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Abstract. The synoptic evolution and some meteorologi-
cal impacts of the European winter storm Kyrill that swept
across Western, Central, and Eastern Europe between 17
and 19 January 2007 are investigated. The intensity and
large storm damage associated with Kyrill is explained based
on synoptic and mesoscale environmental storm features, as
well as on comparisons to previous storms. Kyrill appeared
on weather maps over the US state of Arkansas about four
days before it hit Europe. It underwent an explosive intensi-
fication over the Western North Atlantic Ocean while cross-
ing a very intense zonal polar jet stream. A superposition
of several favourable meteorological conditions west of the
British Isles caused a further deepening of the storm when it
started to affect Western Europe. Evidence is provided that a
favourable alignment of three polar jet streaks and a dry air
intrusion over the occlusion and cold fronts were causal fac-
tors in maintaining Kyrill’s low pressure very far into Eastern
Europe.

Kyrill, like many other strong European winter storms,
was embedded in a pre-existing, anomalously wide, north-
south mean sea-level pressure (MSLP) gradient field. In
addition to the range of gusts that might be expected from
the synoptic-scale pressure field, mesoscale features associ-
ated with convective overturning at the cold front are sug-
gested as the likely causes for the extremely damaging peak
gusts observed at many lowland stations during the passage
of Kyrill’s cold front. Compared to other storms, Kyrill was
by far not the most intense system in terms of core pressure
and circulation anomaly. However, the system moved into a
pre-existing strong MSLP gradient located over Central Eu-
rope which extended into Eastern Europe. This fact is con-
sidered determinant for the anomalously large area affected
by Kyrill.
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Additionally, considerations of windiness in climate
change simulations using two state-of-the-art regional cli-
mate models driven by ECHAM5 indicate that not only
Central, but also Eastern Central Europe may be affected
by higher surface wind speeds at the end of the 21st cen-
tury. These changes are partially associated with the in-
creased pressure gradient over Europe which is identified in
the ECHAM5 simulations. Thus, with respect to the area
affected, as well as to the synoptic and mesoscale storm fea-
tures, it is proposed that Kyrill may serve as an interesting
study case to assess future storm impacts.

1 Introduction

Mid-latitude winter storms rank, after tropical cyclones, as
the second highest cause of insurance loss related to a nat-
ural disaster, and are the most frequent and costly natural
hazards for Central Europe (e.g.,Swiss Re, 2000). The rel-
evance of such storms in terms of insured damage is enor-
mous: for example, the three storms during December 1999,
Anatol, Lothar, and Martin (storm names employed herein
are as used by the German Weather Service, DWD) caused
a total insured loss exceeding 10 billion Euro across Eu-
rope, while the total economic loss were twice as much (Mu-
nichRe, 2001; Deutsche R̈uck, 2005). Individual meteoro-
logical factors that favour the development of strong extra-
tropical cyclones over the Eastern North Atlantic Ocean and
that steer these powerful storms to Central Europe are well-
known: an enhanced north-south tropospheric temperature
contrast associated with a very strong upper-tropospheric jet
stream directed towards Europe (e.g.,Ulbrich et al., 2001;
Wernli et al., 2002), upper-level divergence at the left exit
region of the jet stream, sometimes augmented by the co-
located right entrance region of a downstream second jet
streak (e.g.,Uccellini and Johnson, 1979; Baehr et al., 1999),
upper-level dry air intrusions overrunning existing frontal
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structures (e.g.,Uccellini, 1990; Browning, 1997; Young and
Grahame, 1999), and the inclusion of anomalously warm and
humid air in the warm sector of the cyclone (e.g.,Chang et
al., 1984). Pinto et al.(2009) demonstrated that a strong in-
tensification of Atlantic cyclones is frequently linked to the
occurrence of extreme values of the above-mentioned growth
factors in the immediate vicinity of the cyclone centre. It
appears that these favourable conditions happen more fre-
quently and persistently during positive phases of the North
Atlantic Oscillation (NAO; e.g.,Defant et al., 1924; Walker,
1924). The positive NAO phase is associated with an anoma-
lously strong Icelandic Low and Azores High (e.g.,Hurrell,
1995). Further,Pinto et al., 2009 provided evidence that
the enhanced number of extreme cyclones in positive NAO
phases can be explained by the larger area with the above-
mentioned suitable environmental growth conditions of mid-
latitude cyclones. Moreover, North Atlantic winter storms
tend to be more intense and long-lived during positive NAO
phases. However, extreme cyclones, as defined inPinto et al.
(2009), can also occur during negative phases of the NAO.

Given the socio-economic impact of these storms, their
trends in an anthropogenically changed climate have at-
tracted a lot of attention (e.g.,Meehl et al., 2007; Christensen
et al., 2007, and references therein). Many studies show evi-
dence of a change in cyclone activity as a result of increasing
greenhouse gases (for a review, seeUlbrich et al., 2009) re-
lated to an altered large-scale atmospheric circulation (e.g.,
Meehl et al., 2007). A major result for the Northern Hemi-
sphere is that the total number of cyclones is slightly reduced
in many global climate models, while the number of ex-
treme storms may increase (e.g.,Lambert and Fyfe, 2006;
Leckebusch et al., 2006). From an European perspective,
a significant increase of cyclone intensity is detected near
the British Isles, at least for the ECHAM5 model (Bengts-
son et al., 2006; Pinto et al., 2007b). In particular,Pinto et
al. (2009) documented an increase of explosive cyclone de-
velopments close to Europe, especially for storms tracking
over the North Sea into the Baltic Sea. The reduced block-
ing frequencies over Europe and an eastward shifted upper-
air jet stream are associated with these changes, which also
have a strong signature on the extreme surface winds over
Continental Europe (Pinto et al., 2007b). Accordingly, an
enhancement of loss potentials for Europe may be expected
(Leckebusch et al., 2007; Pinto et al., 2007a). Some of these
above-described results are, however, not consensual: for ex-
ample, even though the majority of the General Circulation
Models (GCMs) included in the IPCC fourth assessment re-
port (4AR) show an increase of synoptic activity over the
North Atlantic and Europe as does ECHAM5, this is not true
for some GCMs (cf.Ulbrich et al., 2008). In general, the im-
pacts of climate change to synoptic activity seem to be sensi-
tive to the choice of the GCM, the forcing, i.e. the scenario,
and the tools chosen to identify, track, and characterise ex-
tratropical cyclones. (cf. e.g.,Christensen et al., 2007; Pinto
et al., 2007b; Raible et al., 2008; Ulbrich et al., 2009). For

an in depth review on the impact of climate change on cy-
clone activity, including associated uncertainties, the reader
is referred toUlbrich et al.(2009).

During the winter of July 2006, Europe was affected by
a series of strong storms, particularly between late Decem-
ber 2006 and mid-January 2007. Between the evening of
17 January and the early hours of 19 January 2007, the most
intense storm, called Kyrill, swept across Europe, bring-
ing hurricane-force winds to many parts of Western, Cen-
tral, and Eastern Europe. It left a path of death and de-
struction extending from the British Isles to Russia, claim-
ing at least 46 lives (Deutsche R̈uck, 2008; Scheuren et al.,
2008). It provoked a significant disruption of road, railway,
aircraft, and ship transportation services across Europe. In
Germany, Austria, the Czech Republic, and Poland a total of
two million homes were left without electricity. Of note is
the uprooting of 62 million trees in Central Europe, partic-
ularly spruce trees in the low mountain ranges of the Sauer-
and Siegerland in Central Germany. According to the Ger-
man Insurance Association (GDV), storm Kyrill has caused
circa 2.4 billion Euro of insured losses in Germany alone
(GDV, 2007). The correspondent value for Europe is cur-
rently estimated between four and seven billion Euro (Swiss
Re, 2008; MunichRe, 2008), making it the most costly winter
storm since Lothar and Martin in December 1999 (Deutsche
Rück, 2008). It shall be mentioned that, contrary to Lothar,
Kyrill was well-predicted days in advance (e.g.,Friedrich
and Kratzsch, 2007). The corresponding warnings issued by
the National Meteorological Services in Europe likely have
prevented higher damages and fatalities.

In this paper, we will investigate in Sect.3 the synoptic
evolution of Kyrill over the North Atlantic Ocean and Eu-
rope with a special emphasis on potential meteorological fac-
tors that are instrumental in understanding the intensity of the
storm. Kyrill’s main characteristics and significant weather
impacts over Central Europe are analysed. In Sect.4, the
strength and area of the strong surface winds associated with
Kyrill will be compared to the ten strongest recent European
winter storms. The question will be addressed as to whether
the strength of a pre-existing ambient mean sea-level pres-
sure (MSLP) gradient may further enhance the intensity and
impacts of winter storms. In Sect.5, projected changes of
the MSLP gradient over the North Atlantic Ocean and Eu-
rope at the end of this century by a GCM will be discussed
along with alterations in the intensity of damaging storms as-
sessed by results from two regional circulation models. The
data used in this study are described in Sect.2 and infer-
ences drawn from the Kyrill case regarding the assessment
of present and future storm losses will be given in Sect.6.

2 Data

Synoptic station observations including wind gusts
and radiosonde data were extracted from the
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Global Telecommunication System (GTS) of the
World Meteorological Organisation (WMO). The GTS
data, the METEOSAT 8 water vapour imagery (6.2µm), and
the surface analyses were furnished by the DWD. Precipita-
tion radar images were downloaded fromwww.wetter.com
and are based on data from the 5.6 GHz C-band radar
network of the DWD. Weather charts over North America
were obtained from the California Regional Weather Server
(http://virga.sfsu.edu) and the Unisys Weather Information
Services (http://weather.unisys.com). Analyses and fore-
casts from the European Centre for Medium-Range Weather
Forecasts (ECMWF), transformed from spherical harmonic
space (T799) onto a 0.25◦

×0.25◦ latitude/longitude grid,
were utilized. The first generation of the National Centers
for Environmental Prediction (NCEP-1,Kalnay et al.,
1996) reanalyses at T62 spectral resolution available on
a 2.5◦×2.5◦ latitude/longitude mesh were employed to
compare the environmental atmospheric conditions in which
Kyrill was embedded to the 1958–2005 climatology as well
as to relate Kyrill to historical storms. The ECMWF and
NCEP-1 reanalyses were available at 6-hourly intervals.

Further, ocean-atmosphere coupled GCM simulations per-
formed with the ECHAM5/MPI-OM1 (hereafter ECHAM5;
cf. Roeckner et al., 2003, 2006, and references therein) are
considered. We analyse three ensemble simulations for the
recent climate (denoted 20C), which were initialised at three
different model years of the pre-industrial control simula-
tion (500 years with fixed 1860 greenhouse gas concentra-
tions). Furthermore, we consider three ensemble simula-
tions for the 21st century following the IPCC SRES (In-
tergovernmental Panel on Climate Change Special Report
on Emission Scenarios) A1B scenario (Nakićenovíc et al.,
2000) which were started at the end of each of the three
20C runs. The GCM was run at T63 spectral resolution (ca.
1.875◦ latitude-longitude), and data is available every 6 h.
These simulations have been investigated by the authors for
changes of synoptic activity and surface winds with increas-
ing greenhouse gas forcing in previous studies (e.g.,Pinto
et al., 2007a,b, 2009). Here, we analyse the changes of the
MSLP and of the MSLP gradient. The MSLP gradient has
been calculated from the gridded MSLP fields by means of
a standard, fourth-order centred differences scheme for plan-
etary grids (cf.Sanderson and Brassington, 2002). Simula-
tions with the Regional Model (REMO; seeJacob, 2001;
Jacob et al., 2007) and the German community regional
climate model COSMO-CLM (Consortium for Small-scale
Modelling-Climate Version of the Lokal-Modell; cf.Böhm
et al., 2006) nested into the above-mentioned ECHAM5 sim-
ulations were also diagnosed. REMO possesses a grid res-
olution of about 10 km (0.088◦ latitude/longitude) whereas
COSMO-CLM has a grid size of about 20 km (0.165◦ lati-
tude/longitude).

Due to data availability, only one regional simulation per
scenario is considered. The REMO and COSMO-CLM data
was used to compute statistics of the changes in the daily

10-m maximum wind speed between 1970–1999 and 2070–
2099.

3 Synoptic development and meteorological impacts

In this section, a brief survey of the circulation in the
Atlantic-European sector of the Northern Hemisphere will
be provided and the synoptic evolution of storm Kyrill will
be explored. Particular emphasis will be given on the roles
of the upper-level jet streams, the dry air intrusion, and the
vertical mixing of momentum during the passage of the cold
front to understand the severity of the storm over Europe.

3.1 General weather conditions

The period between the end of December 2006 and mid-
January 2007 was characterised by a high frequency and
rapid sequence of intense storms over the North At-
lantic Ocean and Europe. The occurrence of the storms was
favoured by the strong, zonally-oriented tropospheric tem-
perature gradient over the North Atlantic Ocean and Europe,
which contributed to stronger than average winds across the
North Atlantic Ocean. Due to the enhanced meridional tem-
perature contrast during this period, the upper-level flow over
the North Atlantic Ocean and Western Europe was anoma-
lously strong and oriented in a west-east, i.e., zonal direction.
Averaged over the period of December 2006 to March 2007,
the NAO index value was strongly positive (+1.83). This is
the highest value since the winter of 1999/2000 (+1.85; af-
ter Jones et al., 1997), updated athttp://www.cru.uea.ac.uk/
∼timo/projpages/naoupdate.htm). Accordingly, the block-
ing index (as defined byTibaldi and Molteni, 1988) for
January had very low values over Europe, even below the
5th percentile between 10◦ and 40◦ E (not shown), indi-
cating a clear dominance of zonal weather patterns. The
MSLP for January 2007 was characterised by an anoma-
lously strong pressure gradient over the Eastern North At-
lantic Ocean and Europe (Fig.1), particularly in a zonal strip
extending from the region west of the British Isles eastward
to Poland. Average January 2007 MSLP values in North-
ern Scandinavia were about 16 hPa below the 1958–2005
mean, while positive MSLP anomalies reaching up to 9 hPa
were observed to the west of the Iberian Peninsula. Note
that MSLP anomalies are due partly to the high frequency
of storms. However, MSLP values were below normal over
the polar regions and above normal in almost all parts of the
subtropics, indicating a positive value of the Arctic Oscilla-
tion/Northern Annular Mode (Ogi et al., 2004) and suggest-
ing that all incipient Atlantic winter storms in January 2007
were already embedded in a stronger, north-south pressure
gradient. As a result of the persistent zonal circulation,
the January of 2007 was extremely warm over Central Eu-
rope, leading to an anomaly of +6.8◦C with respect to the
1761–1970 mean for the long Central European temperature
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Fig. 1. Average January 2007 NCEP-1 MSLP (contours, in hPa) and its anomalies (shading, in hPa) with respect to the January 1958–2005
climatology.

time series based on data from Potsdam, De Bilt, Vi-
enna, and Basel (cf.http://www.uni-koeln.de/math-nat-fak/
geomet/meteo/Klimastatistik/index-e.html). In fact, all the
three winter months were extremely warm, making the
winter of July 2006 the warmest winter in Central Europe
since at least 1761/62 and perhaps since more than half a
millennium (Luterbacher et al., 2007).

3.2 Development of Kyrill over the North Atlantic Ocean

A meticulous backward tracking of the barometric depres-
sion that later developed into storm Kyrill was carried out us-
ing both automatic and manual techniques. Results revealed
that the incipient cyclonic depression, termed Kyrill I, with
a core pressure of 1013 hPa formed at a stationary, waving
cold front located underneath the eastward side of an upper-
level, longwave trough over North-Eastern Arkansas (USA)
between 18:00 UTC 14 January and 00:00 UTC 15 Jan-
uary 2007. The complete track and the MSLP core pressure

values were derived using the automatic tracking algorithm
based on the Laplacian of the MSLP field (cf.Murray and
Simmonds, 1991; Pinto et al., 2005) and are shown in Fig.2.
It shall be emphasized that the automatic tracking method
does not pick up the correct path of the depression until it
reaches the mid-western states of the USA on 00:00 UTC
16 January 2007. This is related to slack pressure gradi-
ents and/or multiple MSLP centres over North America in
the NCEP-1 re-analyses.

The upper-level flow steered the surface depression north-
eastward out on the Western North Atlantic Ocean to
the southeast of Nova Scotia where it started to un-
dergo an explosive cyclogenesis, i.e. the core pressure of
Kyrill I deepened by more than 24 hPa for example between
12:00 UTC 16 January (998 hPa) and 12:00 UTC 17 Jan-
uary 2007 (968 hPa). This rapid intensification was asso-
ciated with the poleward crossing of the strong polar jet
stream with wind speeds in excess of 200 kn corresponding
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Fig. 2. Top panel shows the jet stream on the 250 hPa pressure level (source: ECMWF). Also displayed is the surface track of Kyrill
(source: NCEP-1). The corresponding core MSLP values are given in the bottom panel for the period 00:00 UTC 15 January to 12:00 UTC
19 January 2007. The jet stream is shown in a six-hourly moving window centred on the position of Kyrill. The units of the colour bar are
in kn. The window possesses a time-constant latitudinal extension of 30◦, whereas the longitudinal size was adapted to the translation speed
of the storm. The split jet structure is denoted with “1”, “2”, and “3”. For more details see text.

to 103 m s−1 (Fig. 2). However, the positioning of Kyrill I
in the cold polar air mass and the associated commencement
of the occlusion process on 12:00 UTC 17 January 2007 (not
shown) would not have favoured a further development of
Kyrill. On 00:00 UTC 18 January 2007, a secondary cyclone
(termed Kyrill II) appeared in the area of the occlusion point
of Kyrill I, the latter being located on the 30◦ W meridian
(Fig. 3a). The rapid growth of secondary frontal waves is
a common feature within North Atlantic cyclones, however,
the dynamics of these often small-scale and shallow features
in their incipient stage is not well understood (Parker, 1998).
One large-scale factor promoting the growth of Kyrill II into
the primary cyclone that attained a deeper core pressure than
its parent cyclone only 12 h later (Fig.3d) is the fact that
Kyrill II remained close to the left exit region of the in-
tense polar jet streak until it reached Denmark (Fig.2 and
Fig. 3b). It is well-known that upper-level divergence due
to the ageostrophic circulation crosswise to the jet prevails
at the cyclonic poleward side of the jet delta region, thereby
supporting a rapid intensification and/or the maintenance of
a low core pressure (e.g.,Uccellini and Johnson, 1979; Uc-

cellini, 1990). As a first result, we note that the intense polar
jet over the North Atlantic Ocean, reflecting a strong tropo-
spheric meridional temperature contrast, was instrumental in
Kyrill’s fast zonal translation speed directed towards Cen-
tral Europe, its explosive development over the Western At-
lantic, the growth of Kyrill II, and the preservation of its low
core pressure when it approached Europe (cf. Sect.3.3).

The question arises as to whether other meteorological fac-
tors have caused the further, albeit slow, deepening phase of
Kyrill II over the North and Baltic Seas leading to the mini-
mum pressure of 962 hPa over the Baltic states on 00:00 UTC
19 January 2007 (cf. Fig.2)1. It is suggested here that
Kyrill II apparently deepened further due to a superposition
of favourable conditions surrounding it, i.e.,

(a) ahead of an intensifying upper level shortwave trough
(not shown), (b) underneath enhanced upper-level outflow

1The estimations of minimum central sea-level pres-
sure for Kyrill differ between sources. For example,
www.unwetterzentrale.degives 961 hPa, www.wetterspiegel.de
estimates 960 hPa, and the DWD surface analysis suggests a core
pressure even below 960 hPa.
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Fig. 3. 18 January 2007 for 00:00 UTC (left), 12:00 UTC (middle), and 18:00 UTC (right):(a, d, andg) Surface analysis of MSLP and fronts
(source: DWD). (b, e, andh) Geopotential height (in gpdm; black lines), wind speed (in kn; green lines), and divergence (coloured) smoothed
by a nine-point filter (in 10−5 s−1; shaded) at the 300 hPa pressure level (source: ECMWF). (c, f, andi) METEOSAT 8 image of brightness
temperatures at 6.2µm. Blue (red) colours are associated with a dry (humid) middle and upper troposphere (cf.Schmetz and Turpeinen,
1988). Overlaid are the fronts of Kyrill. The Latin numbers “I” and “II” indicate the positions of Kyrill I and Kyrill II, respectively.
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Fig. 3. Continued.

associated with the left (right) exit (entrance) region of a up-
stream (downstream) jet streak (cf. split jet in Fig.3b), (c) the
commencement of the intrusion of upper-level dry air over

the frontal zones (Fig.3c), and (d) by the presence of warm
and humid air masses, classified as a maritime tropical air
mass by theBerliner Wetterkarte(2007), in the warm sector
of the low.

In association with the low core pressure, a remarkable
pressure gradient of more than 70 hPa developed between
Kyrill II’s centre over the North Sea and an anticyclone
over the Iberian Peninsula on 12:00 UTC 18 January 2007
(Fig. 3d). Note the tight pressure contours extending over
a distance of about 1000 km between the Alps and the Cen-
tral North Sea, where Kyrill II’s core is located. As we will
see below, Kyrill II was characterised by an unusual large
meridional extension of a strong pressure gradient and gale
force winds.

3.3 Development of Kyrill over Central Europe

In this Section, the questions will be addressed what caused
the core pressure of Kyrill II to remain very low when it
moved towards Eastern Europe. Figure 3d and e clearly de-
pict that the surface pressure centre of Kyrill II over the West-
ern North Sea moves in a region of upper-level divergence
over the Eastern North Sea and Denmark that results from
the split polar jet structure, denoted “1” and “2” in Fig.2,
with peak winds in excess of 180 kn and 120 kn over Eng-
land and the Baltic states, respectively. The latter jet streak
was a result of the enhancement of the meridional temper-
ature gradient caused by Kyrill II’s warm front, whereas the
relative wind speed minimum over the German Bight (for the
location, see Fig.5) was caused by the weakening of the tem-
perature gradient in the vicinity of the cyclone’s warm sector
(Fig. 3). As a consequence of its location in a delta-entrance
dual jet configuration, Kyrill II benefitted from enhanced
upper-level divergence (Fig.3b, e, and h), a factor that also
enhanced the development of Lothar in December 1999 (Ul-
brich et al., 2001, their Fig. 4). In the next 24 h, a third jet
streak (see “3” in Fig.2) developed ahead of the deepen-
ing shortwave trough, located over East Germany (Fig.3h),
and Kyrill II maintained its favourable location in terms of
upper-level divergence now caused by the second and third
jet alignment.

Besides the favourable jet pattern, the occurrence of a dry
air intrusion may have delayed the weakening of the cyclone
while it moved into Eastern Europe. On 00:00 UTC 18 Jan-
uary 2007 a dry air streak is located above Kyrill’s two pres-
sure cores (Fig.3c). This structure was associated with the
explosive cyclogenesis of Kyrill I (not shown). Figure 3f
shows that this upper-level dry-air intrusion has farther ad-
vanced over the occlusion point and the cold front to its south
on 12:00 UTC 18 January 2007. This development continues
for the next hours when upper-level dry air overran the cold
front of Kyrill II even farther (Fig.3i). This fact is clearly
seen by the six-hourly radiosonde launches performed at
Lindenberg (Germany, 52◦22′ N, 14◦12′ E; cf. Fig. 5). On
12:00 UTC 18 January 2007 Lindenberg was located in the
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Fig. 4. Skew T-log p diagram of(a) Lindenberg (Germany, 52◦22′ N, 14◦12′ E) on 12:00 UTC (black lines) and 18:00 UTC (blue lines) as
well as(b) Larkhill (Great Britain; 51◦12′ N, 1◦48′ W) on 12:00 UTC 18 January 2007. The solid (dashed) thick lines represent temperature
(dew point) observations. The heights of the tropopause are indicated by a “T”. Wind barbs are only inserted in(a) for the 18:00 UTC launch
of Lindenberg. Note for(b) that the surface values at Larkhill were taken several minutes in advance of the ascent and are probably not
representative for the conditions at the start of the launch at 11:26 UTC.

warm sector of Kyrill II (Fig.4a and cf. Fig.3f). The sub-
sequent radiosonde was launched at 17:11 UTC, about one
hour before the passage of the cold front. Consequently,
the whole troposphere was passed by the balloon before the
arrival of Kyrill II’s cold front (cf. the strong radar echoes
in Fig. 5). For this reason the troposphere is still charac-
terised by the presence of the warm and moist air mass of
Kyrill II’s warm sector (e.g., 14◦C at the surface). Unlike
the 12:00 UTC sounding, dry air masses were now observed
above 400 hPa (Fig.4a).

Consequently the dry air advection enhanced the convec-
tive instability. It is speculated here that the convective in-
stability was released due to the lifting associated with the
cold front. However, based on the Lindenberg sounding,
lifting would not have resulted in free convection since the
equivalent potential temperature is constant between 850 hPa
and 700 hPa and slightly increasing above (not shown). Free
convection and the release of energy would only have been
possible when the dry air subsided more deeply into the
troposphere (cf.Browning, 1997, his Fig. 9). There is ev-
idence that free convection due to the dry air intrusion in-
deed occurred. Firstly, the warm brightness temperatures
of about −30◦C in the water vapour satellite images (cf.
Fig.3f and i) indicate that the dry air might have reached the

500 hPa level. The 15-min water vapour imagery suggests
that the convection was intensifying along the cold front (not
shown). On 18:00 UTC 18 January 2007 the wedge-shaped,
south-westward growth of the convection parallel to the cold
front is identifiable above Central East Germany, i.e. be-
tween the area of the dry air above Southern East Germany
and North-Western Germany (Fig.3i). Secondly, the strong
radar echoes (note the linear structure delineated by reflec-
tivity values exceeding 54 dBZ between the cities of Erfurt
and Leipzig) associated with the passage of the cold front
over Central and Eastern Germany clearly displays the strong
convective activity of the cold front (Fig.5). Finally, light-
ning maps (not shown) indicate that the cold front passage
was frequently associated with thunderstorms, which were
restricted to the area of the dry air intrusion. The lightning
positioning system of the DWD recorded intensities of up to
2000 flashes per two hours (Berliner Wetterkarte, 2007).

Surface observations also imply that thunderstorms asso-
ciated with the cold front passage were widespread and in-
tense. For example, a station run by the water works of Berlin
measured 25 mm of rainfall between 17:15 and 17:45 UTC,
11.6 mm of which fell in only 5 min. There were also re-
ports of at least two tornadic storms (e.g.,Friedrich and
Kratzsch, 2007) around the time of the radar picture shown
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Fig. 5. Composite radar reflectivity (in dBZ) for Germany on 18:30 UTC 18 January 2007 with the top twenty 24-h precipitation amounts
(in mm) reported on 06:00 UTC 19 January 2007.

in Fig. 5. Also, the 24h accumulated precipitation was ex-
traordinary. Values between 30 and 45 mm were frequent in
the flat terrain of Northern Germany with a peak value of
about 90 mm observed at the Brocken summit (Harz Moun-
tains; 51◦48′ N, 10◦37′ E; see Fig.5). The uniqueness of the
precipitation sums is understood by mentioning that they ex-
ceeded the mean January accumulations in parts of North-
Eastern Germany. Additionally, the strong precipitation may
have been a factor further increasing the wind damage loss.
Again, the highest precipitation values were recorded in the
area of the upper-level dry air (cf. Fig.3i). In summary, it
is proposed that the dry-air intrusion was instrumental for
the development of the intense convection. Furthermore, it
is speculated that the convection and the upper-level diver-
gence, enhanced by the upper-level jet configuration, helped
Kyrill II to maintain its unusually low core pressure when it
entered the Baltic states and Western Russia.

3.4 Observed wind gusts

In this section we analyse what factors may have enhanced
the recorded maximum gusts well beyond what might be
expected from the synoptic-scale pressure gradient. Strong
wind gusts were measured all over Europe. The maximum
wind gusts between 00:00 UTC 17 January and 18:00 UTC
19 January 2007 are shown in Fig.6. The strongest val-
ues of over 200 km h−1 were observed at Alpine and Tatra
mountain tops. In the lowlands, a gust of 144 km h−1 (78 kn)
was measured both at Düsseldorf airport weather station
(Germany; 51◦17′ N, 6◦47′ E, cf. Fig. 5) and Artern (Ger-
many; 51◦23′ N, 11◦18′ E). Many stations in Central and
Western Europe recorded hurricane-force wind speeds in ex-
cess of 119 km h−1 (64 kn). A closer analysis of Fig.6 re-
veals the strong station-to-station variability with respect to
the maximum observed wind gusts. This could either re-
sult from macro-meteorological (i.e., orography) or micro-
meteorological (trees, buildings, etc.) environmental con-
ditions of the station. However, from the flat landscape in
Northern Netherlands, Germany, and Poland as well as the
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148133119103897562 [km h  ]-145

Fig. 6. Maximum wind gusts (in km h−1) at different synoptic stations reported during the period from 00:00 UTC 17 January to 18:00 UTC
19 January 2007. Dots (crosses) delineate lowland (mountain) stations. Lowland stations possess an altitude lower than 800 m a.s.l. White
symbols denote stations where no wind gusts were observed or reported.

synoptic conditions at the cold front we suggest that the
strong variability of extreme wind gusts were associated with
a downward mixing of upper-level higher wind speeds to the
surface and/or the lateral spreading of convective downdrafts
caused by evaporating rain in the convective storms.

Both processes are related to the sudden decrease of low-
level static stability associated with the arrival of the cold
front and strengthen the maximum wind gusts beyond the
values that would result from the synoptic-scale pressure
gradient. For example Kyrill II’s cold front passed Linden-
berg between 18 and 19:00 UTC on 18 January 2007 and is
clearly seen in the hourly observations of the synoptic sta-
tion (Fig. 7; cf. also the strong radar echoes at 18:30 UTC
in Fig. 5). The passage of the cold front was associated
with a prominent temperature (dew point) drop of about 8◦C
(4◦C), strong precipitation (10.7 mm in one hour), a rise in
MSLP, and with a turn in the wind direction between 18 and
19 UTC. Moreover, wind gustiness peaked during the arrival
of the front and seems to be connected with thunderstorm ac-
tivity (cf. the present weather symbols in Fig.7). Addition-
ally, Fig.7 shows that the observed pre-and post-frontal wind
gusts at D̈usseldorf peaked at 104 km h−1 (56 kn), whereas
the maximum gust associated with the passage of the cold
front reached 144 km h−1 (78 kn). The observations imply
that there was no deep convection and convective rainfall at
Düsseldorf (Fig.7). In contrast to North-East Germany there

was no dry air above D̈usseldorf during the passage of the
cold front at about 17:00 UTC 18 January 2007 (cf. Fig.3i
and Fig.7). It is therefore suggested that deep convection
was suppressed in the south-western part of the cold front
due to a stable stratification of the middle and upper tro-
posphere. At this time, D̈usseldorf was located in the area
of the core of the strong polar jet stream (cf. Fig.2 and
Fig. 3h) and all the above mentioned facts point out that
the hurricane-force wind speeds at this station were proba-
bly caused by the downward mixing of upper-level higher
wind speeds. Hence, the maximum gust is a result of a
destabilisation of the lower troposphere during the passage
of the cold front. Unfortunately, no upper-air sounding at
the nearby radiosonde station Essen was performed at the
time of the cold front passage. A coincidence of the cold
front passage and an ongoing vertical sounding occurred,
however, at Larkhill (Great Britain; 51◦12′ N, 1◦48′ W) on
12:00 UTC 18 January 2007 and the above-mentioned desta-
bilisation of the near-surface layer can be illustrated in the
corresponding skew T-log p diagram displayed in Fig.4b.
The cold air behind the surface front has intruded the low-
est 3 km (below 700 hPa) and caused a dry neutral strati-
fication below 900 hPa and a wet neutral stability between
900 hPa and 815 hPa. This can be inferred from the inlay in
Fig. 4b that enlarge the details of the sounding in the lower
levels. Below 900 hPa the vertical decrease of temperature
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Fig. 7. Hourly surface observations from the synoptic station Lindenberg (Germany, 52◦22′ N, 14◦12′ E; WMO station number 10393) for
the period 06:00 UTC 18 January to 06:00 UTC 19 January 2007. Moreover, observations of present weather and maximum wind gusts are
displayed in magenta for D̈usseldorf (Germany; 51◦17′ N, 6◦47′ E; WMO station number 10 400). (top) Temperature (◦C; black line), dew
point (in ◦C; green line), and precipitation amounts (in mm; blue bars). (middle) Present weather (ww; upper part) and wind barbs (in kn;
lower part). (bottom) MSLP (in hPa; black lines) and maximum wind gusts during the preceding hour (in kn; Lindenberg: blue solid line,
Düsseldorf: magenta dashed line). The arrows at the bottom part are indicating the estimated arrival time of Kyrill II’s cold front (magenta:
Düsseldorf; blue: Lindenberg).

(solid black curve) is almost parallel to the dry adiabat (green
dashed line) and above this pressure level it matches the
moist adiabatic lapse rate (red dashed line) within the ob-
served stratocumulus clouds. As a consequence, no restoring
force acts on an air parcel that is forced to move downward
by mechanical turbulence or rain drop evaporation. Thus,
higher wind speeds in the upper part of the frictional layer
can easily be mixed down to the surface. Figure 4b also
reveals that above 700 hPa the subtropical air mass of the
warm sector of Kyrill II still existed over Larkhill and the
tropopause height showed a corresponding elevated value of
more than 11 km. The discussed mesoscale frontal char-
acteristics that augment the potential maximum gustiness
will be of particular relevance when assessing storm dam-
age in a future climate, since these mesoscale storm features
are not captured by the available regional climate models.

Finally, it should be mentioned that also the strong synoptic-
scale pressure gradient was leading to strong wind gusti-
ness. On 00:00 UTC 19 January 2007 Kyrill II’s bent-back
occlusion was leading to a strengthened pressure gradient
over East Germany (not shown). As a result many synop-
tic stations reported high maximum wind gusts also after
the passage of the cold front. The station of Lindenberg,
for example, observed a secondary peak of maximum wind
gusts of about 115 km h−1 (62 kn) six hours after the passage
of the cold front (Fig.7). Note that the area of a bent-back
front and cloud head may be associated with the occurence of
a sting jet, a meteorological phenomenon related with dam-
aging surface winds in the dry-slot region of extra-tropical
cyclones (e.g.,Browning, 2004; Browning and Field, 2004).
However, from the available information, the existence of a
sting jet cannot be verified in the case of Kyrill II.
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Table 1. Characteristics of historical Storm. Listed are: Storm: name of the storm; Date: date of the occurrence; gradP1: average MSLP
gradient over Box 1 (20◦ W–0◦ E; 45◦ N–60◦ N, cf. Fig. 8) (in hPa (100 km)−1); gradP2: average MSLP gradient over Box 2 (0◦ E–20◦ E;
45◦ N–60◦ N) (in hPa (100 km)−1); gradPmax: maximum MSLP gradient (in hPa (100 km)−1); Glat, Glon: location of the maximum MSLP
gradient; Pmin: minimum pressure (in hPa), LapP: maximum Laplacian of MSLP (in hPa (deg. lat.)−2); Llat, Llon: location of the maximum
Laplacian of MSLP; GP: number of NCEP-1 grid points over Continental Europe showing the exceedance of the long term 98th percentile
of daily maximum wind speed; Damage: associated raw damage (computed as described inKlawa and Ulbrich, 2003; Pinto et al., 2007a).
For more details see text.

Storm Date gradP1 gradP2 gradPmax Glat, Glon Pmin LapP Llat, Llon GP Damage

Daria 25 Jan 1990 0.84 0.52 1.73 60.0◦ N; 15.0◦ W 947.0 3.43 56.1◦ N; 2.0◦ E 96 1890.3
Herta 03 Feb 1990 0.78 0.72 1.72 52.5◦ N; 2.5◦ E 992.1 1.85 52.8◦ N; 5.6◦ E 52 249.0
Judith 08 Feb 1990 0.88 0.47 1.48 45.0◦ N; 12.5◦ W 977.4 1.41 58.1◦ N; 12.9◦ E 83 347.8
Vivian 26 Feb 1990 0.77 0.38 1.45 62.5◦ N; 7.5◦ E 947.7 2.38 57.9◦ N; 4.9◦ E 107 1386.1
Wiebke 01 Mar 1990 0.99 0.77 1.65 55.0◦ N; 2.5◦ E 975.3 1.48 53.1◦ N; 10.3◦ E 84 810.2
Anatol 04 Dec 1999 0.36 0.57 1.30 60.0◦ N; 10.0◦ E 957.7 3.37 57.5◦ N; 16.4◦ E 87 1209.6
Lothar 26 Dec 1999 0.13 0.44 1.00 45.0◦ N; 15.0◦ E 961.0 1.16 49.1◦ N; 0.7◦ E 73 1163.9
Martin 26 Dec 1999 0.30 0.53 0.95 47.5◦ N; 5.0◦ W 971.6 2.68 47.5◦ N; 1.4◦ W 89 2036.1
Jeanette 27 Oct 2002 0.35 0.32 1.32 45.0◦ N; 40.0◦ W 972.9 2.73 55.8◦ N; 4.6◦ E 87 1503.9
Kyrill 18 Jan 2007 0.48 0.69 1.49 55.0◦ N; 15.0◦ E 961.7 2.10 55.2◦ N; 20.8◦ E 127 4811.4

4 Comparison to previous storms

In order to compare Kyrill’s intensity and its associated sur-
face wind fields with other selected storms, we have com-
pared Kyrill’s track, MSLP characteristics, and associated
storm damage with the nine most intense, recent winter
storms since 1990. These storm events and related features
are listed in Table 1. The absolute minimum core pressure for
each storm (cf. Table 1, column 7) corresponds to the results
from the tracking algorithm (Murray and Simmonds, 1991;
Pinto et al., 2005), except for Lothar, for which the mini-
mum observed station value of 961 hPa is given. Lothar was
a small-size and fast-moving system, and both the NCEP-
1 and ERA-40 reanalyses underestimate its core pressure
significantly (e.g.,Ulbrich et al., 2001, their Fig. 1). As
is evident from the Table 1, Kyrill’s minimum MSLP of
962 hPa ranks only as the fifth lowest. Two of the five cy-
clones that occurred in January and February 1990, Daria
(alternatively known as the “Burns Day Storm”) and Vi-
vian had core pressure values below 950 hPa. In terms of
the Laplacian of MSLP, which is proportional to relative
vorticity and is an indicator of the intensity of the circula-
tion associated with a cyclone (cf.Murray and Simmonds,
1991), Kyrill’s value of 2.10 hPa (deg. lat.)−2 is only six
largest (cf. Table 1). The corresponding values for Daria
and Anatol, a cyclone that swept across the North and Baltic
Seas in early December 1999 and featured a minimum core
pressure of 958 hPa (cf. Fig.8d), are 3.43 hPa (deg. lat.)−2

and 3.37 hPa (deg. lat.)−2, respectively. Hence, the “circula-
tion/vorticity anomaly” associated with Kyrill was by far not
the strongest among the ten selected storms.

Clearly, and to a first order approximation, it is the pres-
sure gradient that determines the (geostrophic) wind speed
and associated damage and not the absolute pressure value.

Thus, not surprisingly, a typical characteristic of the most
strong winter storms is their occurrence in periods with an
anomalously high meridional pressure gradient over the east-
ern North Atlantic and Western Europe, as documented for
Kyrill in Fig. 1. However, the areal extents and inten-
sity of the pressure gradient will depend on the pre-existing
pressure gradient and the extent to which the cyclone fur-
ther tightens the surface isobars. To test this hypothesis,
we analysed the 15-, 9-, and 5-day averaged pressure gra-
dient anomaly before the “landfall” in Western Europe for
each of the storms listed in Table 1 with respect to the
1958–2005 reference period. Landfall is defined here as the
calendar day when the cyclone crossed the 10◦ W merid-
ian. For example, this means that since Kyrill crossed the
10◦ W meridian during 18 January 2007, the pressure gradi-
ent anomaly map was constructed for the period 9 to 17 Jan-
uary 2007. Even though results depend on the pre-storm av-
erage period and the history of cyclonic activity within it,
some consistent features regarding the magnitude and lo-
cation of the pressure gradient can be inferred. For ex-
ample, storm Lothar in December 1999 only had a very
weak MSLP gradient anomaly within the “East Atlantic”
and “Central European” regional boxes (Table 1) displayed
in Fig. 8a and the weakest maximum pressure gradient of
all ten winter storms (Table 1, see also supplementary elec-
tronic material, http://www.nat-hazards-earth-syst-sci.net/
9/405/2009/nhess-9-405-2009-supplement.pdf). This can
only partly be explained by the fact that a strong zonal jet
stream over the eastern North Atlantic Ocean was not ob-
served until three days before landfall. Lothar was a very
small storm and underwent explosive development close to
the European coastline (Ulbrich et al., 2001). Note that the
also “small-diameter” successor storm of Lothar, Martin, had
similar characteristics in terms of observed pressure gradi-
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Fig. 8. Pre-existing MSLP gradient, cyclone path, and associated surface winds for three storms over Europe: Daria(a–b), Anatol (c–d),
and Kyrill (e–f). Left panels show the pre-existing average MSLP gradient (in hPa (100 km)−1) for nine days before crossing the 10◦ W
longitude. Right panels show cyclone tracks and associated wind fields based on NCEP-1 reanalysis data. Black dots indicate the six-hourly
storm position. The green dots correspond to the position with lowest core pressures. The remaining dots show the fractional exceedance
of the 98th wind speed percentile for December to February 1958–2005 by the maximum surface winds observed during the storm passage.
The two boxes in (a) are used for the calculation of the MSLP gradients (cf. Table 1). For more details see text.

ents. On the other hand, the 9-day averaged pre-storm pres-
sure gradient anomaly for Daria was stronger than for Kyrill,
but the largest gradients were located over the North At-
lantic west of the British Isles and not exactly over Europe
like in the case of Kyrill (Fig.8). Further, the strongest
pressure gradient anomalies for Anatol, that had a similar
track across Europe than Kyrill (Fig.8d and f), were also lo-
cated around 0◦ W, but were of weaker magnitude (Fig.8c
and e). This is a clear indication of the role of the MSLP
gradient for the development of storm Kyrill. In order to
assess the integrative strength of the wind field and associ-
ated storm damage, we extracted the daily maximum sur-
face (10 m) wind speed from the gridded NCEP-1 reanaly-
sis data during the three-day periods when the investigated

ten storms crossed Europe. Lothar was an exception in that
it was followed about 24 h later by Martin and the observa-
tion window had to be cut down to 36 h to obtain the wind
speeds caused only by this storm. Next, the maximum storm-
related wind speed values at each grind point were normal-
ized with the corresponding 98th percentile of daily maxi-
mum local surface winds for the period December/February
1958/59–2004/05. The 98th percentile value in m s−1 is the
threshold above which only 2% of the surface wind speeds
are located in the reference period 1958–2005, and corre-
sponds to the minimum wind speed above which losses may
be expected (cf.Klawa and Ulbrich, 2003). It is evident
from Fig.8f that Kyrill affected a quite large area of Europe
with many grid points experiencing a 40% exceedance of the
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98th percentile of daily maximum wind speed. A compari-
son with some of the strongest storms in terms of core pres-
sure, Daria and Anatol (the latter possessing a similar track
and also affecting Eastern Europe) discloses that the area of
damaging winds associated with Kyrill is not only larger,
but also more intense regarding the overall percentage ex-
ceedance of the 98th percentile at the grid points. This find-
ing is corroborated by the last two columns of the Table 1.
The number of grid points (GP) at which the 98th percentile
was exceeded during Kyrill’s passage is by far the largest of
all ten recent strong winter storms. The prominence of Kyrill
is also striking when estimating the storm’s “raw damage”.
The latter is assessed by calculating the cube of the positive
difference between the observed maximum wind speed and
the 98th percentile of daily maximum wind speed for each
land grid point, weighting it with the corresponding popula-
tion density (as a proxy for the insured values in each area),
and summing it up for all grid points (cf.Pinto et al., 2007a,
Sect. 3.1). With respect to the “raw damage” values, Kyrill
is more than twice as strong as the next strongest storm Mar-
tin (Table 1).

Finally, Fig.8 enables a comparison between the degree of
the exceedance of the 98th wind speed percentile value and
the pre-existing pressure gradient anomaly, showing that the
former is maximised over the area of the more intense values
of the latter. This is suggestive of the notion that the largest
wind speeds and damages occur in the area where the passing
cyclone further tightens the ambient pressure gradients. We
conclude that one factor that leads to Kyrill’s large impact
is the strong background pressure gradient anomaly located
over Central Europe and stretching into Eastern Europe. This
finding may also help to assess the potential of damaging
winter cyclones in a future, anthropogenically changed cli-
mate. This aspect will be analysed and discussed in the next
section.

5 Climate change considerations

Climate change studies with the ECHAM5 suggest an en-
hanced frequency of storms tracking from the North At-
lantic Ocean into the North Sea and further into the
Baltic Sea at the end of this century. This is associated with
a more frequent eastward extension of the polar jet into Eu-
rope than under present climate conditions (e.g.,Pinto et al.,
2007b, 2009). These results agree with the IPCC 4AR (cf.
Meehl et al., 2007). The report concludes that it seems “more
likely than not” that extreme wind speeds in Northern Eu-
rope will increase. It shall be emphasized that ECHAM5 is
one of the GCMs included in the IPCC 4AR that is clos-
est to the ensemble mean in terms of the changes of storm
track activity (Ulbrich et al., 2008). Figure 9 shows the
Northern Hemisphere MSLP and MSLP gradient fields for
the control period (1970–1999) from the 20 C realisations as
well as the changes to the projected future climate (2070–

2099) taken from the IPCC A1B scenario. Figure 9c displays
a statistically significant enhancement of surface pressure
across the Mediterranean and a lowering around Greenland
and the Canadian Arctic. This in part corresponds to a north-
eastward shift of the Azores High and an enhanced Icelandic
Low (Fig. 9a). An enhanced NAO and a north-eastward shift
of its poles with increasing GHG forcing have been found
elsewhere (e.g.,Ulbrich and Christoph, 1999; Stephenson et
al., 2006; Pinto et al., 2007b). However, as shown here, this
is associated with a significant increase in the climatological
MSLP gradient field stretching from the Eastern North At-
lantic Ocean across the British Isles, the Southern North Sea,
and Denmark into the Southern Baltic Sea (Fig.9d). This
is exactly the area in which large parts of the tracks of
Kyrill, Anatol, and Daria are located in (Fig.8, right pan-
els). Thus, the published and results presented herein sug-
gest that a stronger polar jet over Western Europe may steer
more storms into the area of which some may have a stronger
impact due to a pre-existing, enhanced “background” pres-
sure gradient. These results are in line with the enhanced
frequency of wind storms and increased loss potentials over
Europe identified byLeckebusch et al.(2007) andPinto et al.
(2007a).

Hitherto, the majority of the published results on future
changes in storm frequency and intensity are based on out-
put from coarse resolution global climate models. In order
to expand research to regional details and impacts in Cen-
tral Europe, we used REMO (Jacob, 2005a,b) and COSMO-
CLM (Keuler et al., 2006; Keuler and Lautenschlager, 2006)
simulations nested into the ECHAM5 for recent climate con-
ditions (control period) and for the SRES A1B scenario.
These models are able to reproduce the climate character-
istics and interannual variability when forced with reanalysis
data (cf.Jacob et al., 2007; Jaeger et al., 2008; Roesch et al.,
2008). Maps for the 98th percentile of the daily maximum
wind speed for the control period (1970–1999) exhibit the
strong dependence of this parameter on the surface rough-
ness, i.e. the land use (not shown). However, since the sur-
face roughness is constant over the climate change simula-
tion period, the climate change signal for the A1B scenario is
assessed from the changes in the 98th percentile wind speed
value between 2070 and 2099 and the control period. The
COSMO-CLM shows an increase of the 9th percentile of the
daily surface maximum wind speed of 5–15% over most of
Europe (Fig.10a), thus indicating an enhanced risk of oc-
currence of wind storms. The largest values are found over
Benelux, Germany, and Poland. Over Northern Scandinavia
and parts of the Mediterranean, changes are small or even
of negative sign. The corresponding figure for the REMO
projection (Fig.10b) shows an enhanced risk of occurrence
of winter storms over Central Europe, particularly over the
North Sea and the Baltic Sea coast, as well as in parts of
North-Eastern Germany and North-Western Poland.
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based on a two-sided student t-test for monthly values, are coloured in (c) and (d). Areas higher than 1500 m have been omitted.

Even though the relative changes in REMO are smaller
when compared to COSMO-CLM, the absolute wind speed
increases are similar, since REMO simulates a higher
98th percentile for the present day climate (not shown).

Thus, not surprisingly, the dynamical downscaling
with REMO and COSMO-CLM corroborates the findings
achieved with the ECHAM5 studies (e.g.,Pinto et al.,
2007a), though with more regional details. The different
magnitude of the relative changes for REMO and COSMO-
CLM are similar to previous results obtained by other re-
gional climate models forced with the same GCM (e.g.,
Leckebusch et al., 2006).
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Fig. 10. A1B-based climate change signal (2070–2099 minus 1970–1999) for the relative differences (in %) of the 98th percentile of the
daily maximum surface wind speed (October to March). Results for COSMO-LM are shown in(a) and for REMO in(b). Non-significant
changes are in grey, whereas colours indicate significant (95th confidence level) regions based on a two-sided student t-test.

6 Summary and concluding remarks

The present study describes the synoptic evolution and some
meteorological impacts of the European winter storm Kyrill
that swept across Western, Central, and Eastern Europe be-
tween 17 and 19 January 2007. It aimed at elaborating on
synoptic and mesoscale environmental and storm features
that explain the intensity and large storm damage associated
with Kyrill. A particular aspect was the comparison to the
nine most intense recent winter storms since 1990 and how
a pre-existing MSLP gradient anomaly impacted on the ob-
served surface wind speeds. Output from a global climate
model and two state-of-the-art regional climate models has
been used to assess the intensity of extreme storms in an an-
thropogenically changed climate at the end of this century.

Kyrill appeared on a weather map over the Southern Mis-
sissippi valley about four days before it hit Europe. It un-
derwent an explosive intensification over the Western At-
lantic while crossing a very intense zonal jet stream. The
region is well known for frequent explosive cyclogenesis
(Sanders and Gyakum, 1980; Roebber, 1984; Sanders, 1986;
MacDonald and Reiter, 1988). A secondary cyclone devel-
oped near Kyrill I’s occlusion point and it is speculated here
that without this formation of a new cyclonic centre, Kyrill
would have slowed down and decayed over the North At-
lantic without affecting Europe. The strong zonal polar jet
stream steered Kyrill II not only towards Europe, but a su-
perposition of several favourable meteorological conditions
to the west of the British Isles likely caused a further slow
deepening of the storm when it started to affect Western Eu-
rope. Lothar in December 1999, for example, belonged to

another “type” of storms in that it crossed the strong Atlantic
jet stream and underwent an explosive development not un-
til it was close to “landfall” in Western Europe (Ulbrich et
al., 2001). Evidence is provided that a favourable alignment
of three polar jet streaks and a dry air intrusion over the oc-
clusion and cold fronts were causal factors in maintaining
Kyrill II’s low pressure very far into Eastern Europe. It is
pointed out that, over East Germany, the deep convection and
the resulting strong rainfall, as well as lightning activity dur-
ing the passage of the cold front were likely caused by the
upper-level dry air. Whereas the destabilisation of the lower
troposphere and the associated downward mixing of momen-
tum along the cold front seem to be a general mesoscale
mechanism to enhance Kyrill II’s surface winds, convective
downdrafts over East Germany may have further intensified
the gustiness locally.

Given the likely importance of the secondary frontal wave
cyclogenesis for the storm losses in Europe, a much more
detailed study of the formation of Kyrill II is desirable. As
pointed out inParker(1998), however, the incipient wave
grows as a mesoscale feature at low-levels involving bound-
ary layer dynamics. Thus a mesoscale model forced with
(re-)analysis data is the most promising approach to ob-
tain a deeper insight. The mesoscale modelling approach
is also mandatory to more quantitatively assess the roles of
the meteorological factors that maintained Kyrill II’s deep
core MSLP values deep into Europe. As pointed out byUc-
cellini (1990), forcing factors of cyclogenesis interact non-
linearly, over small areas, or over a limited period during the
storm development. Kyrill is also an exceptional example to
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study how mesoscale, anomalously intense convective storm
features in the vicinity of a cold front, not resolved in re-
gional climate models, and, even not, in many weather fore-
cast models, can considerably augment the peak gusts. In
this context, the consideration of the statistical relation of
observed MSLP gradients and low-level static stability vs.
the observed gustiness may help in operational forecasts and
climate change studies on future storm losses.

The detailed analysis of Kyrill and a comparison with pre-
vious storms suggest that the storm was embedded in an
anomalously strong, pre-storm MSLP gradient field and pos-
sessed an unusual swath width of gale force winds. This and
its deep penetration into Eastern Europe were among the fac-
tors that caused the large storm loss in Europe. Since some
of the meteorological factors associated with Kyrill, namely
a strong eastern Atlantic jet stream and a very humid and
warm air mass in the storm’s warm sectors (e.g.,Pinto et al.,
2009), as well as an enhanced pre-existing pressure gradi-
ent (cf. Sect.4) are projected to occur more frequently at the
end of this century, the frequency of occurrence of damag-
ing storms may be expected to increase in the future. Results
from one IPCC SRES A1B scenario realisations of REMO
and COSMO-CLM, respectively, unveil, among other re-
gional details, that also eastern parts of Central Europe could
experience a significant increase in storminess at the end of
this century. The credibility and uncertainty range of the re-
gional changes in surface wind speed shall be, however, ver-
ified with a multi-model, multi-ensemble approach, like the
one currently being pursued in the European Union Frame-
work 6 project ENSEMBLES. As discussed in Sect.4, Kyrill
is one of the hitherto few strong European winter storms that
impacted the economically evolving countries of Eastern Eu-
rope. Thus, a further diagnosis and the modelling of the
mesoscale features of Kyrill may also help to assess future
storm losses for the whole of Europe.
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