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Abstract. Trajectory analysis models are increasingly usedsary to calculate the bouncing of the falling rocks at each
for rockfall hazard mapping. However, classical approachegoint of the study site. The models classically used for
only partially account for the variability of the trajectories. bouncing calculations are based on restitution coefficients
In this paper, a general formulation using a Taylor series exthat express the dependence of the kinematic parameters of
pansion is proposed for the quantification of the relative im-the rock after impact (reflected kinematic parameters) on
portance of the different processes that explain the variabilitthe kinematic parameters of the rock before impact (inci-
of the reflected velocity vector after bouncing. A stochasticdent kinematic parameters). However, experimental studies
bouncing model is obtained using a statistical analysis of ahave proved the complexity of simulating this dependence by
large numerical data set. Estimation is performed using hiermeans of reasonably simple mechanical models (Wu, 1985;
archical Bayesian modeling schemes. The model introduceBozzolo and Pamini, 1986; Chau et al., 1998; Ushiro et al.,
information on the coupling of the reflected and incident ve-2000; Chau et al., 2002; Heidenreich, 2004). In addition,
locity vectors, which satisfactorily expresses the mechanismsleterministic prediction of boulder bouncing remains highly
associated with boulder bouncing. speculative because the available information on the mechan-
The approach proposed is detailed in the case of the impadtal and geometrical properties of the soil and the boulder is
of a spherical boulder on a coarse soil, with special focus omot sufficient. Indeed, the spatial distributions of the param-
the influence of soil particles’ geometrical configuration neareters of the bouncing model integrated into the geographic
the impact point and kinematic parameters of the rock beforenformation system result from a field survey which, for prac-
bouncing. The results show that a first-order expansion idical reasons, cannot be exhaustive. Moreover, as for many
sufficient for the case studied and emphasize the predomiphysical processes in the field of natural hazards, it seems
nant role of the local soil properties on the reflected velocityimpossible to predict the bouncing deterministically.
vector’s variability. The proposed model is compared with ~ Stochastic bouncing models have therefore been proposed
classical approaches and the interest for rockfall hazard ago integrate most of the sources explaining the bouncing
sessment of reliable stochastic bouncing models in trajectorphenomenon’s variability using statistical laws (Paronuzzi,
simulations is illustrated with a simple case study. 1989; Pfeiffer and Bowen,1989; Azzoni et al., 1995; Dudt
and Heidenreich, 2001; Guzzetti et al., 2002; Agliardi and
Crosta, 2003). The variability sources can be divided into
those associated with the soil properties (soil surface, poros-
ity, particle size and shape, etc.) and those related to the
Trajectory simulation models classically use Digital Eleva- incident conditions (incident kinematic parameters, boulder
tion Models that define the topography, and geographic in-Size, shape and orientation, etc.) (Pfeiffer and Bowen, 1989;
formation systems that provide information on the rockfall Labiouse, 1999). Although an important step further, these

sources and the spatial distribution of the parameters necegPProaches require a thorough calibration of the statistical
laws using large data sets. Real rockfall events or field exper-

) iments are not directly usable for this purpose because either
Correspondence td. Bourrier the data set is incomplete (rockfall events) or reproducible
BY (franck.bourrier@cemagref.fr) impact conditions are difficult to obtain (field experiments).
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Taking inspiration from other research fields such as hy- Assuming that a Taylor series expansion of the operator
drology (Rao, 1996; Perreault et al., 2000a, 2000b) andwith respect to all components of the incident velocity vec-
avalanche science (Eckert et al., 2007, 2008) in which dealtor V'" exists, the operatasn composed of the coefficients
ing with stochasticity is more common, this paper aims atof the n-order Taylor series expansion ¢fis defined. The
defining a bouncing model explicitly distinguishing these operatorA associates the reflected velocity vectdf with
different sources of variability. an incident velocity vector expressed&:

In Sect. 2, a general framework that aims at determining_ .

the kinematics of the boulder after bouncing from the kine- = AT" + R ®)
matics before bouncing using a stochastic operator and its regjith

lated Taylor series expansion is presented first. This section 1 1 1 1 1

also shows how the stochastic operator can be characterized 1004910 -+ yvw -+ 490 “Q0n

using a Bayesian statistical analysis (Wickle, 2003; CIark,A = | 9100 %10 - “Léuw a%no ag()n ,

2005) of numerical simulations. The study focuses on the @100 9010 *** Guvw -+ 40n0 %00n

impact of a boulder on a coarse soil, which is common in the
context of rockfall trajectory analysis. In a first approxima- _.in [ in_in . invu, in\w inw N insn
tion, only the influences of the incident kinematic parame-T a [vx Uy ()T W) (Rpw .. 0y )" (Rpw™) ]
ters and the soil particle configuration near the impact point uelln]l,velln],welln],

of a spherical boulder are studied. In Sect. 3, the stochastic

bouncing model obtained using this approach is presente@"dR @ remainder term denoting the difference between the
and discussed in detail. An extensive sensitivity analysis i2Peratorf and its n-order Taylor series expansion. The num-
performed to evaluate the bouncing model's range of validity. 2 Of the incident vector'™ component is equal to 3 for a
Section 4 discusses the advantages and limitations of our aglSt-order Taylor series expansion 6f 7 for a second-order
proach with regard to classical approaches. The usefulnesi2Y!Or series expansion of, etc. One can note that, for a
of using this stochastic bouncing model for the prediction first-order Taylor series expansion of the operafothe in-

of rockfall hazard is finally illustrated through a simple case Cident vectoT'™ is equal to the incident velocity vectsf™.
study. The high variability of the local configurations of the soil

and the incident kinematic conditions induces the operator
A and the remainder termR to take very different values.

t
)

2 Materials and methods This suggests adopting a stochastic approach distinguishing
_ _ _ the variability associated with both the operatbrand the
2.1 Stochastic modeling of the impact remainder termR. Note that this paper only investigates in

h . i | . . , Idetail the case of the impact of a spherical boulder on a coarse
The bouncing model is developed in a two-dimensionalgy ‘| 4 first approximation, the sources of variability con-

frame, V_VhiChl Is classical in the :‘ield of trajectory szaIé/sis sidered are limited to the incident kinematic parameters and
(Guzzeti et al., 2002; Dorren et al., 2004). A generalized Ve~ il particles’ geometrical configurations. However, the

locity vectorV' composed of?norm_?l—to}son—su:fac;e veloc- yronosed framework is very general and could be applied
Ity component,, a tangential-to-soil-surface velocity com- modeling boulder bouncing for impacts on different soil

ponent, —both expressed at the gravity center of the falling yy o ang for different boulder mechanical and geometrical
rock —and arotational velocity properly describes the kine- oo heries. Indeed, as exemplified in this paper, it allows ex-

matic parameters of the boulder: tracting the respective contribution of the different sources of
V= (v v wa)l (1) Variability using Bayesian inference.

whereR), is the mean radius of the boulder. 2.2 Data set definition from numerical simulations

For given mechanical and geometrical properties of the o
boulder and the soil, it is assumed that the incidgiftand  The large data sets needed for statistical analyses can be ob-
reflectedV'™ generalized velocity vectors of the boulder can tained from numerical simulations of impacts. Additionally,

be related by a stochastic operafor in the simulations, the influences of the geometrical configu-
o ration of the soil near the impact point and the incident kine-
Ve = fvm (2)  matic parameters can be explored separately, since a precise

The formulation of the operatof should express the com- and reproducible definition of these parameters is possible.

plexity of the mechanisms leading to the dependence of the 5 1 Nymerical modeling of impacts using the Discrete
reflected velocity vector to the incident velocity vector. It Element Method

should also be relevant for the variability of the bouncing

process depending on the variability of the soil properties andassuming that rocks composing the coarse soil can be con-
the incident kinematic parameters. sidered as rigid locally deformable two-dimensional bodies,
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the software Particle Flow Code 2-D (Itasca, 1999) based on
the Discrete Element Method (Cundall and Strack, 1979) is
used. In the Discrete Element Method (DEM), particles are
subjected to gravitational forces and to contact forces. Con-
tact forces are applied to neighboring particles in contact.
For a given time step, once gravitational and contact forces
have been computed, the translational and rotational veloc-
ities of the particles are determined by solving the balance
equation using an explicit solving scheme. The resulting
particle displacements are used to update particle locations
for the next time step. In this study, the contact forces act-
ing between patrticles are calculated using the Hertz-Mindlin
model (Mindlin and Deresiewicz, 1953). Contact forces are
governed by three parameters set at classical values for rock
(Goodman, 1980): the shear modulGsis set at 40 GPa,
the value of the Poisson ratiois set at 0.25 and the local Fig. 1. Incident kinematic conditions.

friction angleg is 3(°. In addition, the density of the boul-

der and the soil particles is set at 2650 k@/rﬁ_h!s.contact_ focus on modeling the variability associated with the inci-
model takes frictional processes between adjoining particlegient kinematic parameters and the geometrical configuration
into account. Other dissipation sources also exist within realys ihe soil particles near the impact point using a stochastic
granular soils subjected to dynamical loadings, such as 10pouncing model (see Sect. 3). In addition, the influence of
cal yielding near the contact surface, crack propagation, anghe ratio of the boulder radiug, to the mean radius of a soil
rock breakage. However, in the context of the S'mmat'onsparticleRm and the shape of the particles on the parameters

where a boulder is approximately of the same size as they the stochastic bouncing model will also be investigated in
soil particles, other dissipation sources can be assumed t8qt 3 by means of sensitivity analyses.

be nfaglig_ible compared to frictional d_issipation inafirstap-  once the soil sample is generated, impact simulations are

proximation (Oger et al., 2005; Bourrier et al., 2008a). run for varying impact points and incident kinematic param-
The mean radius of the soil particles ®&,=0.3M.  gters. The location of each impact point is defined very pre-

Given that natural scree are polydisperse granular assembI|Q§59|y_ In addition, incident kinematic conditions are fully

(Kirkby and Statham, 1975), the ratio between the mass ofjetermined by the magnitude of the incident velodit},

the soil's smaller particles and larger particles is set at 10. Ing incident angle’ and the incident rotational velocity"

the case of an impact on a coarse granular soil, boulder angig 1), These parameters are directly related to the normal
soil particle sizes are nearly the same. The boulder radiug,, tangential velocity components by:

Ry, varies fromR,, to 5R,,. The influence of particle shape " o
is also explored by defining two different soil samples com-vx = V" Sin(a™) 4
posed of either spherical particles or elongated particles mOd]—)in — —Vi"coga™) (5)
eled by indivisible assemblies of spherical particles called >
clump particles, which can realistically model the shape ofFinally, reflected velocities are collected when the normal
soil rocks (Bertrand et al., 2006; Deluzarche and Cambougcomponent of the boulder velocity reaches its maximum,
2006; Bourrier et al., 2008a). The soil sample generationwhich corresponds to the last contact between the soil and
procedure leads to soil porosity values of 0.204 for sphericathe boulder.
particles and 0.171 for clump particles. Additional details on It is important to note that the relevance of the numerical
the soil properties can be found in Bourrier et al. (2008a). model has been proved by comparing its results to the avail-
Although simulation results also depend on soil sampleable literature (Bourrier et al., 2008a) and to half-scale ex-
depth and porosity (Bourrier et al., 2008a), the influence ofperiments of impacts on a coarse soil (Bourrier et al., 2008b).
these parameters is not investigated in a preliminary approxin particular, the impact model was calibrated and validated
imation. Soil sample depth is set at B2. Analyses of  using laboratory experiments of the impact of a 10-cm spher-
the influence of the model parameters on the impact simuical rock on a coarse soil composed of gravels ranging from
lations (Bourrier et al., 2008a) have shown that, for a soil1cm to 5cm (Bourrier et al., 2008b, 2009). The incident ve-
depth corresponding to classical values in the field of rock-locity of the projectile was 6 m/s and the incident angle could
fall simulations, the bouncing of the boulder mainly dependsreach values from0to 75°. Satisfactory agreement between
on the ratio between the boulder radiRs and the mean the laboratory experiments and the numerical simulations of
radius of a soil particler,,, the shape of the patrticles, the impacts proves that the stochastic impact model adequately
incident kinematic parameters and the geometrical configuexpresses the energy transfers occurring during the impact of
ration of the soil particles near the impact point. We will a boulder on a coarse soil.
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a linear regression of the reflected velocity vec¥f with

Table 1. Values of the incident kinematic parameters. = 4
regard to the incident vectdr:

Incident parameters  Values explored V;,ek“’NB(ApT',?k’ %) (6)

vin (m/s) 5, 10, 15, 20, 25 e

o (deg) 0.15, 30, 45, 60, 75 The reflectec! velocit pk 1S thus sampled from a chal
oM (rad/s) ~6,-3.0,3,6 three-dimensional Gaussian vector fully defined by its lo-

cal mean vectod ,,Ti;k varying from one impact event to
another and its covariance mati¥, which is constant for
all incident kinematic conditionse[1, K] and impact points
o . . . (homoscedascity assumption). The vecyT" is the

One limitation could stem from the differences in the sizes o4 predictor in the linear regression. Its variability quan-

pf the impapting an.d soil rocks during callibration and dur- 4sias the variability of the Taylor series expansion pf
ing application in this study. However, the influence of scale e the covariance matri accounts for the variability

change effects was proved to be small by comparing they yhe remainder ternR. Our stochastic model is there-
results of the numerical simulations of impacts at different¢, .« pased on the assumption that the variability of the op-
scales (Bourrier, 2008). This has been confirmed by resultg,a(or 4 is only related with the variability of the soil parti-
from the literature in the field of aeolian sand transport (Oger|ag’ geometrical configuration, whereas the remainder term

etal., 2005). R is associated with all other variability sources accounted
for in the impact model, for instance random uncertainties
2.2.2  Numerical simulation campaign that are not modeled explicitly. The realism of the me-
chanical modeling representing the coupling between the re-
For given soil and boulder properties, several impact simulaflected and incident velocity vector depends on the order of
tions were conducted for varying impact points and incidentthe Taylor series expansion. For convenience, the matrix
kinematic parameters. As stated above, the only sources o , is rewritten as a vector havingy componentsA’p =
variability accounted for are the incident kinematic parame-[ 4
ters and the soil particle geometrical configuration near th “100,
impact point. In addition, the dependency of the stochasticaom,®], with al;>2 denoting the coefficients of the matrix
bouncing model parameter values on the boulder size andl defined in Eq. (3) at the pointe[1, P]. The number
soil particle shape will be explored in Sect. 3.3. Other im- N=(n+1)(n+2)(n+3)/2-3 of the vector’s coefficients is equal
pact model parameters are set at fixed values: the mechanict 9 for a first-order Taylor series expansion ff=1), 27
properties of the particless(, v, ¢, p), the porosity and grad-  for a second-order Taylor series expansiory ¢f=2), etc.
ing curve of the soil sample and the boulder size are fixed Second, it is assumed that the results observed at the dif-
parameters. ferent impact points are, in some ways, similar because the

Impact points are first precisely defined so that the samdnacroscopic properties of the soil (porosity, the particles’
impact point can be used for several incident kinematic con/nechanical properties, grading curve, etc.) are the same.
ditions: for a given impact point, a set of equally distributed This makes us use hierarchical modeling to allow informa-
incident kinematic parameters is explored. Kinematic pa_t|onto be partially shared betweenthe differentimpact pomts
rameter values range within the limits defined from rockfall @nd to extract the common patterns in all samples. For all im-
events (Azzoni et al., 1992). For each impact point, all com-Pact pointsp, the coefficients of the operata;, are there-
binations of the chosen values for incident kinematic param-{ore assumed to be realizations of the same Gaussian vector
eters (Table 1) are explored. Preliminary numerical investi-Such as:
gations have shown that a minimum®# 100 impact points 1 N (e 3 7
has to be chosen to ensure that the mean values and standé?d (M7, 27) ()
deviations of the reflected yelocity components (Bourrier gtMa and X2 are the mean vector and the covariance matrix
al., 2007) have rgached their asymptotic value'correspor?dmgf the N-dimensional Gaussian vectdd® models the mean
to the value obtained for very large numbers of impact points.pehayior all over the different local soil particles’ geometri-

cal configurations, whereas the variability At, measured
2.3 Stochastic analysis of simulation results based on py 3¢ expresses how close the different reflected velocities

1 1 1 1 2 2 3
a010, "+ Ayyy, 400~ pdo0n,~ 4100 P"'aOOnpalOO pees

Bayesian inference at the different impact points are.
_ _ _ _ Note that with a non hierarchical model only two extreme
2.3.1 Hierarchical stochastic modeling cases could have been considered: i) all samples are identi-

cally distributed, with the same operatar, for all impact
First, at each impact pointe[1, P], the Taylor series expan- points, or ii) the different samples are so different that they
sion (Eq. 3) of the operatgf defined in Eq. (2) is considered have to be modeled by independent distributions. On the
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contrary, even if it complicates model specification and in-

ference, the hierarchical structure allows a comprehensive
exploration of the grey zone situated between these two ex-
treme cases. This makes each local estimation more robus

and allows the overall quantitigd® andX“ to be captured.
The analytical formulation of the model developed can

be summarized as follows. First, the analytical expression

of p(V;?k Ap, Ti[’,‘k, ¥), the probability of the observed re-
flected vectoV’ knowing the values oft ,, X and the ob-

served incident kinematic conditioﬁé;‘k is:

PV Ay T 2) =

1 VR AT VAT (g
(2m)32 det(x)1/2
Second, the analytical expression of the probability

p(AiU |M*, X4) of the nonobserved latent vectAr; know-
ing the values oM“, X4 is:
p(A |M*, 2%) =
1
@27)N/2 dei(x)1/2° ®)

The unknown parameters of the stochastic modelMfe
X9 X and the data ar&; andT7,. The latent quanti-

—%(All,—Ma)tZ“_l(Alp—Ma)

ties A’p with pe[1, P] have a hybrid status: with regard to Moreover, determiningo(A’p, Me, %4 % ‘

835

o Bl e @, [N (M7, E)
Gaussian model for the latent soil
properties at the location p (rewritten)

Observed incident velocities
for the boulder k at the location p

A

re_n 3 in ) -
Vpk~N (Aprk’):‘) Gaussian observation model

N

k=1.K

p=1.P

Fig. 2. DAG summarizing the hierarchical model.

knowing the data, latent variabIeAlp and the overall
")) and the probability

p(Al|M*, %) of the latent variables given the data and
the overall parameterdZ?, ¥*. Both of them are fully
defined by the hierarchical model detailed in Sect. 2.3.1.

re in
Ve Ty also

parameterx (p(V;ek Ap, T

the datav;ek they are parameters and therefore must be eStequires specifying (M?, £, ). x = [ p(M, 29, %)%

timated, whereas they behave as data with regard to param-

etersM“ andX“. Figure 2 gives a general overview of the

P(V;,ek‘Ap, Tl[l;]k,Z) X p(Alp|Mqua)dMadzadZ iS a

model using a direct acyclic graph (DAG), which expressesnormalizing constant that does not depend on the problem’s
conditional dependence. Circled nodes represent stochastiknowns, but makes all difficulty of Bayesian inference (see
variables, while rectangles indicate observed values and diSect. 2.3.3).

amonds model parameters. The DAG clearly illustrates the According to Bayesian interpretatiop(M*, ¢, X) is a
three layers distinguished in our approach: impact that deprior, which is a probability distribution function that ex-

pends both on incident velocity and location, local soil con-

figuration and the soil’s global parameters.

2.3.2 Bayesian inference

presses the expertise about the parameters that is available
before the data analysis. To respond to the classical objec-
tions to use such prior information, in this paper we use
poorly informative priors (Box and Tiao, 1973) that lead
asymptotically to the same estimators as classical approaches

Due to its hierarchical nature, determining the parameterggerger, 1985). To facilitate inference using Gibbs sam-
of our stochastic model using a classical statistical approactb"ng (see Sect. 2.3.3), the chosen poorly informative priors

(Fischer, 1934; Neyman and Pearson, 1933) is tricky. Omyaye heen taken from conjugate families (see Gelman et al.,

the other hand, estimates for the parameldfs ¢ andX
and latent vectorsi,, pe[l, P] can be more easily obtained

1995): a normal Gaussian vector with a null mean and very
large variance foM“, and Wishart distributions with low de-

using Bayesian inference (Bayes, 1763). The result of applygrees of freedom for the inverse of the covariance matrixes

ing the Bayes theorem js(A’ , M4, 29, % ‘V;ek, Ti;‘k), the

joint posterior probability distribution of all model unknowns
knowing the data/;,ek andT']?k:

p(AL, MO, E0 X VI Th)

1 .
= (MO 2 xp(VE A, T

) xp(Al [M?, ) (10)

The determination op(A!,, M4, 3¢, ‘V;ek Ti[?k) there-

fore requires the probability of the reflected vecM[ka

www.nat-hazards-earth-syst-sci.net/9/831/2009/

(X, X%). Taking very poorly informative priors is possible
since a data set as large as necessary is available given that
numerical simulations were used to generate it. Poorly infor-
mative priors have the advantage of letting the data speak for
themselves so as to infer parameters with as much physical
meaning as possible.

Note finally that, contrary to classical statistical ap-
proaches, Bayesian inference provides a probability distribu-
tion rather than a point estimate associated with a confidence
interval for each unknown quantity. For applications, the

Nat. Hazards Earth Syst. Sci., /@2D09
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sl el Table 2. Posterior characteristics for a few unknown parameters.
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gorithm is based on the different full conditional distributions
of one unknown (parameter and latent variables) given the
others, which can actually all be obtained with our model.
The Gibbs sampler is particularly suitable because, when it

mean of the posterior distribution and the 95% credible in-C2n P& run, it ensures a quick convergence with regard to
the more general but less efficient Metropolis-Hastings al-

terval [g25, g975] are generally chosen for each unknown pa- . . 8 i
rameter, which represents the best prediction given the datd°rithm (Metropolis et al.,, 1953). Note finally that, if the

and the related uncertainty. In this paper, this convention ha§ii€rarchical structure is dropped by neglecting the random
been followed. In addition, the coefficient of variatiop ~ N°iSeZ, all computations can be performed analytically (see

defined as the ratio between the standard deviation and thg€ct- 3.2 for discussion).
mean value of the posterior distribution is also provided. Itis FOr all the models tested (different orders of the Taylor se-

a normalized measure of the dispersion of the posterior dist€S €xpansion), 20000 iterations were performed with dif-

tributions but has to be interpreted with care for distributions€rént chains starting at different points of the parameter
with small mean values. space. The first 10 000 iterations were deleted to ensure that

the ergotic state was attained. Convergence was checked for
23.3 MCMC methods the second group of 10 000 iterations by comparing the dis-
tributions obtained with the different chains. A few marginal

For hierarchical models, the computation of Bayes theorenfPosterior distributions are shown in Fig. 3 for the first-order
is generally analytically unfeasible because of the problemgnodel detailed in Sect. 3.2. For all parameters, the credibil-
calculating the normalizing constapt Today this limitation ity intervals obtained are small (Table 2). It therefore appears
is routinely overcome, even for very complex models, with that the information conveyed by the data is sufficient and
Monte Carlo techniques based on Markov chain propertie§n|y the mean values and therefore be used with confidence.
(Brooks, 2003; Gilks et al., 2001). A general discussion of . ,

these Markov Chain Monte Carlo (MCMC) methods can be2-3-4 Evaluation of model quality

found in Robert and Casella (1998). Their aim is to obtain . g N
T The quality of the model is first evaluated by estimating the
the posterior distribution of all model unknowns (parameters . o " :
fraction of the variability of the reflected velocities that is

and latent variables) using an iterative procedure. Reason- . in .
. . . . aptured by the random variabder'™ corresponding to the
able results can only be obtained if the algorithm is handled” . e
i X n-order Taylor series expansion ffwith regard to the total
with care. In particular, one must ensure that the conver- " " . : .
. . variability of the results. For thg-th impact point, the-th

gence is attained for all unknown parameters. In most cases . o .

i . . . : ..~ “Component of the reflected velocity vectBf® and varying
this requires launching many simulations for varying initial .. . o )

. . incident condition, the ratior? is calculated such that:
states and performing tests to check that the Markov chain P
has reached the stationary regime. AT
. . . V(ApT ) (s))

Depending on the model and the choice of priors, par-r;7 = - (11)
tial analytical computations can sometimes be performed for V(AT (5)) + (s, 5)
rather simple hierarchical models. This is the case for our h A Tin q h . ¢ theth
model, given its fully Gaussian nature and the choice of conWhereV(A, T (s) eno.tes t € varlan(.:e 0 _t o com—
jugate priors for all parameters. However, the full analytical Ponent of the random variabkeT™ for a fixed impact point
expression of the joint posterior distribution remains out of p and varying incident conditions, whereasX (s, s) de-
reach, so that recourse to a simulation procedure is unavoidiotes thes-th diagonal term of the covariance matix If
able (see Gelman et al., 1995, chapter 15). It was therefore,=100%, all the variability of the results is explained by
decided to perform a MCMC simulation for all unknowns, the random variabled 7. To facilitate the comparison be-
but to take advantage of the model’s structure by running theween the models evaluated, global indicators are calculated

Gibbs sampler (Geman and Geman, 1984). This MCMC al-from ther;, values,pe[1, P]. The mean* of r;, values is

Fig. 3. Posterior distributions for a few unknown parameters.

Nat. Hazards Earth Syst. Sci., 9, 88%6 2009 www.nat-hazards-earth-syst-sci.net/9/831/2009/
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calculated to estimate a mean percentage of variability ex-
plained by the random variabléT™ for each reflected ve-
locity component. In addition, an overall ratids defined as
the mean of all), values.

Table 3. r* andr values for increasing dimensions B".

in ]
T Ap

r r
dimension | dimension
3 9 r*=914%; rY=76.9%; r®=923% | 86.9%
3 Application to the definition and evaluation of a 4 12 r*=93.0%; r¥=80.0%; r*=94.3% | 89.1%
i i *=93.0%; rY=80.2%; r®=94.4% | 89.2%
stochastic bouncing model 6 18 r*=930% ,
g 9 27 r¥=951%; r’=888%; r®=959% | 93.3%

In this section, the statistical analysis of the data set obtained
from numerical simulations is performed using the above-
described procedure. This analysis allows defining a stochas-
tic bouncing model and performing a detailed study of this

model. All results obtained in this section are valid in the [ ,re a1 az az pin Tex Zay Sro

order Taylor series expansion of the stochastic operétor

. . . X 2
case o_f_ the impact of a spherlcal boulder on a coarse §0|I vre ~N3(| as as as V] 2y By By )
In addition, the results obtained depend on the assumptions g, ,re aragag | | Ry o Zyo Zow

related to the numerical model of the impact, the procedure
used for the numerical simulation campaign, and the statisti-
cal analysis. The assumptions made during this analysis, th@here the coefficientss; are sampled from a nine-
validity domain of the bouncing model obtained and the pos-dimensional Gaussian vector:

sible generalization of this model for practical purposes will

be discussed in Sect. 4. ai . m¢
~NO(| L ) (13)

a a a
ag mg 2 - Xgg

N
\g|
P2
=
™
iy
©

3.1 Afirst-order model is sufficient

This model separates the sources of variability for the re-

Several models corresponding to increasing dimensions ofiected velocity vector. The variability of parameters
the incident vectof " were compared to determine the final (i€[1, 9]) is quantified by the covariance matr&“. It is
formulation of the stochastic bouncing model. Particular at-associated with the variations in the local soil properties. On
tention was given to the precision and concision criteria sincgpe contrary, the variability quantified by the covariance ma-
the bouncing model must satisfy a compromise between &ix ¥ is related to the remainder teri and is therefore
precise simulation of the impact phenomenon and a small dimainly associated with the incident velocities.
mension of the incident velocity vect@i". For thes-th component of the reflected velocity vector,

Table 3 summarizes the values of tileandr ratios for  the standard deviation, = /=, of the regression residu-
different models corresponding to increasing dimensions ofals provides a quantitative estimation of the proportion of the
the incident vecto? ™ in the case of the impact of a boulder reflected velocity vector associated with the remainder term
with the radius set ak;, = R,, on a soil composed of spher- R. The correlations between two componentnd: of the
ical particles. The size of the data set used was the same faeflected velocity vector can be estimated by the linear cor-
all the models evaluated: 150 different incident kinematic relation coefficient., = E” e[ 1,1].

st —

conditions and 100 different impact points. The results first e estimates obtalned show that, for all components of
show that most of the variability of the reflected velocity is {he reflected velocity vector, the standard deviatignis
captured by the random variableT™ for all models used  gmaller than 1 mis. Second, all the linear correlation coef-
because the' coefficients are all greater than 75%. ficients range within the intervdl-0.2, 0.2], which means
Since all the models evaluated provide satisfying resultsthat the correlations between the components of the reflected
in terms of precision, the most concise model was chosenve|oc|ty are small. The analysis of the covariance ma¥rix
a dimension off'™™ equal to 3, explaining most of the vari- indicates that the remainder terfhof the Taylor series ex-
ability of the results by the random variabkf"™" for avery  pansion off is negligible compared to the terd7™. The
small set of parameters. This model will hereafter be calledreflected quantities can therefore be correctly predicted using

the first-order stochastic bouncing model. only the random variabld 7™ and omitting the covariance
matrix ¥. The variability of the reflected velocity is then
3.2 Detailed analysis of the first-order stochastic only associated with the variability of the soil's local prop-
bouncing model erties through the covariance mat®¥. It should be noted

_ that, for future investigations on other simulated data sets,
The model chosen corresponds to an incident ve@8r  the model inference will be much easier, which will possibly
composed of three components, which is equivalent to a firstmake it accessible to practitioners who are not familiar with
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2.0+ Table 4. Mean valuesn{ and standard deviation§ of parameters
ai.
1.5 m? sl?l
ag 0.5012 0.2412
5 ap 0.04167 0.2096
O 1.0 as —0.1598 0.0490
ag 0.2269 0.0971
as —0.07873 0.0640
054 ag —0.03321 0.0428
ay —0.4188 0.1130
ag —0.04112 0.1809
ag 0.4439 0.0768
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3,

ditions and the marginal distribution of paramet&?" " ob-
tained using different numbers of impact points, different
spatial distributions of the soil particles, different soil particle

o _ . shapes or different boulder sizes. CriteriGpis calculated
recent statistical developments. Indeed, ignoring the randonas follows:

noiseX makes the model lose its hierarchical nature, so that
the analytical expression of the posterior distribution is ac-¢, —
cessible if the conjugate priors are kept Mf andXx“.

Finally, the variability associated with the operatéris The lowerb;_ and uppeb;.. bounds are calculated such that
estimated using the marginal normal probability distribution P(bi—<a'®'<b; 1) = 95% andP (a"®>b;) = 2.5%. Know-
—<a;" < ; .5%.

functions of parameters (Fig. 4). The estimates for their ing the values ob;_ andb,. makes it possible to determine

mean values:;” and standard deviations = /Xj; are pro- he propability P (b;_ <a*°"<b; ). The reference condi-

vided in Table 4. Complementary to the marginal proba-sns correspond to the impact of a spherical boulder with its
bility distribution functions of each parametey, the acal— radius set aR), = R,, on a soil sample composed of spherical
particles. The other properties of the soil sample are similar
to those defined in Sect. 2.2.1. For the reference conditions,
impacts are simulated on 100 different impact points. Cri-
terion C; can be interpreted as the difference between the
most probable values of parametgrencountered with the
reference conditions and the conditions evaluated for which
only one simulation parameter (number of impact points, soil
sample geometrical configuration, soil particle shape, boul-
der radius) is changed compared to the reference conditions.

Fig. 4. Marginal distribution of parametes.

P(bi- <a;" " < biy) = P(bi— < af* < biy)
P(bi- < af* < biy)

(14)

ij
(iell, 9];j€[1, 9]) between the extra-diagonal terms of ma-
trix X4 shows strong correlations between parametele-
cause thef‘j values are large.

culation of the linear correlation coefficiendf% =

3.3 Sensitivity analysis

3.3.1 Methodology for comparing the model’s
parameters
3.3.2 Robustness to simulation parameters

To investigate the influence of several numerical simulation
parameters, such as the number of impact points, the sp&Fhe first aim of this analysis is to quantify the number of sim-
tial distribution of soil particles, the value of the size ratio ulations necessary to obtain relevant values for parameters
Ry/ Ry, and the shape of the soil particles, the parameters q;, which are therefore calculated using different numbers of
obtained for different values of these simulation parameterdmpact pointsP for the same soil sample. The analysis of the
must be compared. results obtained shows that the simulation®r 20 differ-

The analysis is based on the marginal probability distri-ent impact points is sufficient to obtain stable values for the
bution functions of parameters summed up by their mean probability distribution functions of parameter. Indeed, all

valuem{ and their standard deviatiorf. Complementary
to the qualitative comparison of the mean vatufe and the
standard deviatios! obtained in the different cases, a com-
parison criteriorC; is calculated for each parametgr The

the values of criterior; are less than 10% if the number of
impact points is higher than 20 (Table 5).

The dependence of parameter®n the spatial configura-
tion of the soil sample particles is also evaluated. The model

criterion C; evaluates the difference between the marginalestimation is carried out for four different soils with the same
distribution of parameteazl.rEf obtained using reference con- grading curves, porosity and particle mechanical properties
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Table 5. Criterion C; for different numbers of impact points. Table 6. CriterionC; for different geometrical configurations of the
soil particles.
C1 Cp C3 Cqs Cs5 Cp C7 Cg Cg
(%) () (%) @) ) () (%) (%) (%) Ci1 Co C3 Cy Cs Ceg Cy Cg Cg
10points -9 -2 -18 -4 -9 -17 2 —6 -14 %) ) ) ) ) o 6 6 (6
20 points -1 -3 -9 0 -4 -6 0 0 -4 Soilno.2 -1 -4 -13 -1 -21 0 -12 -2 -10
50 points 0 0 2 -1 -1 -3 0 0 -2 Soilno.3 -7 3 -17 -5 4 -1 -10 -2 -12

Soil no. 4 2 4 -15 1 5 -8 -24 4 1

(G, v, ¢, p). The only difference between the four samples
is the spatial configuration of the particles. Soil sample no. 1
is the reference sample for the calculation of critetdon

The results show that the sensitivity to the spatial configu-
ration of the particles is relatively low for all the parameters
(Table 6) because the maximum value obtained for criterion
C; is 24%. Greater differences are observed for parameter:
az, a7 andag for which C; reaches values greater than 10%
(respectively, 17%, 24% and 12%; Table 6). Moreover, the
values of parameterg can locally be slightly different from
all other values for a given soil sample. In this case, the
value of C; obtained for the considered sample is very dif-

B [mpacting boulder
L7 Small particles

ey Large particles

\01 9
\(5‘\ \\\

. Fig. 5. Local segregation of small particles above large particles.
ferent from values obtained for all other samples. For ex- g ! Segreg P . € large p
In this configuration, a group of small particles is located above

ample, the distribution of parametey calculated using soil group of large particles, whereas, in most cases, particles from
sample no. 2 is very different from the other values obtainedyiferent sizes are mixed.

(C5=21% for sample no. 2). A local analysis of the geomet-

rical configuration of the particles for sample no. 2 highlights

the particles’ specific spatial distribution: several small par-clump particles with the same properties (see Sect. 2.2.1) as
ticles are located above larger particles (Fig. 5). When thehe reference soil sample. The results show that variations
compression wave (Bourrier et al., 2008a) initiated at the bedin the parameter values are significantly greater (Table 7)
ginning of the impact reaches the large particles, the energyhan the variations attributable to the geometrical configu-
is partially reflected toward the soil surface because of theation observed previously (Table 6). In particular, the cri-
larger inertia of the large particles. Supplementary kineticterion C; values (Table 7) exhibit significant differences for
energy is therefore transferred again to the boulder after enparameters:z, as, as, ag andag. These differences result
ergy reflection, which leads to an increase in the reflectedrom differences in both the shape of the soil surface and the
velocity and induces local changes in the values of parameporosity of the soil. Indeed, using clump particles provides

teras. a more irregular soil surface composed of both quasi-planar
and curved surfaces (Bourrier et al., 2007). It also induces
3.3.3 Influence of the soil and boulder size smaller porosity values because the rearrangement of parti-

cles is easier if the particles have variable shapes (Bourrier et

The influence of the characteristics of the soil and the bouldesl., 2007).
defines the model’s validity range. Itis therefore essential for The difference stemming from the use of spherical parti-
practitioners. Since an exhaustive parametrical study wouldtles cannot be considered insignificant. However, the results
be very long, the choice is made to limit the investigations obtained using spherical particles provide a first-order ap-
to the influence of the parameters that are both accounted fqsroximation of the reflected velocities for a very short com-
in the impact model and commonly considered by practition-putation time compared to simulations using clump parti-
ers (Dorren et al., 2006). In most cases, for coarse soils, theles. Using spherical particles therefore provides an exten-
available data are limited to the mean size and the shape afive parametrical analysis of the influence of the size ratio
the soil particles. Additionally, in a preliminary approxima- between the boulder and the soil particles.
tion, the influence of the geometrical and mechanical char- The physical processes involved during the impact vary
acteristics of the impacting boulder will not be studied. All greatly depending on the ratio of the falling boulder radius
simulations are therefore performed for the case of the im-R,, to the mean radiu®,, of the soil particles (Bourrier et
pact of a spherical boulder. al., 2008a). It is therefore necessary to investigate whether

To study the influence of soil particle shape, a set of pa-the parameters of the stochastic bouncing model depend to a
rametersq; is calculated using a soil sample composed oflarge extent on this ratio. The influence of tRg/R,, ratio
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Table 7. Criterion C; for a soil sample composed of clump parti-
cles.

Cq1 Co C3 Cy Cs Ce C7 Cg Co
(%) () () (%) (B (%) (%) (%) (%)

[ < N N

404 * ——C
-3 -2 -26 -15 -6 —27 -18 -—12 —48 o o —+«C
\\\ % C
is analyzed by calculating the parameters of the stochastic !
bouncing model using a soil sample composed of spherical 1 5 3 4 "5
particles with a 2-D porosity of 0.204. Th®, /R, ratio of R/R
the boulder radius to the mean radius of the soil particles
ranges withif1, 5]. Fig. 6. Influence of theR;, /R, ratio on criterionC;.
The values of the calculated criterigh allow a compari-
son of parametekg obtained for differenR; /R, ratios with e
the parameters obtained f&;,/R,, =1, which correspond ¢, = % (16)
to parametera!®". The results show that the criteriz, Ce vy

strongly depend on the value of tlRg /R, ratio (Fig. 6) for
1<R,/R,, < 2.5 and that the criterio@g also strongly varies
depending ok, /R, for any value ofR,/R,,. From a prac-

The variability of the impact phenomenon is introduced as a
last step by modeling the restitution coefficients and other
. : . D o parameters influencing the bouncing (Dudt and Heidenre-
tical pomt of view, the vanauons_ observed_ c_:IearIy highlight ich, 2001) as independent random variables that follow user-
that'a single set c.)f parametersls not sufﬂment.to moo!el defined probability distribution functions (Dudt and Heiden-
the impact on a given soil type for al _boulder SIZ€s. _D|ffer- reich, 2001; Agliardi and Crosta, 2003; Frattini et al., 2008;
g_r;;t sets;}c;f p;ram::-texg have to be built, corresponding 1o Jaboyedoff et al., 2005) derived from back analysis of previ-
ifferent R,/ R,y ratios. ous events, experimental results or empirical expertise.
In our model, the mean predictor is the expected reflected

i rey.
4 Discussion velocity vectorE (V'®):

. . X .
4.1 Comparison to classical approaches E(V'® = mﬁv;n + m%v_'v” + m%waf” (17)
mgv\' + mgv'y” + m§Rp"

m{vy + m‘zzv'y“ + mg Ry

The stochastic approach presented in this paper can be com-

pared to classical approaches in the field of trajectory analyThe usual restitution coefficients ande, can be compared

sis. Classical models can be divided into several categorieg the tangential and normal components of the mean predic-

(Guzzetti et al., 2002) that consider the boulder either a sintor £(V'®) divided by the tangential or the normal compo-

gle point or a rigid body. Moreover, some models differen- nents of the incident velocity vector, respectively:

tiate two interaction types between the boulder and the soil: o .
. . . _ v, Ry

the falling rock can either roll or bounce onto the soil (Boz j:e‘ ] _ [mq m%;'lﬁ +m$ f,fﬁ

zolo and Pamini, 1986; Evans and Hungr, 1993; Kobayash (18)
et al., 1990; Azzoni et al., 1995), whereas most approache
consider boulder rolling a succession of small bounces. To i o
model boulder bouncing, very complex bouncing models N first term of Eq. (18) highlights that the mean pre-
(Falcetta, 1985; Koo and Chern, 1998; Dimnet and Fremonddictor E(V') is partially composed of a term equivalent to
2000) have been developed. They can describe the elasti€lassical restitution coefﬁugnts. However, the.second _term
plastic, frictional or viscous dynamical behavior of the soil shows that the mean predict@r(V'®) also provides addi-
during impact. Although the differences between the previ_nonal information on coupling effects between the incident

ously described approaches should not be omitted, the impadfnématic parameters. The mean restitution coefficie.nts
of the falling rock onto the soil is most often modeled using 2"d¢» predicted by our model are not constant values; they

a tangential restitution coefficieat and a normal restitution ~depend heavily on all the incident kinematic parameters of
coefficiente, (Guzzetti et al., 2002): the boulder (Fig. 7). The strong dependency on the incident

angle has already been integrated in previous bouncing mod-
_ve 15 els (see Pfeiffer and Bowen, 1989 and Dorren et al., 2004 for
€ =7 (15) example). The difference between the proposed approach

in
a Yy

a in
m a Ryw
5 m4;m + mG i
y y
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Fig. 7. Prediction of the model fo#; ande;, for varying incidence angletsin in and incident rotational velocities™.

and other existing approaches is based on how this depen- The numerical impact model is a simplified simulation of
dency is defined. In the proposed model, the dependencthe impact of a spherical boulder on coarse soils. Although
with the incidence angle is estimated from extensive statisthe Discrete Element Method was proved to be relevant to
tical analysis, which allows exploring large impact configu- model the impact, several assumptions were used during the
rations. On the contrary, in other existing approaches, thisnodeling phase. As extensive numerical simulation cam-
dependency was characterized from the physical analysis gbaigns were necessary, 2-D numerical simulations were per-
experiments on smaller data sets that do not allow explorindormed although the impact is obviously a 3-D phenomenon.
the complete variability range of the reflected velocity. However, the half-scale experiments conducted to calibrate
Our stochastic bouncing model is therefore an extension othe model showed that the deviation of the rock from its inci-
classical models that take into account the coupling betweerent plane was fairly insignificant, which validates the use of
the incident kinematic parameters based on the analysis a®-D simulations (Bourrier, 2008). The numerical model also
the impact for very different incident kinematic conditions. implies a simplified simulation of all contacts between rocks
The main difference between this model and the classica(in particular, contact between the boulder and the soil parti-
approaches is that the stochastic bouncing model is directlgles). Indeed, the model only accounts for energy diffusion
developed within an explicit stochastic framework. It there- inside the sample and for energy dissipation processes stem-
fore allows modeling and quantifying correlations betweenming from frictional processes. Other dissipation sources
the parameters that cannot be obtained if the variability of thesuch as plastic dissipation at the contact points, the rocks’
impact phenomenon is introduced separately. A particularlypartial or complete breakage fragmentation and elastic wave
notable characteristic of our approach compared to standardropagation are not accounted for in the model. Moreover,
approaches is the hierarchical nature of the model that segthe fact that the model was calibrated from half-scale exper-
arates the different sources of variability in the reflected ve-iments and used for real-scale simulations could also be a
locity vector, for instance, the variability associated with the limitation. However, investigations of the influence of scale
local characteristics of the impacted soil and with the boul-changes made in this specific case study (Bourrier, 2008) and

der’s incident kinematic parameters. in other research fields (aeolian sand transport; see Oger et
al., 2005) showed that scale change effects were very slight in
4.2 Remaining limitations and outcomes for further this case. Finally, the impact model is only valid for a spher-
developments ical boulder approximately the same size as the soil particle

) , , ) size, which corresponds to the case of a spherical projectile
Although comparing this model with classical approachesjmpacting a coarse soil. As mentioned above, despite these
in the field of rockfall simulations is important, one has 10 |imitations, the results obtained in this study provide a basis
keep in mind the assumptions and the restrictions assoCi fyrther simulation campaigns in which energy dissipation

ated with the proposed stochastic bouncing model.  Thesg, esses and impacting particle shape, in particular, would
assumptions are related to the numerical impact model, thg s modeled more precisely.

statistical analysis and the specificities of the case study for _ .
which the model was obtained. Second, the stochastic approach proposed is also asso-

ciated with several assumptions. In particular, parame-
tersa; are modeled as realizations of a normal probability
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Rockfall source: these particularities can be explained by the statistical anal-
- Free fall 5m ysis being performed from numerical simulations that pro-
-R=05m vide a simplified vision of the “real” impact process. Finally,

the results obtained would certainly be different if the influ-
ence of the shape and orientation of the boulder were inte-

g LR02m grated. All these restrictions of the model provide interesting

research topics for further studies.

4.3 Perspective for the predictive use of the model

Fig. 8. Example study site. The advantages of using the approach presented to properly

model the variability associated with boulder bouncing in the
field of rockfall hazard assessment are illustrated with a sim-

distribution function. Since normal laws are defined over aNple 2-D example.

infinite domain, the predictive use of the stochastic model In th le (Fia. 8). the stud ducted ai t char-
can theoretically lead to the generation of negative values h the examp e (Fig. 8), the study conducted aims at char
and large reflected velocities that would not be in accordanC(%iCterIZIng rockfall hazard on a homogeneous slope (1QOm
with energy conservation. However, given that the normal ong, 35 -slope-) follqwed by a valley ro_or. The mean size
laws associated with parametexsexhibit little variability, of the soil pa_rtlcles IS assumed fo I&, =0.2m along the
the problem is not relevant in practice. On the other hand slope and?m =0.Iminthe vaII'ey flqor. The roc_kfall source,
the numerical simulation campaigns and statistical analyse%rom which racks detach starting with a >-m-high frgefall, IS
performed only account for the variability associated with _ocated at the top of the slope. The radius of the falling rocks
the local properties of the soil near the impact point and with'™® assurT]ed to be 0.5m. )
the incident kinematic parameters. Additionally, the model The first advantages of using the approach proposed for
parameters were determined for different values of the boulfockfall simulations lie in the clear physical meaning of the
der radius and for different soil particle shapes. The shapdarameters to be assessed in the field. In addition, the num-
of the falling boulder, its orientation before impact, and the Per of parameters to be characterized in the field is reduced.
macroscopic properties of the soil (porositi, v, ¢, p, etc.) Indeed, the validation of the sFochastlc bouncmg model per-
were not accounted for, although they are important sourceformed from real-scale experiments (Bourrier et al., 2009)
of variability. The model obtained is therefore specific to Showed that only th&,,/R,, ratio has to be characterized in
a very particular configuration. However, the approach fol- the different zones of the study site. The other properties of
lowed is a general framework for the precise characterizatiorf"€ SOil, such as substratum location (i.e., soil depth), poros-
associated with each source of variability. It could be gener-tY; and particle shape, can be set at fixed values for the entire
alized over a large range of impact configurations to accouns!t€:
for the above-mentioned effects. The main challenge would The integration of the stochastic bouncing model in a rock-
be to develop a relevant and numerical model of the impacfa” trajectory simulation model is based on the definition of a
for the different investigated configurations. It would then be database composed of several sets of parametéos vary-
necessary to calibrate it from real-scale experiments over #g values of theR,/R,, ratio. The porosity of the soil, its
large range of incident conditions, which is obviously very depth and the particles’ shape at the study site must also be
difficult in practice. evaluated. For each bouncing calculation, the reflected ve-
Third, the specificities of the case study (impact of a spherd0city vector is calculated from the incident velocity vector
ical projectile on a coarse soil) induce several particularitiesby using the stochastic bouncing model predictively. The
in the bouncing model obtained. One can first note that avalues of parameters to be used for each bouncing calcu-
first-order Taylor series expansion of the stochastic operalation are determined depending on the value ofRB¢R;,
tor is sufficient to characterize boulder bouncing. Moreover,ratio. A field survey must therefore be conducted to assess
the variability associated with the remainder teRnis very  the spatial distribution oR,, over the study site. Addition-
small. In the case of the impact on fine soils, the limitation ally, the boulder radiu®, also has to be evaluated for each
to a first-order Taylor series expansion of the operator wouldrockfall simulation.
certainly not be valid. Indeed, a first-order model does not In France, a classical approach to assess risk associated
account for the dependency of the reflected velocity on thewith rockfall consists in quantifying the conjunction of the
magnitude of the incident velocity. It is truly insignificant vulnerability of the elements at risk with rockfall hazard
for impact on coarse soils (Oger et al. 2005; Bourrier et al.,H(x), x representing the spatial coordinate measured along
2007; Bourrier, 2008) but has been proven to be more siga horizontal axis starting at the rockfall source. In addition,
nificant in other cases such as the impact on fine soils (seeockfall hazard is considered the conjunction of probability
Pfeiffer and Bowen, 1989; Heidenreich, 2004). In addition, P(D) for a rock to detach from the cliff and the probability
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Fig. 9. Distribution P (x| D) depending on the horizontal distance

from the rockfall source. wheredy is the vertical size of the cells resulting from the

discretization of the study site.
Figure 10 provides an illustration of this type of 2-D map
P(X D_) for the rock, once detached, to propagate through theq, the example. To compute this map, the horizodxend
locationx (see Jaboyedoff et al., 2005, for example), such asine verticalsy cell sizes associated with the discretization of
. the study site are set at 1m. Figure 10 clearly shows that
H@E) = PD)PKID) (19) most of the falling rocks propagate near the slope’s surface.

The calculation of the detachment probabil®yD) is not In addition, forx<80m, the most probable trajectories are
within the scope of this study. On the other hand, the usdocated at increasing distances from the slope’s surface when
of the stochastic bouncing model can be highly advanta-altitude decreases. This indicates that, on a steep constant
geous for a reliable estimation of the cumulative distribution slope, materials at risk such as electric cables situated far
P(X>x|D) = P(x| D) for the rock to exceed the abscissa from the release zone can be hit even if they are situated far
The probabilityP (X>x|D) = P(x|D) is calculated by inte- ~above the soil surface. However, as soon as the valley floor is
grating the discretized densip(x, y, Ec)of the falling rock  reached, the altitude range containing most of the trajectories
passing through the poirt, y) with a kinetic energyEc, substantially decreases wherincreases because gravity no
which is a direct outcome of trajectory simulations: longer compensates energy dissipation at each impact.

~ = Note that a simple hazard assessment procedure has been

used in this example. However, more advanced guidelines

P(xD)=P(X = x|D):/ / / p(x,y, Ec|D)dxdydEc (20)  couid have been implemented, simue, y, E4D) is the ba-

00 x sis of all methods used for rockfall hazard characterization.

In the example considered here, a total of 10 000 trajectory>"C€ the flight phase of the rock is deterministic, the rele-
simulations are performed following the above-described”ance of the probabilitp(x, y, E¢D) is determined by the
procedure. The decrease in the probabix|D) depend- accuracy of the. bouncm_g model. This f_uIIy jugtlfles the use
ing on the distance from the release point (Fig. 9) shows of the stoghqgtlc bounqng mc_)dels, which suitably account
that most of the falling rocks reach the valley floor because!©" the variability associated with different sources.

P(xD) is greater than 85% for<82 m. However, as soon as Finally, the results obtained for thi_s example emphasize
the valley floor is reached, the probabil®fx) of a rockfall ~ that the use of 2-D maps produced using our model could be

event occurring sharply decreases with distanci partic- highly advantageous for the optimization of the locations and
ular. it is smaller than 10% for>120 m. the shape of defense structures. Indeed, the location and the
Additionally, using a reliable local discretized dengitx height of a structure could then be optimized to determine the

y, EGD) means the rockfall hazard can be studied more prepoint of the study site in which the smaller structure can stop
cisely. It is, for example, possible to determine a 2-D mapMost falling rocks. Given thap(x, y, E¢D) is thoroughly

that defines the probability for the occurrence of rockfall calculated, one could also use it to calculate the distribution
events at all points of the study site. In a 2-D context, this©f the impact energy on protective structures in order to op-

information is associated with the following probability: timize its design in terms of structural strength performance.
This approach would therefore define the probability for the

P(x,yID)=P(X > x,y—68y/2 <Y <y+38y/2|D) protection structure to stop falling rocks depending on the

o0
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distribution of the rocks’ energy when impacting the struc- use of experimental results is not suitable. On the contrary,

ture, which will be investigated in further work. like the methodology proposed here, data sets could be gen-
erated from numerical simulations. Finally, as illustrated in
the case study, the stochastic bouncing model proposed can

5 Conclusions be used for prediction purposes, making a consistent prob-
abilistic starting point available for carrying out prediction-

In this paper, a general framework was proposed for the charoriented simulations of boulders impacting a coarse soil. In

acterization of the variability of falling boulders’ velocities particular, it can be used to build multivariate probability dis-

after rebound. The use of large data sets from numerical imtribution functions characterizing hazard levels on an endan-

pact simulations and of Bayesian modeling schemes has legered slope and to compute risk levels taking at-risk struc-
to the definition of a stochastic bouncing model in the contextiyres into account.

of the impact of a spherical projectile on a coarse soil. This

stochastic.bouncing modgl uses a hierarchical structurg thaédited by: A. Volkwein

can quantify the relative importance of different contribu- qeoyiewed by: D. Straub and another anonymous referee

tions to the reflected velocity vector’s variability. This model

also introduces couplings between the reflected and incident

velocity vector that are sufficient to model the mechanism
associated with boulder bouncing.

The det_a'led analy.sls.o.f the model has proved 't,S relevanc‘;?\gliardi, F. and Crosta, G.: High resolution three-dimensional nu-
for modeling the variability of the reflected velocity vector  ~merical modelling of rockfalls, Int. J. Rock Mech. Min., 40, 455—
for all spatial configurations of the soil particles. In addi- 471, 2003.
tion, the parametrical study conducted demonstrated that th@zzoni, A., Rossi, P. P., Drigo, E., Giani, G. P., and Zaninetti, A.: In
model is valid for different values of the boulder size to soil  situ observation of rockfall analysis parameters, in: Proceedings
mean particle size ratio and for different soil particle shapes. of the sixth International Symposium of Landslides, Rotterdam,
The comparison with classical bouncing models in the field The Netherlands, 1, 307-314, 1992.
of trajectory analysis highlighted that the model can be conAzzoni, A, Barbera, G., and Zaninetti, A.: Analysis and predic-
sidered an extension to classical models that accurately in- thn of rockfalls using a mathematical model, Int. J. Rock Mech.
tegrates the couplings between the reflected and the inciderét Min., ?_2 7Eog—72?, 19%5' i blem in the doctri ¢
kinematic parameters. Moreover, it has been shown that for ayes, 1.. =ssay fowargs solving a probiem in the goctine o

. . . . chances, Philos. T. R. Soc. Lond., 53 and 54, 370-418 and 296—
the impact of spherical boulders on coarse soils, first-order 55 1763

Taylor series expansion on the incident velocity is sufficientgerger, . 0.: Statistical Decision Theory and Bayesian Analysis.

to express of the variability of the reflected velocity. An-  2nd edn., Springer-Verlag, 1985.

other important result is that, in this case, the variability of Bertrand, D., Nicot, F., Gotteland, P., and Lambert, S.: Modelling

the local soil configurations strongly dominates random un- a geo-composite cell using discrete analysis, Comput. Geotech.,

certainties. On the other hand, the model is able to take into 32, 564-577, 2006.

account the couplings between the model's parameters thdtourrier, F., Nicot, F., and Darve, F.: Rockfall modelling: Numer-

stem from the mechanical complexity, and our results have ical simulation of the impact of a particle on a coarse granular

indicated that they should not be neglected. medlum, in: Proce_edlngs of the :_LOth In_ternatlona_ll Congress on
From a practical point of view, the bouncing model devel- NUmerical MOdel in Geomechanics, edited by: Pietruszczak, S.

. . ! . . and Pande, G., Taylor & Francis, 699-705, 2007.
oped can easily be integrated into rockfall simulation codesg

. . . : ourrier, F.: Moclisation de I'impact d’un bloc rocheux sur un
that model trajectories of spherical boulders. The main ad-  grain naturel, applicatiod la trajectographie des chutes de

vantages of this procedure compared to classical approaches, pjocs, Ph.D. thesis, Institut Polytechnique de Grenoble, Greno-
which generally require field assessment of the parameters, ple, France, 2008.
is that the required input parameters have a clear physicabourrier, F., Nicot, F., and Darve, F.: Physical processes within a 2D
meaning. granular layer during an impact, Granul. Matter, 10(6), 415-437,
In the future, our procedure could be used to characterize 2008a.
the bouncing of a boulder on all different types of soil sur- Bourrier, F., Eckert, N., Bellot, H., Heymann, A., Nicot, F., and
face, such as fine soils or rocky surfaces, with the possible Darve. F.. Numerical modelling of physical processes involved
inclusion of field observations and real-world data using the 4uring the impact of a rock on a coarse soil, in: Proceedings of
chosen Bayesian approach (Straub and Schubert, 2008). Ourthe_ conference Advan_ces in Geom.aterlals and Structu_res, edited
. . +°. " by: Darve, F., Doghri, I., El Fatmi, R., et al., Collection S.T,
approach could also be used to characterize the variability 501-506, 2008b.
associated with other important variability sources of boul-goyrrier, F., Dorren, L., Nicot, F., Berger, F., and Darve,
der bouncing, such as boulder shape. The challenge would F: Towards objective rockfall trajectory simulation
then be to provide large data sets composed of reproducible using a stochastic impact model, Geomorphology,
and precisely defined results. For this purpose, the direct doi:10.1016/j.geomorph.2009.03.017, in press, 2009.
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