field survey which, for prac-
tical reasons, cannot be exhaustive. Moreover, as for many
physical processes in the field of natural hazards, it seems
impossible to predict the bouncing deterministically.

Stochastic bouncing models have therefore been proposed
to integrate most of the sources explaining the bouncing
phenomenon’s variability using statistical laws (Paronuzzi,
1989; Pfeiffer and Bowen,1989; Azzoni et al., 1995; Dudt
and Heidenreich, 2001; Guzzetti et al., 2002; Agliardi and
Crosta, 2003). The variability sources can be divided into
those associated with the soil properties (soil surface, poros-
ity, particle size and shape, etc.) and those related to the
incident conditions (incident kinematic parameters, boulder
size, shape and orientation, etc.) (Pfeiffer and Bowen, 1989;
Labiouse, 1999). Although an important step further, these
approaches require a thorough calibration of the statistical
laws using large data sets. Real rockfall events or field exper-
iments are not directly usable for this purpose because either
the data set is incomplete (rockfall events) or reproducible
impact conditions are difficult to obtain (field experiments).

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


832 F. Bourrier et al.: Stochastic bouncing model

Taking inspiration from other research fields such as hy-
drology (Rao, 1996; Perreault et al., 2000a, 2000b) and
avalanche science (Eckert et al., 2007, 2008) in which deal-
ing with stochasticity is more common, this paper aims at
defining a bouncing model explicitly distinguishing these
different sources of variability.

In Sect. 2, a general framework that aims at determining
the kinematics of the boulder after bouncing from the kine-
matics before bouncing using a stochastic operator and its re-
lated Taylor series expansion is presented first. This section
also shows how the stochastic operator can be characterized
using a Bayesian statistical analysis (Wickle, 2003; Clark,
2005) of numerical simulations. The study focuses on the
impact of a boulder on a coarse soil, which is common in the
context of rockfall trajectory analysis. In a first approxima-
tion, only the influences of the incident kinematic parame-
ters and the soil particle configuration near the impact point
of a spherical boulder are studied. In Sect. 3, the stochastic
bouncing model obtained using this approach is presented
and discussed in detail. An extensive sensitivity analysis is
performed to evaluate the bouncing model’s range of validity.
Section 4 discusses the advantages and limitations of our ap-
proach with regard to classical approaches. The usefulness
of using this stochastic bouncing model for the prediction
of rockfall hazard is finally illustrated through a simple case
study.

2 Materials and methods

2.1 Stochastic modeling of the impact

The bouncing model is developed in a two-dimensional
frame, which is classical in the field of trajectory analysis
(Guzzeti et al., 2002; Dorren et al., 2004). A generalized ve-
locity vectorV composed of a normal-to-soil-surface veloc-
ity componentvy , a tangential-to-soil-surface velocity com-
ponentvx – both expressed at the gravity center of the falling
rock – and a rotational velocityω properly describes the kine-
matic parameters of the boulder:

V =
(
vx vy Rbω

)t (1)

whereRb is the mean radius of the boulder.
For given mechanical and geometrical properties of the

boulder and the soil, it is assumed that the incidentV in and
reflectedV re generalized velocity vectors of the boulder can
be related by a stochastic operatorf̃ :

V re
= f̃ (V in) (2)

The formulation of the operator̃f should express the com-
plexity of the mechanisms leading to the dependence of the
reflected velocity vector to the incident velocity vector. It
should also be relevant for the variability of the bouncing
process depending on the variability of the soil properties and
the incident kinematic parameters.

Assuming that a Taylor series expansion of the operatorf̃

with respect to all components of the incident velocity vec-
tor V in exists, the operatorA composed of the coefficients
of then-order Taylor series expansion of̃f is defined. The
operatorA associates the reflected velocity vectorV re with
an incident velocity vector expressed asT in:

V re
= AT in

+ R (3)

with

A =

a1
100 a1

010 ... a1
uvw ... a1

0n0 a1
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y )n(Rbw
in)n

]t

,

u ∈ [1, n], v ∈ [1, n], w ∈ [1, n],

andR a remainder term denoting the difference between the
operatorf̃ and its n-order Taylor series expansion. The num-
ber of the incident vectorT in component is equal to 3 for a
first-order Taylor series expansion off̃ , 7 for a second-order
Taylor series expansion of̃f , etc. One can note that, for a
first-order Taylor series expansion of the operatorf̃ , the in-
cident vectorT in is equal to the incident velocity vectorV in.

The high variability of the local configurations of the soil
and the incident kinematic conditions induces the operator
A and the remainder termR to take very different values.
This suggests adopting a stochastic approach distinguishing
the variability associated with both the operatorA and the
remainder termR. Note that this paper only investigates in
detail the case of the impact of a spherical boulder on a coarse
soil. In a first approximation, the sources of variability con-
sidered are limited to the incident kinematic parameters and
the soil particles’ geometrical configurations. However, the
proposed framework is very general and could be applied
to modeling boulder bouncing for impacts on different soil
types and for different boulder mechanical and geometrical
properties. Indeed, as exemplified in this paper, it allows ex-
tracting the respective contribution of the different sources of
variability using Bayesian inference.

2.2 Data set definition from numerical simulations

The large data sets needed for statistical analyses can be ob-
tained from numerical simulations of impacts. Additionally,
in the simulations, the influences of the geometrical configu-
ration of the soil near the impact point and the incident kine-
matic parameters can be explored separately, since a precise
and reproducible definition of these parameters is possible.

2.2.1 Numerical modeling of impacts using the Discrete
Element Method

Assuming that rocks composing the coarse soil can be con-
sidered as rigid locally deformable two-dimensional bodies,
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the software Particle Flow Code 2-D (Itasca, 1999) based on
the Discrete Element Method (Cundall and Strack, 1979) is
used. In the Discrete Element Method (DEM), particles are
subjected to gravitational forces and to contact forces. Con-
tact forces are applied to neighboring particles in contact.
For a given time step, once gravitational and contact forces
have been computed, the translational and rotational veloc-
ities of the particles are determined by solving the balance
equation using an explicit solving scheme. The resulting
particle displacements are used to update particle locations
for the next time step. In this study, the contact forces act-
ing between particles are calculated using the Hertz-Mindlin
model (Mindlin and Deresiewicz, 1953). Contact forces are
governed by three parameters set at classical values for rocks
(Goodman, 1980): the shear modulusG is set at 40 GPa,
the value of the Poisson ratioν is set at 0.25 and the local
friction angleφ is 30◦. In addition, the densityρ of the boul-
der and the soil particles is set at 2650 kg/m3. This contact
model takes frictional processes between adjoining particles
into account. Other dissipation sources also exist within real
granular soils subjected to dynamical loadings, such as lo-
cal yielding near the contact surface, crack propagation, and
rock breakage. However, in the context of the simulations
where a boulder is approximately of the same size as the
soil particles, other dissipation sources can be assumed to
be negligible compared to frictional dissipation in a first ap-
proximation (Oger et al., 2005; Bourrier et al., 2008a).

The mean radius of the soil particles isRm = 0.3 m.
Given that natural scree are polydisperse granular assemblies
(Kirkby and Statham, 1975), the ratio between the mass of
the soil’s smaller particles and larger particles is set at 10. In
the case of an impact on a coarse granular soil, boulder and
soil particle sizes are nearly the same. The boulder radius
Rb varies fromRm to 5Rm. The influence of particle shape
is also explored by defining two different soil samples com-
posed of either spherical particles or elongated particles mod-
eled by indivisible assemblies of spherical particles called
clump particles, which can realistically model the shape of
soil rocks (Bertrand et al., 2006; Deluzarche and Cambou,
2006; Bourrier et al., 2008a). The soil sample generation
procedure leads to soil porosity values of 0.204 for spherical
particles and 0.171 for clump particles. Additional details on
the soil properties can be found in Bourrier et al. (2008a).

Although simulation results also depend on soil sample
depth and porosity (Bourrier et al., 2008a), the influence of
these parameters is not investigated in a preliminary approx-
imation. Soil sample depth is set at 12Rm. Analyses of
the influence of the model parameters on the impact simu-
lations (Bourrier et al., 2008a) have shown that, for a soil
depth corresponding to classical values in the field of rock-
fall simulations, the bouncing of the boulder mainly depends
on the ratio between the boulder radiusRb and the mean
radius of a soil particleRm, the shape of the particles, the
incident kinematic parameters and the geometrical configu-
ration of the soil particles near the impact point. We will

Fig. 1. Incident kinematic conditions.

focus on modeling the variability associated with the inci-
dent kinematic parameters and the geometrical configuration
of the soil particles near the impact point using a stochastic
bouncing model (see Sect. 3). In addition, the influence of
the ratio of the boulder radiusRb to the mean radius of a soil
particleRm and the shape of the particles on the parameters
of the stochastic bouncing model will also be investigated in
Sect. 3 by means of sensitivity analyses.

Once the soil sample is generated, impact simulations are
run for varying impact points and incident kinematic param-
eters. The location of each impact point is defined very pre-
cisely. In addition, incident kinematic conditions are fully
determined by the magnitude of the incident velocityV in,
the incident angleαin and the incident rotational velocityωin

(Fig. 1). These parameters are directly related to the normal
and tangential velocity components by:

vin
x = V in sin(αin) (4)

vin
y = −V in cos(αin) (5)

Finally, reflected velocities are collected when the normal
component of the boulder velocity reaches its maximum,
which corresponds to the last contact between the soil and
the boulder.

It is important to note that the relevance of the numerical
model has been proved by comparing its results to the avail-
able literature (Bourrier et al., 2008a) and to half-scale ex-
periments of impacts on a coarse soil (Bourrier et al., 2008b).
In particular, the impact model was calibrated and validated
using laboratory experiments of the impact of a 10-cm spher-
ical rock on a coarse soil composed of gravels ranging from
1 cm to 5 cm (Bourrier et al., 2008b, 2009). The incident ve-
locity of the projectile was 6 m/s and the incident angle could
reach values from 0◦ to 75◦. Satisfactory agreement between
the laboratory experiments and the numerical simulations of
impacts proves that the stochastic impact model adequately
expresses the energy transfers occurring during the impact of
a boulder on a coarse soil.
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Table 1. Values of the incident kinematic parameters.

Incident parameters Values explored

V in (m/s) 5, 10, 15, 20, 25
αin (deg) 0, 15, 30, 45, 60, 75
ωin (rad/s) −6, −3, 0, 3, 6

One limitation could stem from the differences in the sizes
of the impacting and soil rocks during calibration and dur-
ing application in this study. However, the influence of scale
change effects was proved to be small by comparing the
results of the numerical simulations of impacts at different
scales (Bourrier, 2008). This has been confirmed by results
from the literature in the field of aeolian sand transport (Oger
et al., 2005).

2.2.2 Numerical simulation campaign

For given soil and boulder properties, several impact simula-
tions were conducted for varying impact points and incident
kinematic parameters. As stated above, the only sources of
variability accounted for are the incident kinematic parame-
ters and the soil particle geometrical configuration near the
impact point. In addition, the dependency of the stochastic
bouncing model parameter values on the boulder size and
soil particle shape will be explored in Sect. 3.3. Other im-
pact model parameters are set at fixed values: the mechanical
properties of the particles (G, ν, φ, ρ), the porosity and grad-
ing curve of the soil sample and the boulder size are fixed
parameters.

Impact points are first precisely defined so that the same
impact point can be used for several incident kinematic con-
ditions: for a given impact point, a set of equally distributed
incident kinematic parameters is explored. Kinematic pa-
rameter values range within the limits defined from rockfall
events (Azzoni et al., 1992). For each impact point, all com-
binations of the chosen values for incident kinematic param-
eters (Table 1) are explored. Preliminary numerical investi-
gations have shown that a minimum ofP = 100 impact points
has to be chosen to ensure that the mean values and standard
deviations of the reflected velocity components (Bourrier et
al., 2007) have reached their asymptotic value corresponding
to the value obtained for very large numbers of impact points.

2.3 Stochastic analysis of simulation results based on
Bayesian inference

2.3.1 Hierarchical stochastic modeling

First, at each impact pointp∈[1, P ], the Taylor series expan-
sion (Eq. 3) of the operator̃f defined in Eq. (2) is considered

a linear regression of the reflected velocity vectorV re with
regard to the incident vectorT in:

V re
pk∼N3(ApT in

pk, 6) (6)

The reflected velocityV re
pk is thus sampled from a local

three-dimensional Gaussian vector fully defined by its lo-
cal mean vectorApT in

pk varying from one impact event to
another and its covariance matrix6, which is constant for
all incident kinematic conditionsk∈[1, K] and impact points
(homoscedascity assumption). The vectorApT in

pk is the
mean predictor in the linear regression. Its variability quan-
tifies the variability of the Taylor series expansion off̃ ,
while the covariance matrix6 accounts for the variability
of the remainder termR. Our stochastic model is there-
fore based on the assumption that the variability of the op-
eratorA is only related with the variability of the soil parti-
cles’ geometrical configuration, whereas the remainder term
R is associated with all other variability sources accounted
for in the impact model, for instance random uncertainties
that are not modeled explicitly. The realism of the me-
chanical modeling representing the coupling between the re-
flected and incident velocity vector depends on the order of
the Taylor series expansion. For convenience, the matrix
Ap is rewritten as a vector havingN componentsAl

p =[
a1

100p
a010p

1...a1
uvwp

...a0n0
1
pa00np

1a100
2
p...a2

00np
a100

3
p...

a00np
3
]
, with a1→3

uvw denoting the coefficients of the matrix
A defined in Eq. (3) at the pointp∈[1, P ]. The number
N=(n+1)(n+2)(n+3)/2–3 of the vector’s coefficients is equal
to 9 for a first-order Taylor series expansion off̃ (n=1), 27
for a second-order Taylor series expansion off̃ (n=2), etc.

Second, it is assumed that the results observed at the dif-
ferent impact points are, in some ways, similar because the
macroscopic properties of the soil (porosity, the particles’
mechanical properties, grading curve, etc.) are the same.
This makes us use hierarchical modeling to allow informa-
tion to be partially shared between the different impact points
and to extract the common patterns in all samples. For all im-
pact pointsp, the coefficients of the operatorAp are there-
fore assumed to be realizations of the same Gaussian vector
such as:

A1
p∼NN (Ma, 6a) (7)

Ma and6a are the mean vector and the covariance matrix
of theN -dimensional Gaussian vector.Ma models the mean
behavior all over the different local soil particles’ geometri-
cal configurations, whereas the variability ofAl

p measured
by 6a expresses how close the different reflected velocities
at the different impact points are.

Note that with a non hierarchical model only two extreme
cases could have been considered: i) all samples are identi-
cally distributed, with the same operatorAp for all impact
points, or ii) the different samples are so different that they
have to be modeled by independent distributions. On the

Nat. Hazards Earth Syst. Sci., 9, 831–846, 2009 www.nat-hazards-earth-syst-sci.net/9/831/2009/



F. Bourrier et al.: Stochastic bouncing model 835

contrary, even if it complicates model specification and in-
ference, the hierarchical structure allows a comprehensive
exploration of the grey zone situated between these two ex-
treme cases. This makes each local estimation more robust
and allows the overall quantitiesMa and6a to be captured.

The analytical formulation of the model developed can
be summarized as follows. First, the analytical expression

of p(V re
pk

∣∣∣Ap, T in
pk, 6 ), the probability of the observed re-

flected vectorV re
pk knowing the values ofAp, 6 and the ob-

served incident kinematic conditionsT in
pk is:

p(V re
pk

∣∣∣Ap, T in
pk, 6 ) =

1

(2π)3/2 det(6)1/2
e
−

1
2 (V re

pk−ApT in
pk)

t6−1(V re
pk−ApT in

pk) (8)

Second, the analytical expression of the probability
p(Al

p |Ma, 6a ) of the nonobserved latent vectorAl
p know-

ing the values ofMa, 6a is:

p(Al
p

∣∣Ma, 6a ) =

1

(2π)N/2 det(6a)1/2
e−

1
2 (Al

p−Ma)t6a−1(Al
p−Ma) (9)

The unknown parameters of the stochastic model areMa ,
6a , 6 and the data areV re

pk and T in
pk. The latent quanti-

ties Al
p with p∈[1, P ] have a hybrid status: with regard to

the dataV re
pk they are parameters and therefore must be es-

timated, whereas they behave as data with regard to param-
etersMa and6a . Figure 2 gives a general overview of the
model using a direct acyclic graph (DAG), which expresses
conditional dependence. Circled nodes represent stochastic
variables, while rectangles indicate observed values and di-
amonds model parameters. The DAG clearly illustrates the
three layers distinguished in our approach: impact that de-
pends both on incident velocity and location, local soil con-
figuration and the soil’s global parameters.

2.3.2 Bayesian inference

Due to its hierarchical nature, determining the parameters
of our stochastic model using a classical statistical approach
(Fischer, 1934; Neyman and Pearson, 1933) is tricky. On
the other hand, estimates for the parametersMa , 6a and6

and latent vectorsAl
p, p∈[1, P ] can be more easily obtained

using Bayesian inference (Bayes, 1763). The result of apply-

ing the Bayes theorem isp(Al
p, Ma, 6a, 6

∣∣∣V re
pk, T

in
pk ), the

joint posterior probability distribution of all model unknowns
knowing the dataV re

pk andT in
pk:

p(Al
p, Ma, 6a, 6

∣∣∣V re
pk, T

in
pk )

=
1

χ
p(Ma, 6a, 6)×p(V re

pk

∣∣∣Ap, T in
pk, 6 )×p(Al

p

∣∣Ma, 6a ) (10)

The determination ofp(Al
p, Ma, 6a, 6

∣∣∣V re
pk, T

in
pk ) there-

fore requires the probability of the reflected vectorV re
pk

Fig. 2. DAG summarizing the hierarchical model.

knowing the data, latent variablesAl
p and the overall

parameter6 (p(V re
pk

∣∣∣Ap, T in
pk, 6 )) and the probability

p(Al
p |Ma, 6a ) of the latent variables given the data and

the overall parametersMa, 6a . Both of them are fully
defined by the hierarchical model detailed in Sect. 2.3.1.

Moreover, determiningp(Al
p, Ma, 6a, 6

∣∣∣V re
pk, T

in
pk ) also

requires specifyingp(Ma, 6a, 6). χ =
∫

p(Ma, 6a, 6)×

p(V re
pk

∣∣∣Ap, T in
pk, 6 ) × p(Al

p |Ma, 6a )dMad6ad6 is a

normalizing constant that does not depend on the problem’s
unknowns, but makes all difficulty of Bayesian inference (see
Sect. 2.3.3).

According to Bayesian interpretation,p(Ma, 6a, 6) is a
prior, which is a probability distribution function that ex-
presses the expertise about the parameters that is available
before the data analysis. To respond to the classical objec-
tions to use such prior information, in this paper we use
poorly informative priors (Box and Tiao, 1973) that lead
asymptotically to the same estimators as classical approaches
(Berger, 1985). To facilitate inference using Gibbs sam-
pling (see Sect. 2.3.3), the chosen poorly informative priors
have been taken from conjugate families (see Gelman et al.,
1995): a normal Gaussian vector with a null mean and very
large variance forMa , and Wishart distributions with low de-
grees of freedom for the inverse of the covariance matrixes
(6, 6a). Taking very poorly informative priors is possible
since a data set as large as necessary is available given that
numerical simulations were used to generate it. Poorly infor-
mative priors have the advantage of letting the data speak for
themselves so as to infer parameters with as much physical
meaning as possible.

Note finally that, contrary to classical statistical ap-
proaches, Bayesian inference provides a probability distribu-
tion rather than a point estimate associated with a confidence
interval for each unknown quantity. For applications, the
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Fig. 3. Posterior distributions for a few unknown parameters.

mean of the posterior distribution and the 95% credible in-
terval [q2.5, q97.5] are generally chosen for each unknown pa-
rameter, which represents the best prediction given the data
and the related uncertainty. In this paper, this convention has
been followed. In addition, the coefficient of variationcv

defined as the ratio between the standard deviation and the
mean value of the posterior distribution is also provided. It is
a normalized measure of the dispersion of the posterior dis-
tributions but has to be interpreted with care for distributions
with small mean values.

2.3.3 MCMC methods

For hierarchical models, the computation of Bayes theorem
is generally analytically unfeasible because of the problems
calculating the normalizing constantχ . Today this limitation
is routinely overcome, even for very complex models, with
Monte Carlo techniques based on Markov chain properties
(Brooks, 2003; Gilks et al., 2001). A general discussion of
these Markov Chain Monte Carlo (MCMC) methods can be
found in Robert and Casella (1998). Their aim is to obtain
the posterior distribution of all model unknowns (parameters
and latent variables) using an iterative procedure. Reason-
able results can only be obtained if the algorithm is handled
with care. In particular, one must ensure that the conver-
gence is attained for all unknown parameters. In most cases,
this requires launching many simulations for varying initial
states and performing tests to check that the Markov chain
has reached the stationary regime.

Depending on the model and the choice of priors, par-
tial analytical computations can sometimes be performed for
rather simple hierarchical models. This is the case for our
model, given its fully Gaussian nature and the choice of con-
jugate priors for all parameters. However, the full analytical
expression of the joint posterior distribution remains out of
reach, so that recourse to a simulation procedure is unavoid-
able (see Gelman et al., 1995, chapter 15). It was therefore
decided to perform a MCMC simulation for all unknowns,
but to take advantage of the model’s structure by running the
Gibbs sampler (Geman and Geman, 1984). This MCMC al-

Table 2. Posterior characteristics for a few unknown parameters.

Mean q2.5 q97.5 cv

Ma(1) 0.5011 0.4560 0.5482 0.0468
Al

50 (1) 0.260 0.240 0.278 0.0378
6 (2,2) 0.640 0.625 0.656 0.0124

6a (4,4) 0.00943 0.00707 0.0126 0.1476

gorithm is based on the different full conditional distributions
of one unknown (parameter and latent variables) given the
others, which can actually all be obtained with our model.
The Gibbs sampler is particularly suitable because, when it
can be run, it ensures a quick convergence with regard to
the more general but less efficient Metropolis-Hastings al-
gorithm (Metropolis et al., 1953). Note finally that, if the
hierarchical structure is dropped by neglecting the random
noise6, all computations can be performed analytically (see
Sect. 3.2 for discussion).

For all the models tested (different orders of the Taylor se-
ries expansion), 20 000 iterations were performed with dif-
ferent chains starting at different points of the parameter
space. The first 10 000 iterations were deleted to ensure that
the ergotic state was attained. Convergence was checked for
the second group of 10 000 iterations by comparing the dis-
tributions obtained with the different chains. A few marginal
posterior distributions are shown in Fig. 3 for the first-order
model detailed in Sect. 3.2. For all parameters, the credibil-
ity intervals obtained are small (Table 2). It therefore appears
that the information conveyed by the data is sufficient and
only the mean values and therefore be used with confidence.

2.3.4 Evaluation of model quality

The quality of the model is first evaluated by estimating the
fraction of the variability of the reflected velocities that is
captured by the random variableAT in corresponding to the
n-order Taylor series expansion off̃ with regard to the total
variability of the results. For thep-th impact point, thes-th
component of the reflected velocity vectorV re and varying
incident conditionsk, the ratiors

p is calculated such that:

rs
p =

V (ApT in
pk(s))

V (ApT in
pk(s)) + 6(s, s)

(11)

whereV (ApT in
pk(s)) denotes the variance of thes-th com-

ponent of the random variableAT in for a fixed impact point
p and varying incident conditionsk, whereas6(s, s) de-
notes thes-th diagonal term of the covariance matrix6. If
rs
p=100%, all the variability of the results is explained by

the random variableAT in. To facilitate the comparison be-
tween the models evaluated, global indicators are calculated
from thers

p values,p∈[1, P ]. The meanrs of rs
p values is
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calculated to estimate a mean percentage of variability ex-
plained by the random variableAT in for each reflected ve-
locity component. In addition, an overall ratior is defined as
the mean of allrs

p values.

3 Application to the definition and evaluation of a
stochastic bouncing model

In this section, the statistical analysis of the data set obtained
from numerical simulations is performed using the above-
described procedure. This analysis allows defining a stochas-
tic bouncing model and performing a detailed study of this
model. All results obtained in this section are valid in the
case of the impact of a spherical boulder on a coarse soil.
In addition, the results obtained depend on the assumptions
related to the numerical model of the impact, the procedure
used for the numerical simulation campaign, and the statisti-
cal analysis. The assumptions made during this analysis, the
validity domain of the bouncing model obtained and the pos-
sible generalization of this model for practical purposes will
be discussed in Sect. 4.

3.1 A first-order model is sufficient

Several models corresponding to increasing dimensions of
the incident vectorT in were compared to determine the final
formulation of the stochastic bouncing model. Particular at-
tention was given to the precision and concision criteria since
the bouncing model must satisfy a compromise between a
precise simulation of the impact phenomenon and a small di-
mension of the incident velocity vectorT in.

Table 3 summarizes the values of thers andr ratios for
different models corresponding to increasing dimensions of
the incident vectorT in in the case of the impact of a boulder
with the radius set atRb = Rm on a soil composed of spher-
ical particles. The size of the data set used was the same for
all the models evaluated: 150 different incident kinematic
conditions and 100 different impact points. The results first
show that most of the variability of the reflected velocity is
captured by the random variableAT in for all models used
because thers coefficients are all greater than 75%.

Since all the models evaluated provide satisfying results
in terms of precision, the most concise model was chosen:
a dimension ofT in equal to 3, explaining most of the vari-
ability of the results by the random variableAT in for a very
small set of parameters. This model will hereafter be called
the first-order stochastic bouncing model.

3.2 Detailed analysis of the first-order stochastic
bouncing model

The model chosen corresponds to an incident vectorT in

composed of three components, which is equivalent to a first-

Table 3. rs andr values for increasing dimensions ofT in.

T in Al
p rs r

dimension dimension

3 9 rx
=91.4%; ry

=76.9%; rω
=92.3% 86.9%

4 12 rx
=93.0%; ry

=80.0%; rω
=94.3% 89.1%

6 18 rx
=93.0%; ry

=80.2%; rω
=94.4% 89.2%

9 27 rx
=95.1%; ry

=88.8%; rω
=95.9% 93.3%

order Taylor series expansion of the stochastic operatorf̃ : vre
x

vre
y

Rbω
re

 ∼N3(

a1 a2 a3
a4 a5 a6
a7 a8 a9

  vin
x

vin
y

Rbω
in

 ,

 6xx 6xy 6xω

6xy 6yy 6yω

6xω 6yω 6ωω

)

(12)

where the coefficientsai are sampled from a nine-
dimensional Gaussian vector:a1

...

a9

 ∼N9(

ma
1

...

ma
9

 ,

6a
11 ... 6a

19
... ... ...

6a
19 ... 6a

99

) (13)

This model separates the sources of variability for the re-
flected velocity vector. The variability of parametersai

(i∈[1, 9]) is quantified by the covariance matrix6a . It is
associated with the variations in the local soil properties. On
the contrary, the variability quantified by the covariance ma-
trix 6 is related to the remainder termR and is therefore
mainly associated with the incident velocities.

For the s-th component of the reflected velocity vector,
the standard deviationes =

√
6ss of the regression residu-

als provides a quantitative estimation of the proportion of the
reflected velocity vector associated with the remainder term
R. The correlations between two componentss andt of the
reflected velocity vector can be estimated by the linear cor-
relation coefficientcst =

6st√
6ss6t t

∈ [−1, 1].

The estimates obtained show that, for all components of
the reflected velocity vector, the standard deviationes is
smaller than 1 m/s. Second, all the linear correlation coef-
ficients range within the interval[−0.2, 0.2], which means
that the correlations between the components of the reflected
velocity are small. The analysis of the covariance matrix6

indicates that the remainder termR of the Taylor series ex-
pansion off̃ is negligible compared to the termAT in. The
reflected quantities can therefore be correctly predicted using
only the random variableAT in and omitting the covariance
matrix 6. The variability of the reflected velocity is then
only associated with the variability of the soil’s local prop-
erties through the covariance matrix6a . It should be noted
that, for future investigations on other simulated data sets,
the model inference will be much easier, which will possibly
make it accessible to practitioners who are not familiar with
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Fig. 4. Marginal distribution of parametera2.

recent statistical developments. Indeed, ignoring the random
noise6 makes the model lose its hierarchical nature, so that
the analytical expression of the posterior distribution is ac-
cessible if the conjugate priors are kept forMa and6a .

Finally, the variability associated with the operatorA is
estimated using the marginal normal probability distribution
functions of parametersai (Fig. 4). The estimates for their
mean valuesma

i and standard deviationssa
i =

√
6a

ii are pro-
vided in Table 4. Complementary to the marginal proba-
bility distribution functions of each parameterai , the cal-

culation of the linear correlation coefficientsca
ij =

6a
ij√

6a
ij 6a

ij

(i∈[1, 9];j∈[1, 9]) between the extra-diagonal terms of ma-
trix 6a shows strong correlations between parametersai be-
cause theca

ij values are large.

3.3 Sensitivity analysis

3.3.1 Methodology for comparing the model’s
parameters

To investigate the influence of several numerical simulation
parameters, such as the number of impact points, the spa-
tial distribution of soil particles, the value of the size ratio
Rb/Rm and the shape of the soil particles, the parametersai

obtained for different values of these simulation parameters
must be compared.

The analysis is based on the marginal probability distri-
bution functions of parametersai summed up by their mean
valuema

i and their standard deviationsa
i . Complementary

to the qualitative comparison of the mean valuema
i and the

standard deviationsa
i obtained in the different cases, a com-

parison criterionCi is calculated for each parameterai . The
criterion Ci evaluates the difference between the marginal
distribution of parameteraref

i obtained using reference con-

Table 4. Mean valuesma
i

and standard deviationssa
i

of parameters
ai .

ma
i

sa
i

a1 0.5012 0.2412
a2 0.04167 0.2096
a3 −0.1598 0.0490
a4 0.2269 0.0971
a5 −0.07873 0.0640
a6 −0.03321 0.0428
a7 −0.4188 0.1130
a8 −0.04112 0.1809
a9 0.4439 0.0768

ditions and the marginal distribution of parametera
comp
i ob-

tained using different numbers of impact points, different
spatial distributions of the soil particles, different soil particle
shapes or different boulder sizes. CriterionCi is calculated
as follows:

Ci =
P(bi− ≤ a

comp
i ≤ bi+) − P(bi− ≤ aref

i ≤ bi+)

P (bi− ≤ aref
i ≤ bi+)

(14)

The lowerbi− and upperbi+ bounds are calculated such that
P(bi−≤aref

i ≤bi+) = 95% andP(aref
i >bi+) = 2.5%. Know-

ing the values ofbi− andbi+ makes it possible to determine
the probabilityP(bi−≤a

comp
i ≤bi+). The reference condi-

tions correspond to the impact of a spherical boulder with its
radius set atRb = Rm on a soil sample composed of spherical
particles. The other properties of the soil sample are similar
to those defined in Sect. 2.2.1. For the reference conditions,
impacts are simulated on 100 different impact points. Cri-
terion Ci can be interpreted as the difference between the
most probable values of parameterai encountered with the
reference conditions and the conditions evaluated for which
only one simulation parameter (number of impact points, soil
sample geometrical configuration, soil particle shape, boul-
der radius) is changed compared to the reference conditions.

3.3.2 Robustness to simulation parameters

The first aim of this analysis is to quantify the number of sim-
ulations necessary to obtain relevant values for parameters
ai , which are therefore calculated using different numbers of
impact pointsP for the same soil sample. The analysis of the
results obtained shows that the simulation onP = 20 differ-
ent impact points is sufficient to obtain stable values for the
probability distribution functions of parameterai . Indeed, all
the values of criterionCi are less than 10% if the number of
impact points is higher than 20 (Table 5).

The dependence of parametersai on the spatial configura-
tion of the soil sample particles is also evaluated. The model
estimation is carried out for four different soils with the same
grading curves, porosity and particle mechanical properties
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Table 5. CriterionCi for different numbers of impact points.

C1 C2 C3 C4 C5 C6 C7 C8 C9
(%) (%) (%) (%) (%) (%) (%) (%) (%)

10 points −9 −2 −18 −4 −9 −17 2 −6 −14
20 points −1 −3 −9 0 −4 −6 0 0 −4
50 points 0 0 −2 −1 −1 −3 0 0 −2

(G, ν, φ, ρ). The only difference between the four samples
is the spatial configuration of the particles. Soil sample no. 1
is the reference sample for the calculation of criterionCi .

The results show that the sensitivity to the spatial configu-
ration of the particles is relatively low for all the parameters
(Table 6) because the maximum value obtained for criterion
Ci is 24%. Greater differences are observed for parameters
a3, a7 anda9 for which Ci reaches values greater than 10%
(respectively, 17%, 24% and 12%; Table 6). Moreover, the
values of parametersai can locally be slightly different from
all other values for a given soil sample. In this case, the
value ofCi obtained for the considered sample is very dif-
ferent from values obtained for all other samples. For ex-
ample, the distribution of parametera5 calculated using soil
sample no. 2 is very different from the other values obtained
(C5 = 21% for sample no. 2). A local analysis of the geomet-
rical configuration of the particles for sample no. 2 highlights
the particles’ specific spatial distribution: several small par-
ticles are located above larger particles (Fig. 5). When the
compression wave (Bourrier et al., 2008a) initiated at the be-
ginning of the impact reaches the large particles, the energy
is partially reflected toward the soil surface because of the
larger inertia of the large particles. Supplementary kinetic
energy is therefore transferred again to the boulder after en-
ergy reflection, which leads to an increase in the reflected
velocity and induces local changes in the values of parame-
tera5.

3.3.3 Influence of the soil and boulder size

The influence of the characteristics of the soil and the boulder
defines the model’s validity range. It is therefore essential for
practitioners. Since an exhaustive parametrical study would
be very long, the choice is made to limit the investigations
to the influence of the parameters that are both accounted for
in the impact model and commonly considered by practition-
ers (Dorren et al., 2006). In most cases, for coarse soils, the
available data are limited to the mean size and the shape of
the soil particles. Additionally, in a preliminary approxima-
tion, the influence of the geometrical and mechanical char-
acteristics of the impacting boulder will not be studied. All
simulations are therefore performed for the case of the im-
pact of a spherical boulder.

To study the influence of soil particle shape, a set of pa-
rametersai is calculated using a soil sample composed of

Table 6. CriterionCi for different geometrical configurations of the
soil particles.

C1 C2 C3 C4 C5 C6 C7 C8 C9
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Soil no. 2 −1 −4 −13 −1 −21 0 −12 −2 −10
Soil no. 3 −7 3 −17 −5 4 −1 −10 −2 −12
Soil no. 4 2 4 −15 1 5 −8 −24 4 1

Fig. 5. Local segregation of small particles above large particles.
In this configuration, a group of small particles is located above
a group of large particles, whereas, in most cases, particles from
different sizes are mixed.

clump particles with the same properties (see Sect. 2.2.1) as
the reference soil sample. The results show that variations
in the parameter values are significantly greater (Table 7)
than the variations attributable to the geometrical configu-
ration observed previously (Table 6). In particular, the cri-
terionCi values (Table 7) exhibit significant differences for
parametersa3, a4, a6, a8 anda9. These differences result
from differences in both the shape of the soil surface and the
porosity of the soil. Indeed, using clump particles provides
a more irregular soil surface composed of both quasi-planar
and curved surfaces (Bourrier et al., 2007). It also induces
smaller porosity values because the rearrangement of parti-
cles is easier if the particles have variable shapes (Bourrier et
al., 2007).

The difference stemming from the use of spherical parti-
cles cannot be considered insignificant. However, the results
obtained using spherical particles provide a first-order ap-
proximation of the reflected velocities for a very short com-
putation time compared to simulations using clump parti-
cles. Using spherical particles therefore provides an exten-
sive parametrical analysis of the influence of the size ratio
between the boulder and the soil particles.

The physical processes involved during the impact vary
greatly depending on the ratio of the falling boulder radius
Rb to the mean radiusRm of the soil particles (Bourrier et
al., 2008a). It is therefore necessary to investigate whether
the parameters of the stochastic bouncing model depend to a
large extent on this ratio. The influence of theRb/Rm ratio
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Table 7. CriterionCi for a soil sample composed of clump parti-
cles.

C1 C2 C3 C4 C5 C6 C7 C8 C9
(%) (%) (%) (%) (%) (%) (%) (%) (%)

−3 −2 −26 −15 −6 −27 −18 −12 −48

is analyzed by calculating the parameters of the stochastic
bouncing model using a soil sample composed of spherical
particles with a 2-D porosity of 0.204. TheRb/Rm ratio of
the boulder radius to the mean radius of the soil particles
ranges within[1, 5].

The values of the calculated criterionCi allow a compari-
son of parametersai obtained for differentRb/Rm ratios with
the parameters obtained forRb/Rm = 1, which correspond
to parametersaref

i . The results show that the criteriaC5, C6
strongly depend on the value of theRb/Rm ratio (Fig. 6) for
1≤Rb/Rm≤ 2.5 and that the criterionC9 also strongly varies
depending onRb/Rm for any value ofRb/Rm. From a prac-
tical point of view, the variations observed clearly highlight
that a single set of parametersai is not sufficient to model
the impact on a given soil type for all boulder sizes. Differ-
ent sets of parametersai have to be built, corresponding to
differentRb/Rm ratios.

4 Discussion

4.1 Comparison to classical approaches

The stochastic approach presented in this paper can be com-
pared to classical approaches in the field of trajectory analy-
sis. Classical models can be divided into several categories
(Guzzetti et al., 2002) that consider the boulder either a sin-
gle point or a rigid body. Moreover, some models differen-
tiate two interaction types between the boulder and the soil:
the falling rock can either roll or bounce onto the soil (Boz-
zolo and Pamini, 1986; Evans and Hungr, 1993; Kobayashi
et al., 1990; Azzoni et al., 1995), whereas most approaches
consider boulder rolling a succession of small bounces. To
model boulder bouncing, very complex bouncing models
(Falcetta, 1985; Koo and Chern, 1998; Dimnet and Fremond,
2000) have been developed. They can describe the elastic,
plastic, frictional or viscous dynamical behavior of the soil
during impact. Although the differences between the previ-
ously described approaches should not be omitted, the impact
of the falling rock onto the soil is most often modeled using
a tangential restitution coefficientet and a normal restitution
coefficienten (Guzzetti et al., 2002):

et =
vre
x

vin
x

(15)

Fig. 6. Influence of theRb/Rm ratio on criterionCi .

en =
vre
y

vin
y

(16)

The variability of the impact phenomenon is introduced as a
last step by modeling the restitution coefficients and other
parameters influencing the bouncing (Dudt and Heidenre-
ich, 2001) as independent random variables that follow user-
defined probability distribution functions (Dudt and Heiden-
reich, 2001; Agliardi and Crosta, 2003; Frattini et al., 2008;
Jaboyedoff et al., 2005) derived from back analysis of previ-
ous events, experimental results or empirical expertise.

In our model, the mean predictor is the expected reflected
velocity vectorE(V re):

E(V re) =

ma
1v

in
x + ma

2v
in
y + ma
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in
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4v

in
x + ma
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in
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 (17)

The usual restitution coefficientset anden can be compared
to the tangential and normal components of the mean predic-
tor E(V re) divided by the tangential or the normal compo-
nents of the incident velocity vector, respectively:

[
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 (18)

The first term of Eq. (18) highlights that the mean pre-
dictor E(V re) is partially composed of a term equivalent to
classical restitution coefficients. However, the second term
shows that the mean predictorE(V re) also provides addi-
tional information on coupling effects between the incident
kinematic parameters. The mean restitution coefficientset

anden predicted by our model are not constant values; they
depend heavily on all the incident kinematic parameters of
the boulder (Fig. 7). The strong dependency on the incident
angle has already been integrated in previous bouncing mod-
els (see Pfeiffer and Bowen, 1989 and Dorren et al., 2004 for
example). The difference between the proposed approach
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Fig. 7. Prediction of the model foret anden for varying incidence anglesαin in and incident rotational velocitiesωin.

and other existing approaches is based on how this depen-
dency is defined. In the proposed model, the dependency
with the incidence angle is estimated from extensive statis-
tical analysis, which allows exploring large impact configu-
rations. On the contrary, in other existing approaches, this
dependency was characterized from the physical analysis of
experiments on smaller data sets that do not allow exploring
the complete variability range of the reflected velocity.

Our stochastic bouncing model is therefore an extension of
classical models that take into account the coupling between
the incident kinematic parameters based on the analysis of
the impact for very different incident kinematic conditions.
The main difference between this model and the classical
approaches is that the stochastic bouncing model is directly
developed within an explicit stochastic framework. It there-
fore allows modeling and quantifying correlations between
the parameters that cannot be obtained if the variability of the
impact phenomenon is introduced separately. A particularly
notable characteristic of our approach compared to standard
approaches is the hierarchical nature of the model that sep-
arates the different sources of variability in the reflected ve-
locity vector, for instance, the variability associated with the
local characteristics of the impacted soil and with the boul-
der’s incident kinematic parameters.

4.2 Remaining limitations and outcomes for further
developments

Although comparing this model with classical approaches
in the field of rockfall simulations is important, one has to
keep in mind the assumptions and the restrictions associ-
ated with the proposed stochastic bouncing model. These
assumptions are related to the numerical impact model, the
statistical analysis and the specificities of the case study for
which the model was obtained.

The numerical impact model is a simplified simulation of
the impact of a spherical boulder on coarse soils. Although
the Discrete Element Method was proved to be relevant to
model the impact, several assumptions were used during the
modeling phase. As extensive numerical simulation cam-
paigns were necessary, 2-D numerical simulations were per-
formed although the impact is obviously a 3-D phenomenon.
However, the half-scale experiments conducted to calibrate
the model showed that the deviation of the rock from its inci-
dent plane was fairly insignificant, which validates the use of
2-D simulations (Bourrier, 2008). The numerical model also
implies a simplified simulation of all contacts between rocks
(in particular, contact between the boulder and the soil parti-
cles). Indeed, the model only accounts for energy diffusion
inside the sample and for energy dissipation processes stem-
ming from frictional processes. Other dissipation sources
such as plastic dissipation at the contact points, the rocks’
partial or complete breakage fragmentation and elastic wave
propagation are not accounted for in the model. Moreover,
the fact that the model was calibrated from half-scale exper-
iments and used for real-scale simulations could also be a
limitation. However, investigations of the influence of scale
changes made in this specific case study (Bourrier, 2008) and
in other research fields (aeolian sand transport; see Oger et
al., 2005) showed that scale change effects were very slight in
this case. Finally, the impact model is only valid for a spher-
ical boulder approximately the same size as the soil particle
size, which corresponds to the case of a spherical projectile
impacting a coarse soil. As mentioned above, despite these
limitations, the results obtained in this study provide a basis
for further simulation campaigns in which energy dissipation
processes and impacting particle shape, in particular, would
be modeled more precisely.

Second, the stochastic approach proposed is also asso-
ciated with several assumptions. In particular, parame-
tersai are modeled as realizations of a normal probability
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Fig. 8. Example study site.

distribution function. Since normal laws are defined over an
infinite domain, the predictive use of the stochastic model
can theoretically lead to the generation of negative values
and large reflected velocities that would not be in accordance
with energy conservation. However, given that the normal
laws associated with parametersai exhibit little variability,
the problem is not relevant in practice. On the other hand,
the numerical simulation campaigns and statistical analyses
performed only account for the variability associated with
the local properties of the soil near the impact point and with
the incident kinematic parameters. Additionally, the model
parameters were determined for different values of the boul-
der radius and for different soil particle shapes. The shape
of the falling boulder, its orientation before impact, and the
macroscopic properties of the soil (porosity,G, ν, φ, ρ, etc.)
were not accounted for, although they are important sources
of variability. The model obtained is therefore specific to
a very particular configuration. However, the approach fol-
lowed is a general framework for the precise characterization
associated with each source of variability. It could be gener-
alized over a large range of impact configurations to account
for the above-mentioned effects. The main challenge would
be to develop a relevant and numerical model of the impact
for the different investigated configurations. It would then be
necessary to calibrate it from real-scale experiments over a
large range of incident conditions, which is obviously very
difficult in practice.

Third, the specificities of the case study (impact of a spher-
ical projectile on a coarse soil) induce several particularities
in the bouncing model obtained. One can first note that a
first-order Taylor series expansion of the stochastic opera-
tor is sufficient to characterize boulder bouncing. Moreover,
the variability associated with the remainder termR is very
small. In the case of the impact on fine soils, the limitation
to a first-order Taylor series expansion of the operator would
certainly not be valid. Indeed, a first-order model does not
account for the dependency of the reflected velocity on the
magnitude of the incident velocity. It is truly insignificant
for impact on coarse soils (Oger et al. 2005; Bourrier et al.,
2007; Bourrier, 2008) but has been proven to be more sig-
nificant in other cases such as the impact on fine soils (see
Pfeiffer and Bowen, 1989; Heidenreich, 2004). In addition,

these particularities can be explained by the statistical anal-
ysis being performed from numerical simulations that pro-
vide a simplified vision of the “real” impact process. Finally,
the results obtained would certainly be different if the influ-
ence of the shape and orientation of the boulder were inte-
grated. All these restrictions of the model provide interesting
research topics for further studies.

4.3 Perspective for the predictive use of the model

The advantages of using the approach presented to properly
model the variability associated with boulder bouncing in the
field of rockfall hazard assessment are illustrated with a sim-
ple 2-D example.

In the example (Fig. 8), the study conducted aims at char-
acterizing rockfall hazard on a homogeneous slope (100 m
long, 35◦ slope) followed by a valley floor. The mean size
of the soil particles is assumed to beRm = 0.2 m along the
slope andRm = 0.1 m in the valley floor. The rockfall source,
from which rocks detach starting with a 5-m-high freefall, is
located at the top of the slope. The radius of the falling rocks
is assumed to be 0.5 m.

The first advantages of using the approach proposed for
rockfall simulations lie in the clear physical meaning of the
parameters to be assessed in the field. In addition, the num-
ber of parameters to be characterized in the field is reduced.
Indeed, the validation of the stochastic bouncing model per-
formed from real-scale experiments (Bourrier et al., 2009)
showed that only theRb/Rm ratio has to be characterized in
the different zones of the study site. The other properties of
the soil, such as substratum location (i.e., soil depth), poros-
ity, and particle shape, can be set at fixed values for the entire
site.

The integration of the stochastic bouncing model in a rock-
fall trajectory simulation model is based on the definition of a
database composed of several sets of parametersai for vary-
ing values of theRb/Rm ratio. The porosity of the soil, its
depth and the particles’ shape at the study site must also be
evaluated. For each bouncing calculation, the reflected ve-
locity vector is calculated from the incident velocity vector
by using the stochastic bouncing model predictively. The
values of parametersai to be used for each bouncing calcu-
lation are determined depending on the value of theRb/Rm

ratio. A field survey must therefore be conducted to assess
the spatial distribution ofRm over the study site. Addition-
ally, the boulder radiusRb also has to be evaluated for each
rockfall simulation.

In France, a classical approach to assess risk associated
with rockfall consists in quantifying the conjunction of the
vulnerability of the elements at risk with rockfall hazard
H(x), x representing the spatial coordinate measured along
a horizontal axis starting at the rockfall source. In addition,
rockfall hazard is considered the conjunction of probability
P(D) for a rock to detach from the cliff and the probability
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Fig. 9. DistributionP(x|D) depending on the horizontal distancex

from the rockfall source.

P(x|D) for the rock, once detached, to propagate through the
locationx (see Jaboyedoff et al., 2005, for example), such as:

H(x) = P(D)P (x|D) (19)

The calculation of the detachment probabilityP(D) is not
within the scope of this study. On the other hand, the use
of the stochastic bouncing model can be highly advanta-
geous for a reliable estimation of the cumulative distribution
P(X≥x|D) = P(x|D) for the rock to exceed the abscissax.
The probabilityP(X≥x|D) = P(x|D) is calculated by inte-
grating the discretized densityp(x, y, Ec)of the falling rock
passing through the point(x, y) with a kinetic energyEc,
which is a direct outcome of trajectory simulations:

P(x|D)=P(X ≥ x|D)=

∞∫
0

∞∫
0

∞∫
x

p(x, y,Ec|D)dxdydEc (20)

In the example considered here, a total of 10 000 trajectory
simulations are performed following the above-described
procedure. The decrease in the probabilityP(x|D) depend-
ing on the distancex from the release point (Fig. 9) shows
that most of the falling rocks reach the valley floor because
P(x|D) is greater than 85% forx≤82 m. However, as soon as
the valley floor is reached, the probabilityP(x) of a rockfall
event occurring sharply decreases with distancex. In partic-
ular, it is smaller than 10% forx>120 m.

Additionally, using a reliable local discretized densityp(x,
y, Ec|D) means the rockfall hazard can be studied more pre-
cisely. It is, for example, possible to determine a 2-D map
that defines the probability for the occurrence of rockfall
events at all points of the study site. In a 2-D context, this
information is associated with the following probability:

P(x, y|D)=P(X ≥ x, y−δy/2 < Y ≤ y + δy/2|D)

Fig. 10. Distribution P(x, y|D) for the occurrence of a rockfall
event at all points of the study site.

=

∞∫
0

y+δy/2∫
y−δy/2

∞∫
x

p(x, y,Ec|D)dxdydEc (21)

whereδy is the vertical size of the cells resulting from the
discretization of the study site.

Figure 10 provides an illustration of this type of 2-D map
for the example. To compute this map, the horizontalδx and
the verticalδy cell sizes associated with the discretization of
the study site are set at 1 m. Figure 10 clearly shows that
most of the falling rocks propagate near the slope’s surface.
In addition, forx<80 m, the most probable trajectories are
located at increasing distances from the slope’s surface when
altitude decreases. This indicates that, on a steep constant
slope, materials at risk such as electric cables situated far
from the release zone can be hit even if they are situated far
above the soil surface. However, as soon as the valley floor is
reached, the altitude range containing most of the trajectories
substantially decreases whenx increases because gravity no
longer compensates energy dissipation at each impact.

Note that a simple hazard assessment procedure has been
used in this example. However, more advanced guidelines
could have been implemented, sincep(x, y, Ec|D) is the ba-
sis of all methods used for rockfall hazard characterization.
Since the flight phase of the rock is deterministic, the rele-
vance of the probabilityp(x, y, Ec|D) is determined by the
accuracy of the bouncing model. This fully justifies the use
of the stochastic bouncing models, which suitably account
for the variability associated with different sources.

Finally, the results obtained for this example emphasize
that the use of 2-D maps produced using our model could be
highly advantageous for the optimization of the locations and
the shape of defense structures. Indeed, the location and the
height of a structure could then be optimized to determine the
point of the study site in which the smaller structure can stop
most falling rocks. Given thatp(x, y, Ec|D) is thoroughly
calculated, one could also use it to calculate the distribution
of the impact energy on protective structures in order to op-
timize its design in terms of structural strength performance.
This approach would therefore define the probability for the
protection structure to stop falling rocks depending on the
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distribution of the rocks’ energy when impacting the struc-
ture, which will be investigated in further work.

5 Conclusions

In this paper, a general framework was proposed for the char-
acterization of the variability of falling boulders’ velocities
after rebound. The use of large data sets from numerical im-
pact simulations and of Bayesian modeling schemes has led
to the definition of a stochastic bouncing model in the context
of the impact of a spherical projectile on a coarse soil. This
stochastic bouncing model uses a hierarchical structure that
can quantify the relative importance of different contribu-
tions to the reflected velocity vector’s variability. This model
also introduces couplings between the reflected and incident
velocity vector that are sufficient to model the mechanism
associated with boulder bouncing.

The detailed analysis of the model has proved its relevance
for modeling the variability of the reflected velocity vector
for all spatial configurations of the soil particles. In addi-
tion, the parametrical study conducted demonstrated that the
model is valid for different values of the boulder size to soil
mean particle size ratio and for different soil particle shapes.
The comparison with classical bouncing models in the field
of trajectory analysis highlighted that the model can be con-
sidered an extension to classical models that accurately in-
tegrates the couplings between the reflected and the incident
kinematic parameters. Moreover, it has been shown that for
the impact of spherical boulders on coarse soils, first-order
Taylor series expansion on the incident velocity is sufficient
to express of the variability of the reflected velocity. An-
other important result is that, in this case, the variability of
the local soil configurations strongly dominates random un-
certainties. On the other hand, the model is able to take into
account the couplings between the model’s parameters that
stem from the mechanical complexity, and our results have
indicated that they should not be neglected.

From a practical point of view, the bouncing model devel-
oped can easily be integrated into rockfall simulation codes
that model trajectories of spherical boulders. The main ad-
vantages of this procedure compared to classical approaches,
which generally require field assessment of the parameters,
is that the required input parameters have a clear physical
meaning.

In the future, our procedure could be used to characterize
the bouncing of a boulder on all different types of soil sur-
face, such as fine soils or rocky surfaces, with the possible
inclusion of field observations and real-world data using the
chosen Bayesian approach (Straub and Schubert, 2008). Our
approach could also be used to characterize the variability
associated with other important variability sources of boul-
der bouncing, such as boulder shape. The challenge would
then be to provide large data sets composed of reproducible
and precisely defined results. For this purpose, the direct

use of experimental results is not suitable. On the contrary,
like the methodology proposed here, data sets could be gen-
erated from numerical simulations. Finally, as illustrated in
the case study, the stochastic bouncing model proposed can
be used for prediction purposes, making a consistent prob-
abilistic starting point available for carrying out prediction-
oriented simulations of boulders impacting a coarse soil. In
particular, it can be used to build multivariate probability dis-
tribution functions characterizing hazard levels on an endan-
gered slope and to compute risk levels taking at-risk struc-
tures into account.

Edited by: A. Volkwein
Reviewed by: D. Straub and another anonymous referee
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