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Abstract. The Hamiltonian method is applied to the prob-
lem of tsunami generation caused by a propagating rupture
front and deformation of the ocean floor. The method es-
tablishes an alternative framework for analyzing the tsunami
generation process and produces analytical expressions for
the power and directivity of tsunami radiation (in the far-
field) for two illustrative cases, with constant and gradually
varying speeds of rupture front propagation.

1 Introduction

A tsunami is generated when the ocean floor abruptly de-
forms and vertically displaces overlying water. Generally
speaking, any strong disturbance of the ocean resulting from
seismic motions, asteroid impacts, volcanic eruptions, gas re-
leases, submarine landslides, etc. that displaces a large water
mass from its equilibrium position can be the source of a
tsunami. A number of publications review this topic exten-
sively (see, for example,Keating et al., 2000; Bryant, 2001;
Ward et al., 2003; Kanamory and Brodsky, 2004; Titov et al.,
2005; Harbitz et al., 2006; Wiegel, 2006; Gisler, 2008). The
physics of the process of wave generation by a propagating
deformation of the sea floor is rather transparent and can be
studied in linear approximation with a number of methods
(see, for example,Novikova and Ostrovsky(1979); Nosov
(1998) and the references therein). Often tsunami generation
is described by a piston mechanism of ocean floor motion.
Such a model assumes that a tsunami is generated as a result
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of a quick rise of the sea bottom occurring uniformly or non-
uniformly (Hatori, 1970; Murty, 1977; Tanioka and Satake,
1996) in the focal area of the earthquake. The water, pushed
upward from its equilibrium position, attempts to regain its
equilibrium under the influence of gravity and causes surface
wave propagation. While simple and convenient, the piston
mechanism has its limitations because it does not fully cap-
ture the entire set of complex tsunami characteristics (see, for
example,Tinti and Bortolucci, 2000; Tinti et al., 2001).

In this paper we apply the Hamiltonian method to the
tsunami generation problem, which is an alternative to the
traditional approach. Specifically, we analyze the radiation
effect caused by a long-duration ocean floor rupture front
propagation, in the far-field, for both constant and varying
rupture speeds.

We want to emphasize that typically it is the phenomenon
that is the focal point of research. Thus, most studies de-
scribe and analyze specific events, effects, or models. In this
paper, while considering a specific phenomenon, we focus
on dealing with the method rather than the phenomenon. We
aim to develop a methodology that is applicable to a broad
range of cases in a general way. To do so, we naturally start
with simple and somewhat idealized cases. However, once
the method is established, its ability to consider a variety of
circumstances should serve as a valuable tool for seismolog-
ical research.

The Hamiltonian method is one of the most advanced and
powerful analytical methods for working with problems in-
volving wave radiation and interactions. It became popu-
lar after the pioneering papers byZakharov and Filonenko
(1966) for surface waves applications, and now is frequently
used as an operational tool (see, for example,Lavrenov,
2003; Jansen, 2004). The description of versions of the
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approach in the general physical context of wave and vor-
tex motions can be found, for example, in books and re-
views by Goncharov and Pavlov(1993, 1997); Zakharov
and Kuznetsov(1997); Goncharov and Pavlov(1998, 2000,
2001, 2008) and the extensive bibliographies therein.

Our work was in part motivated by experimental data
showing that the rupture fronts of earthquakes (which when
occurring underneath the ocean generate a tsunami by de-
forming the ocean floor) propagate with varying speeds, and
with patterns not consistent with the piston model. Seismic
radiation data collected after large earthquakes have provided
vast material for mapping and numerically simulating earth-
quake rupture processes (Dahlen and Tromp, 1998). Data
from the 2004 Sumatra-Andaman earthquake (Ammon et al.,
2005) showed that the deformation of the floor surface prop-
agated with a speed which varied in magnitude and direc-
tion over an extended period of time (more than 10 min) and
great distance (∼1500 km)1. Data from the 2001 Kunlun,
China, earthquake showed rupture velocities exceeding the
shear wave speed, while the 1994 Bolivian earthquake’s rup-
ture speeds were only about one fifth of the shear wave speed
(Kanamory and Brodsky, 2004). Arial photography after the
Alaskan 1964 earthquake showed the most dramatic dam-
age on the ground aggregated along zigzaging trajectories
(Ivanov, 1991) as if the source of the earthquake (rupture
front) traveled underneath the surface with fast and direction-
ally varying velocity, resulting in a tangled destruction pat-
tern on the surface. The fact that rupture velocities range so
broadly means that the general theory describing the process
must be comprehensive enough to cover the entire spectrum.
The method explained in this paper possesses such capabili-
ties.

In order to capture the first-order attributes of the process
of tsunami generation and to illustrate the features of the
method, we consider two simple models where the deforma-
tion of the ocean floor travels for sufficiently long time with
(a) constant and (b) varying speed. The rupture front can be
viewed as a “moving source” generating waves. By mak-
ing this analogy, we place the problem of tsunami generation
into the framework developed for general physical problems
of wave generation by moving sources (Pavlov and Sukho-
rukov, 1985, 1987; Pavlov and Slabeycius, 1985; Ginzburg,
1996). We use the simplest approximation which is similar
to the “slender body” model (which in hydrodynamic equa-
tions approximates the real submerged body as a source with
fixed characteristics). Indeed, the general physical picture of
the radiated wave field generated by a moving ship or by a
moving (at long distances) ocean floor fault is qualitatively
the same (Sretensky, 1977). This is not surprising because
the problem involves the general physical phenomenon of
superposition and phasing of emitted waves. The difference

1Seehttp://mr.caltech.edu/media/PressReleases/PR12698.html
for an animation of the sea floor displacement and its evolution in
time and space, constructed based on the recorded seismic data.

between the ship and the fault is determined by the form-
factor structure of the boundary surface perturbation which
gives information about the stress. Here, we would like to
emphasize the fact that the radiated field forms not in the
point where the source is located, but is “assembled” from
the fields generated by all points along the entire trajectory
(Pavlov and Sukhorukov, 1985). Therefore, phase effects for
the waves superposing at the point of observation play the
most critical role.

The remainder of this short paper is organized as follows.
In Sect. 2 we define our model and method (the Hamilto-
nian approach). In Sect. 3, we apply the Green function
method with functional derivatives which allows us to ana-
lyze wave propagation, calculate wave characteristics and de-
rive the angular-spectral power of the radiation for a moving
source. In Sect. 4, we consider a model with a narrow floor
rupture moving rapidly with constant velocity. In Sect. 5, we
consider radiation from a localized rupture front propagating
with smoothly varying velocity. Section 6 summarizes the
results. Appendices A and B discuss made approximations
in more detail.

2 The Hamiltonian approach for surface waves

It is known (Zakharov and Filonenko, 1966; Goncharov and
Pavlov, 1993, 1998; Zakharov, 1999) that the potential mo-
tion of a fluid with free boundary is completely described
by the surface elevationη(x, t) and a velocity potential on
the surfaceψ(x, t)=φ(x, z=η, t), which are also canonical
variables. These quantities satisfy the equations

∂tη=
δH

δψ
, ∂tψ= −

δH

δη
. (1)

We assume the standard geometry of the model: the unper-
turbed fluid surface coincides with thex− y-plane, such that
the surface of the ocean is atz=0 and the non-perturbed
bottom is atz=D, the z-axis points vertically up and the
gravity accelerationg is directed vertically down. Symbol
δF [u]/δu(x, t) defines the variational derivative of a func-
tional with respect to fieldu(x, t). Here, we introduce the
Cartesian coordinate system,r=(x, z). The HamiltonianH
is the full energy of the fluid

H=

∫
dr [5(ρ)+ρgz+ρ

v2

2
]+H6≡H [ρ,∇φ]. (2)

Here, 5(ρ) is the internal energy of the fluid with den-
sity ρ, g is gravity acceleration,v is velocity of the fluid
particles. The termH6=ρσ

∫
dx[

√
1+(∇η)2−1] describes

surface energy when the surface tensionσ and the curva-
ture of surface are not neglected. The potential flow is
v=∇φ. The generalized density is defined by the expression
ρ[η]=ρ0θ(η−z)θ(z+d), were θ is the Heaviside function:
θ(s)=1 if s≥0 andθ(s)=0 if s<0. The functiond=d(x, t)
describes the bottom perturbations,η=η(x, t) characterizes
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the perturbed ocean surface. The Hamiltonian given by
Eq. (2) can be decomposed into the sumH=Hf+Hint, where
the first term is the field part of the Hamiltonian, and the sec-
ond describes the source (i.e. the interaction of the fluid with
the mobile part of the bottom). The field HamiltonianHf
can be presented by a power series expansion in field magni-
tudes:Hf=H2+H3+H4+... whereHn∼0(ηn). After transi-
tioning to surface variables, the HamiltonianH2 (describing
non-interacting surface waves) is expressed as

H2=
1

2

∫
dx

[
η(g+σ 0̂2)η+ψ0̂ tanhD0̂ ψ

]
. (3)

In the linear approximation, the equations are

∂tη=
δH2

δψ
=0̂ tanhD0̂ ψ,

∂tψ= −
δH2

δη
= − gη − σ 0̂2η. (4)

The term with the coefficient of surface tensionσ appears
when we transition to surface variables and take into account
the dynamical conditions at the free surface. Henceforth we
assumeρ=1. This decision implies that the dimension of the
Hamiltonian changes fromML2T 2 to L5T 2. The operator
0̂=

√
−1 is a linear integral (pseudo-differential) operator,

defined in Fourier space as

0̂η=

∫
dk

2π
|k|ηk e

ik·x, (5)

i.e., 0̂ acts on the exponent as0̂ eik·x
=|k| eik·x .

In terms of normal variables (Zakharov, 1999), the Hamil-
tonianH2 takes the form

H2=

∫
dk ωk aka

∗

k, (6)

The normal variables express the surfaceη(x, t) and the ve-
locity potential at the surfaceψ(x, t)=φ(x, z=η(x, t), t) as

η(x, t)=

∫
dk

2π

√
ωk

2gk
(ak+a

∗

−k) e
ik·x,

ψ(x, t)=

∫
dk

2π
(−i)

√
gk

2ωk

(ak − a∗

−k) e
ik·x . (7)

Here, ωk=
√
k gk tanhkD is the dispersion law for free

waves,k is the wave vector,k=|k| is the magnitude ofk,
D is the thickness of the water layer,gk=g+σk2, g is the
gravitational acceleration,σ is the surface tension coeffi-
cient. Capillary effects can be neglected when energy emis-
sion is concerned, since the energy-carrying component of
the surface wave is localized in the large-scale region of the
spectrum, i.e. when wave-numbers of the components are
small,k�

√
g/σ . However, capillary waves can play an im-

portant role when the “shock” surface wave forms. Also,
the presence of the capillary term allows for the mathemati-
cal convergence of certain integrals in the derivations we are

pursuing. Therefore, we will not omit this term right away in
our calculations2.

We can show3 that the Hamiltonian of interaction is

Hint= −
1

2

∫
dx φ(x,−D, t) ∂td(x − x0(t)). (8)

Here,d describes the ocean floor deformation traveling with
speedẋ0(t). The velocity potential is calculated at the non-
perturbed bottom because in the Hamiltonian we take into
account only the leading terms.

The structure of the Hamiltonian of interaction may be es-
tablished from simple qualitative reasoning even without de-
tailed calculations. The Hamiltonian has dimensionL5T −2.

The dimension of the integration is[
∫
dx...]=L2. The di-

mensions of the displacement of the ocean bottomd and of
the field variableφ are[d]=L and[φ]=L2T −1, respectively.
The first term in the power series expansion of the Hamilto-
nian functional has to contain these quantities to assure the
linearity of the problem. Thus, we may propose the follow-
ing structure

Hint∼

∫
dx φ(x, z, t)

∣∣∣∣
z=−D

L̂ d(x, t), (9)

whereL̂ is some linear differential operator acting on one of
the field variables and assuring the locality of the interaction.
Comparing the dimensions of the right and left parts, we find
thatL̂ is proportional to the partial derivative with respect to
time,∂t , and thus derive Eq. (8). A detailed analysis gives the
same expression to within a numerical coefficient of order of
one.

3 Power of radiation

The radiation intensity of waves (generated by a moving
source) on the surface of a perfect fluid can by calculated
with comparative ease if the equations of motion for the fluid
are written in the form

∂tak= − i
δH

δa∗

k

= − iωkak − i
δHint

δa∗

k

,

∂ta
∗

k=+i
δH

δak

=+iωka
∗

k+i
δHint

δak

. (10)

To describe the bottom-fluid interaction, we introduce the
Green functionG(t, t ′)=θ(t − t ′) e−iωk(t−t

′), which satisfies
the equation

∂tG+iωkG=δ(t − t ′). (11)

2The wavenumber domain of capillary waves is important for
observations from space using inverse scattering of centimeter ra-
diowaves from the excited ocean surface.

3The volume integral describing kinetic energy can be trans-
formed into a surface integral at the free surface and the perturbed
floor. The Hamiltonian of interaction, with the boundary conditions
taken into consideration, represents specifically this part.
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We can the rewrite Eq. (10) in integral form

ak(t)=e
−iωk t

∫
+∞

−∞

dt ′ θ(t − t ′)

[
− i

δHint

δa∗

k(t)

]
e+iωk t

′

. (12)

Using Eq. (12), we find the spectral density of radiated en-
ergy of surface waves:

Ek

∣∣∣∣
t→∞

≡ωkaka
∗

k

∣∣∣∣
t→∞

→

→ ωk

∣∣∣∣ ∫ +∞

−∞

dt ′ e−iωk t
′ δHint

δak

∣∣∣∣2. (13)

All information describing the radiation intensity is con-
tained in the Hamiltonian of interactionsHint.

The velocity potential is the solution of the problem1φ=0
with boundary conditionsφ|z=0=ψ and∂zφ|z=−D=0. It is
satisfied by the expression

φ(x, z, t)=

∫
dk

2π
ψ(k)

coshk(z+D)

coshkD
eik·x . (14)

Now we calculate the derivatives

δφ

δak

∣∣∣∣
z=−D

=
δ

δak

∫
dq

(2π)
(−i)

1

coshqD

√
gq

2ωq

×(aq − a∗
−q) e

iq·x
=

=
1

i2π

1

coshkD

√
gk

2ωk

eik·x . (15)

From here, the expression for the derivative corresponding to
a source traveling with uniform speedV follows as

δHint

δak

= −

∫
dx ∂td(x − V t)

δ

δak

φ(x, z, t)

∣∣∣∣
z=−D

=

=
i

2π

1

coshkD
f ∗

k

√
gk

2ωk

e+ik·V t . (16)

The parameterfk is the form-factor of the bottom perturba-
tion:

f ∗

k =

∫
dx′ ∂td(x′) e+ik·x′

. (17)

In this case, the spectral energy density of surface wave
radiation is

Ek=

=
gk

2(2π)2 cosh2 kD

∣∣∣∣ ∫ +∞

−∞

dt ′ fk e
−i(ωk−k·V )t ′

∣∣∣∣2. (18)

4 Model with a narrow ocean floor rupture

Now let us consider a specific expression for the deforma-
tion of the ocean floor. To obtain simple but transparent an-
alytical estimates, we consider the simplest model: a narrow
bottom deformation,l⊥ wide andεD deep, traveling with

uniform rupture speedV along thex−axis. Thus we assume
the shape of the vertical displacement of the ocean floor to
be

d(x, t)=D

[
1+ε δ(1)(

y

l⊥
) θ (1)(

V t − x

l‖
)

]
. (19)

Here,l⊥ is the characteristic transversal width of the rupture,
l‖ is its characteristic longitudinal scale indicating the slope
of the rupture depth (from 0 to−εD), δ(1)(ξ) is the Dirac
function indicating that floor deformation is narrow,θ (1)(ξ)
is the Heaviside function, i.e.∂ξ θ (1)(ξ)=δ(1)(ξ). The use of
the Dirac function in the estimates is admissible when the
spectral maximum of emitted surface waves is in the low-
frequency range. This assumption will be supported by the
calculations that follow. The parameterε is the dimension-
less (normalized with respect toD) magnitude of the floor
perturbation. It can be a function of time in some cases
when it is necessary to take into account the finite duration
of the faulting process. For example,ε can be replaced by
ε → ε exp(−t2/τ2) or by ε θ(t) exp(−t/τ ), whereτ is a
characteristic temporal scale of the process duration.

If ε is constant, from Eq. (19) we find

∂td=εD
V

l‖
δ(1)(

y

l⊥
) δ(1)(

x − V t

l‖
)=

=εDV l⊥ δ
(1)(y) δ(1)(x − V t). (20)

Having

∂td (x
′)=εDV l⊥ δ

(2)(x′), (21)

we find from Eq. (17) that

f ∗

k =εD V l⊥ → |fk|
2
=(εD)2V 2l2

⊥
. (22)

Here,f ∗

k is real, however, in general the form-factor is de-
fined to within a phase factor. Collecting all the formulae,
we find the expression for the spectral energy density of sur-
face wave radiation:

Ek

∣∣∣∣
t→∞

≡ωkaka
∗

k

∣∣∣∣
t→∞

→

→ ωk

∣∣∣∣ ∫ +∞

−∞

dt ′ e−iωk t
′ δHint

δak

∣∣∣∣2=
=

ωk

(2π)2
gk

2ωk

|fk|
2

cosh2 kD

∣∣∣∣ ∫ +∞

−∞

dt ′ e−i(ωk−k·V )t ′
∣∣∣∣2. (23)

By computing the square of the integral modules in Eq. (23),
we obtain an expression equal to(2π)2δ2(a). Here, δ2(a)

is the square of delta function with argumenta≡ωk − k·V .
FollowingLandau(1965), we can rewrite the square of delta
function asδ2(a)=δ(a)×(2π)−1 limT→∞

∫
+T/2
−T/2 dt e

iat by
decomposing one of the delta functions into the Fourier in-
tegral. Because of the delta function presence, the argument
in the exponential can be written as zero, i.e. the exponen-
tial gets replaced by 1. Thus,δ2(a)=δ(a) limT→∞

T
2π , i.e.
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E∼δ(ωk −k·V ) limT→∞ T , but the infinite timeT vanishes
when we consider the energy radiated per unit of time,Ė.
This result has a simple physical meaning: if a body trav-
els infinitely long, it radiates an infinite amount of energy,
but the energy radiated per unit of time (power) is obviously
finite and physically meaningful. The spectral power of radi-
ation then becomes

Ėk

∣∣∣∣
t→∞

=
gk

4π

|fk|
2

cosh2 kD
δ(1)(ωk − k·V ). (24)

The process of radiation is therefore similar to the
Cherenkov effect: Radiation takes place when the argument
of the Dirac function is zero. In acoustics, this phenomenon
has the following interpretation: When physical objects with-
out eigenfrequencies move uniformly through homogeneous
elastic media, the only possible form of acoustic radiation
is the emission of Mach waves which appear at ultrasonic
source velocities. A similar effects is observed in hydrody-
namics (wave generation by ships,Sretensky, 1977).

We substitute Eq. (22) into the obtained expression and
find that

Ėk

∣∣∣∣
t→∞

=
1

4π
(εD)2l2

⊥
V 2 gk

cosh2 kD
×

× δ(1)(
√
k gk tanhkD − kV cosθ). (25)

The coshkD term favors long waves that contribute the
most to the tsunami. Integrating with respect tok (since
dk=dθ dk k) from 0 to ∞, we obtain the angular radiation
power

P(θ)=
1

4π
(εD)2l2

⊥
V 2

∫
+∞

0
dk k

gk

cosh2 kD
×

× δ(1)(
√
k gk tanhkD − kV cosθ). (26)

Here,θ is the angle between the velocity vector of rupture
propagation and the direction towards the point of observa-
tion. The expression is not zero if the argument of the Dirac’s
function is zero,√
k gk tanhkD − kV cosθ=0. (27)

Let k(m)(θ) be solutions of Eq. (27). Finding the roots of the
equation can be visualized using a graph of functiony1(x)

when Eq. (27) is rewritten in the equivalent form

y1(x)≡

(
1+

x2

µ2

)
tanhx

x
=M2 cos2 θ≡y2. (28)

Here x=kD, µ=kmD, km=
√
σ/g, M=V/c, c=

√
gD.

Near the origin functiony1(x) starts with y1(0)=1. It
reaches its minimum valuey1(xmin)=y1,min at xmin be-
causeµ�1, and then increases tending asymptotically to
y1(x)=x/µ

2. Valuexmin is of order ofµ, i.e.kmin∼km. (For
pure water, it corresponds to the phase speed of capillary-
gravity waves of ordercm∼23 cm/s.) Thus, valuesx>xmin
correspond to capillary waves, whilex<xmin to gravity

Fig. 1. Phasing condition for Cherenkov radiation.

waves. The intersection of functiony2 (which is not x-
dependent and is shown by the horizontal line on the graph)
with y1(x) determines the roots of Eq. (27). It is obvious
that if y2≡M

2 cos2 θ>1, only (and always) capillary waves
are generated; ify1,min<M

2 cos2 θ<1, both capillary and
gravity waves are generated; ifM2 cos2 θ<y1,min (i.e.M is
relatively small), no spectral wave components are excited.

The latter case deserves special commentary. It is impor-
tant to distinguish between the radiation of surface waves
(which decay with distance as 1/

√
r whenr�k−1) and the

deformation of the free surface over the source (which de-
cays faster than 1/

√
r and thus is limited only to the near

field). The fact that in the range of smallM no real valued
solutions fork exist means that no radiation is emitted, even
though the local deformation always exists.

To explain the physical essence of the radiation effect,
consider Fig.1 (from Ginzburg(1996) where we corrected
a small typo). Figure1 illustrates a point source mov-
ing from pointA towards pointB with constant velocity
V . At point A the source generates waves with broad
spectral composition. Each component is described by the
phase speed in the mediumck. By the time the source
reaches pointB at distanceV t , the cylindrically diverging
wave from pointA propagates a distanceckt . Next look
at line A − D in the direction of the wave vectork of a
field spectral component. The phase difference1ψ(ω) be-
tween cylindrical waves (asymptotically decaying with dis-
tance as∼ exp(−iωkt+ikr)/

√
r) generated at pointsA and

B, and observed at “infinity” along angleθ to the trajec-
tory of the body, is given by the expression1ψ=k(DA −

CA)=k(V t cosθ − ckt) becauseψB(ω)=ψC(ω). At large
distances, we can neglect the difference betweenrA∞ and
rB∞ when considering amplitudes, but for the phase relation-
ships this distinction is essential. The waves do not cancel
each other at infinity if1ψ=k(V cosθ − ck)t�π. For any
t, this condition is realized only for cosθ=ck/V, i.e. when
V>ck>cmin. For surface wavescmin∼23 cm/s.
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The presence of the Dirac function permits us to calculate
the integral (26) and to obtain an analytical expression for the
angular power radiation4:

P(θ)=
V 2

4π
(εD)2 l2

⊥
×

×

2∑
m=1

gk

cosh2 kD
|∂k

√
k−1 gk tanhkD|

−1
∣∣∣∣
k=k(1,2)(θ)

(29)

In real conditions the parameterµ=kmD�1 and factor
cosh2 k(2)D' exp(−2kmD)�1 effectively suppress the cap-
illary wave component contribution to the radiation power.
This signifies that formally we can writeσ=0 for all expres-
sions and simplify estimations. In this case only one solution
of Eq. (27) exists,gk → g, and the angular power of radia-
tion is thus given by the simple expression

P(θ)=
1

2π
(εD)2 l2

⊥
(gD)3/28(cosθ)=P08(θ), (30)

where

8(cosθ)=M2 x3/2
√

tanhx

|
1
2 sinh 2x − x|

∣∣∣∣
x=x(cosθ)

(31)

is the dimensionless power and may be called directivity
function. Parameterx satisfies the condition of resonance
(27) whengk is replaced withg, and therefore

cosθ=
1

M

√
tanhx

x
(1+

x2

µ2
)'

1

M

√
tanhx

x
≤ 1 (32)

for x�µ. For x=kD�1, a solution of Eq. (32), exists only
whenM≥

√
tanhx/x : for smallx�1, M≥1, and for large

x�1, M≥1/
√
x. Note that these estimates are valid in case

of k�km.

Numerical calculation of the radiation direction for values
M≡V/

√
gD=1.1, 2, 3, and 4 are shown in Fig.2.

Let us analyze expressions (31) and (32). The function
8'3M2 x−1 for small valuesx�1. For large valuesx�1,
the function is exponentially small,8∼4M2x3/2e−2x, i.e.
it can be neglected because the principal contribution to
the radiated energy comes from the domain nearx�1.
A quick approximation is thus8'3M2x−12(1 − x).

On the other hand, for smallx, from Eq. (32) we have
M2 cos2 θ'1−

1
2x

2, i.e.M2 cos2 θ∼1.We obtain hence that

x'
√

2(1 −M2 cos2 θ)'
√

1 −M4 cos4 θ. These simple es-
timates let us obtain a quick approximation

P(θ)'
3

2π
(εD)2 l2

⊥
(gD)3/2 ×

M2

√
1 −M4 cos4 θ

2(1 −

√
1 −M4 cos4 θ). (33)

4It is useful to check the dimensions of the left and right parts of
the expression. We have for the left part[P(θ)]≡[Ė]=L5T−3 and
for the right part[V 2

] [D2
] [l2

⊥
] [gk] [|∂kcph|

−1
]=L2T−2

× L4
×

LT−2
× T L−2

=L5T−3

Fig. 2. Normalized power (directivity) of a tsunami,
8(θ)=P(θ)/P0, as a function of the angleθ (measured from the di-
rection of the rupture front propagation) forM≡V/

√
gD=1.1,2,3,

and 4.

In this expression – which is correct for the shallow-water
approximation only –D is the averaged ocean depth,εD is
the characteristic magnitude of the ocean floor perturbation,
g is the gravitational acceleration, and therefore,

√
gD=c is

the speed of the surface waves (the tsunami),M=V/c is a
parameter similar to the Mach number in acoustics: the ratio
of source velocity and tsunami speed. IfV�c, a “shock”
surface wave can form in the direction ofθts= arccosM−1.

5 Radiation from a rupture front propagating with
smoothly varying velocity

Expression (13) for the spectral density of energy radiation,

Ek|t→∞=ωk

∣∣∣∣ ∫ +∞

−∞

dt ′ e−iωk t
′ δHint

δak

∣∣∣∣2, (34)

for arbitrary rupture front velocities is written as

Ek=

=
gk

2(2π)2
|fk|

2

cosh2 kD

∣∣∣∣ ∫ +∞

−∞

dt ′ e−i(ωk t
′
−k·x0(t

′)

∣∣∣∣2. (35)

Here,fk is the form-factor of the “frozen” vertical bottom
velocity in the frame of reference which travels with ve-
locity v(t)=dx0(t)/dt , which may be varying with time.
The form-factor (17) is an experimentally measured quantity.
Eq. (35) can be written asEk∼|Lk|

2 where

Lk=

∫
∞

−∞

dt eiωk t−ik·x0(t) (36)

is the amplitude of the process (or the amplitude of the ra-
diative field of surface waves).Lk is determined by the
regime of the rupture front propagationx0(t). The direc-
tion of vectork represents the direction ofk-surface wave
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mode radiation. Eq. (36) can be considered as the Fourier
component of the functionv(t)exp[ik·x0(t)]. This leads to
some general conclusions. For example, ifx0(t) is an analyt-
ical function (all of its derivatives are continuous), then func-
tion v(t)exp[ik·x0(t)] is analytical too. Therefore, based on
the Titchmarsh’s theorem (Titchmarsh, 1937) about Fourier
transform properties,Lk tends to zero faster than any integer
power ofω with an increase of frequencyω.

Let us produce the exact analytical result. Consider a rup-
ture front moving with the velocity changing according to the
following law

v(t)=
v2+v1

2
+

v2 − v1

2
tanh

t

τ
. (37)

In Eq. (37), when timet → −∞, velocityv(t) → v1. When
time t → +∞, velocity v(t) → v2. Transition fromv1
to v2 occurs smoothly during the time interval of orderτ .
Corresponding to Eq. (37) position of the front,x0(t), is

x0(t)=
v2+v1

2
t+

v2 − v1

2
τ ln cosh

t

τ
. (38)

Substituting Eqs. (37) and (38) into Eq. (36), we find that

Lk=

∫
∞

−∞

dt ei(ωk−k·v)t cosh−i
1
2 (k·1v)τ t

τ
≡τF (a, b). (39)

Here,a=(ωk − k·v)τ is the pulsation of the surface wave
corrected for a Doppler factor, the parameterb=(k·1v)τ/2
describes the rate of front velocity change,1v=v2 −

v1, v=(v2+v1)/2. If 1v → 0, the integral degenerates into
a delta-function

F(a,0) → 2π δ(a). (40)

The integralF(a, b) can be calculated analytically:

F(a, b)=

∫
∞

−∞

ds
eias

coshib s
≡2ib

∫
∞

0
dt
t i(a+b)−1

(1+t2)ib
=

=2ib−10(
1
2(ib − ia))0(1

2(ib+ia))

0(ib)
, (41)

where0(s) is Euler’s Gamma-function5. Using the identity
|0(iy)|2=π/y sinhπy with =y=0 (Abramovitz and Stegun,
1964; Gradshtein and Ryzhik, 1971), we can find the exact
analytical expression for the radiated spectral power of sur-
face waves for the parametersa, b 6=0 and analyze limiting
cases that present physical interest:

|F(a, b)|2=π
b sinhπb

(a2 − b2) sinhπ2 (a − b) sinhπ2 (a+b)
. (42)

Figure 3 shows the distribution|F(a, b)|2 ∝ Ek for
−4.5<a<4.5 and−5<b<5. If v1=v2 (b=0), radiation ex-
ists only for conditiona=0.Whenb 6=0 (i.e. the rupture front

5 Integral (41) should be understood as a limit of the expression
limε→0 2ib+ε−10(1

2(ib+ε − ia))0(1
2(ia+ib+ε))/0(ib+ε), i.e.

when small dissipation is introduced into the wave system.

Fig. 3. Distribution of the dimensionless spectral energy of surface
wave radiation|F(a, b)|2. The parametera=(ωk−k·v)τ is the pul-
sation of the surface wave corrected for Doppler factor, parameter
b=(k·1v)τ/2 describes the rate of front velocity change. To reveal
the cross-section of the distribution, the magnitude is sliced off at
|F(a, b)|2=2.0.

changes its velocity direction or magnitude), the main part of
waves is emitted in directions defined bya'±b. The spec-
trum falls off exponentially at the periphery of the distribu-
tion. This characteristic is common for relatively smooth tra-
jectories.

6 Conclusions

In this paper we applied the Hamiltonian method, as an al-
ternative to the traditional consideration, to the problem of
tsunami generation by a moving rupture front. We focused
on the methodology rather than the specific phenomenon.
We aimed to develop the methodology that is applicable to
a broad range of general cases.

Obviously, an earthquake generates all types of waves –
longitudinal and transverse waves in the crust, volume waves
in the ocean, surface waves both in the ocean and the atmo-
sphere, internal waves, etc. The traditional tsunami consider-
ation – which focuses on the large-scale surface waves in the
approximation of an incompressible fluid – is just an indi-
vidual case of the general problem of wave generation in the
full system which includes elastic Earth layer, liquid ocean,
gaseous atmosphere, and even ionosphere (see, for example,
Pavlov and Sukhorukov, 1987). The Hamiltonian method-
ology is capable of dealing with the complete general prob-
lem because it uses the method of “propagator” – an operator
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which translates the original “cause” into the resulting “ef-
fect”. By definition, the propagator (the Green function) con-
tains all the necessary information about the medium via a
dispersion relation. Since the method describes the entire
system at once, one of the obvious advantages is that the
principle of causality does not get violated. The other advan-
tage is that the approach automatically solves for all types
of waves generated in the system by an earthquake. (Math-
ematically, this is accomplished by solving for the poles of
the propagator – the Green function – which determines all
dispersion branches. Then the full Hamiltonian includes the
sum over all the branches. Because the densities of the
Earth’s crust, the ocean and the atmosphere differ greatly,
the motion of the solid component appears practically in-
dependent.) But obviously the energy input into the differ-
ent wave frequency domains varies greatly. For large spatial
scales and low phase velocities the principal channels of ra-
diation are the surface waves (tsunami) and internal waves.
This does not mean, however, that other types of waves do
not originate. They are also generated (Nosov, 2000; Gisler,
2008) but their intensity is small relative to the intensity of
the tsunami, and their spectral domain is localized at higher
frequencies.6

We illustrated how the Hamiltonian method is applied
to derive analytical expressions describing two measurable
characteristics – directivity (8(θ)) and power (P0) – of
tsunami radiation caused by traveling perturbations of the
ocean floor. To derive workable expressions, we considered
two simple cases: a source moving with uniform velocity
and a source moving with smoothly varying velocity. Only
the form-factor of the bottom deformation,fk, and the ve-
locity of the floor rupture propagation,v(t), are needed to
be input into the expressions to determine the power and the
directivity of the tsunami. In the idealized case of a uni-
formly moving rupture, the principal energy contribution to
radiation comes from the large-scale components of the sur-
face wave field whose scale is defined by the horizontal scale
of bottom deformation. In the framework of this approxi-
mation, intensive radiation of long waves takes place if the
speed of the ocean floor deformations is sufficiently great,

6While small in absolute terms, the hydro-acoustical fields re-
sulting from ocean floor earthquakes can still be sufficiently intense.
There is evidence that some animals are able to hear fast acoustic
waves. Thus, for example, it has been observed that jellyfish move
away from the shore and into the open ocean before tsunami arrival
(Shuleikin, 1968). In contrast, deep-water fish apparently rise up to
surface. Tsunami catalogs have repeatedly mentioned that tsunami
waves threw out deep-water fish onto the coast (Soloviev and Go,
1975). Numerous animals – elephants, buffalo, flamingos, rats, and
others – have also been observed becoming agitated and running
away from the shore onto higher ground many minutes, or even
hours, prior to tsunami arrival. http://news.nationalgeographic.
com/news/2005/01/0104050104tsunamianimals.html and http:
//www.pbs.org/wnet/nature/episodes/can-animals-predict-disaster/
video-full-episode/268/

i.e. approximatelyM>1 (V>
√
gD). If the Froude number

is large,V≥
√
gD, as a large-scale surface wave, a tsunami

is generated essentially close to the direction of the propagat-
ing rupture, in the angle range 0≤ θ ≤ θmax≡ arccosM−1

with maximum nearθmax. WhenV�
√
gD, radiation takes

place essentially quasi-perpendicularly to the propagation of
the rupture front. This last case is probably the most typical
in geophysical conditions (D∼4 km, g∼10 m/s2 ), where the
speed of propagation of the radiated tsunami

√
gH∼200 m/s

is significantly smaller than the rupture speed, which is com-
parable to crustal seismic shear-wave speeds (V∼2.5 km/s).
Obviously, the statement about radiation directivity is correct
only when we neglect dispersive small-scale effects and op-
erate in the framework of linear shallow-water theory. Small-
scale (low-energy capillary or gravity-capillary) waves are
generated for any values ofM. It is these components that
are responsible for the fine structure of the radiated sur-
face ”shock” wave. The apparent non-convergence of the
shallow-water approximation in the vicinity of the resonance
(M → 1) is suppressed by several factors, not considered in
this note: (small) existing dissipation in the real system (bot-
tom friction, diffusion on bottom non-homogeneities), dis-
persive effects which violate the phasing conditions between
superposing emitted waves, finite duration of the process
that “smoothes” the delta-function, and others. Even though
the rupture propagates faster than sound waves in water, the
“shock” surface wave does not form because such a wave is
a superposition of all emitted waves (including capillary and
capillary-gravity waves) which originate from the entire tra-
jectory of the source (Pavlov and Sukhorukov, 1985).

In conclusion, the analytical results produced in this pa-
per can be used by experimental or numerical researchers.
Thus, Eq. (33) can be verified directly using experimental
data. One can account for the finiteness of the process dura-
tion by replacing the delta-function in Eq. (33): πδ(1ω) →

τ/[1+(τ1ω)2] with ε → ε exp(−t/τ )θ(t).
The exact analytical solution found for the special case of

smoothly varying trajectories can be easily modified to the
bounded time-spacial domain and serve as a useful bench-
mark for testing numerical models. This is accomplished by
setting finite limits in Eq. (20). Then the delta-function trans-
forms into a “spread” delta-function. But if the duration of
the process is much longer than the characteristic period of
the generated waves, the difference between the two is not
significant and the overall tendency – the directivity of radi-
ation – will be captured correctly.

Appendix A

Validation of incompressible ocean assumption

When is the incompressible ocean assumption valid in con-
sideration of wave processes?

Nat. Hazards Earth Syst. Sci., 9, 217–227, 2009 www.nat-hazards-earth-syst-sci.net/9/217/2009/

http://news.nationalgeographic.com/news/2005/01/0104_050104_tsunami_animals.html
http://news.nationalgeographic.com/news/2005/01/0104_050104_tsunami_animals.html
http://www.pbs.org/wnet/nature/episodes/can-animals-predict-disaster/video-full-episode/268/
http://www.pbs.org/wnet/nature/episodes/can-animals-predict-disaster/video-full-episode/268/
http://www.pbs.org/wnet/nature/episodes/can-animals-predict-disaster/video-full-episode/268/


V. I. Pavlov et al.: Tsunami generation: Hamiltonian description 225

Let us formulate a qualitative criterion for when fluid can
be considered incompressible (we pattern our derivation
partially afterLandau(1965); Landau and Lifshitz(1987)
and add estimates for the non-stationary process). The
continuity condition ∂tρ+div ρv=0 can be written as
div v= − (ρc2)−1dp/dt if the evolution process is ad-
mitted adiabatic (entropys of mass unit is constant).
Here, the partial derivative of pressure,p, with respect
to fluid density, ρ, defines the sound speed in fluid,c:
c2

=∂ρp|s . The full derivative with respect to time is given
by dp/dt=∂tp+v·∇p. The magnitude of the flow velocity
is V, and characteristic variations of field variables in space
and at time, realized at the characteristic scalesL and T ,
are defined as1V, 1p, etc. (It is important to distinguish
V and 1V .) Now we can evaluate the second term in
the continuity equation. We obtain| − (ρc2)−1dp/dt | ∼

(ρ0c
2)−1 max(1p/T , V 1p/L)∼1p/ρ0c

2 max(1/T , V/L).
Here, the expression max(x, y) denotes that a maximal value
is chosen from the pairx and y. Another equation – the
momentum conservation equation – permits to evaluate
1p. In fact, the equation−ρ−1

∇p=∂tv+(v·∇)v gives
the estimate1p/ρ0L∼ max(1V /T , V 1V /L). From
here, we find that 1p∼ρ0L1V max(1/T , /, V/L).
From these two expressions, it follows that
|−(ρc2)−1dp/dt |∼Lc−21V max(1/T 2, V 2/L2). On
the other hand,|div v|∼1V /L. Comparing the left and right
terms in the continuity equation, divv= − (ρc2)−1dp/dt ,
we can conclude that the second term can be neglected
when1V /L �L1V /c2 max(1/T 2, V 2/L2), i.e. L2/c2

max(1/T 2, V 2/L2)= max(L2/c2T 2, V 2/c2)�1.

This expression produces the desired answer: a fluid can
be considered incompressible when simultaneously the flow
velocity (i.e., the amplitude of the vibration velocity of liq-
uid particles, not the speed of the wave) is small with respect
to the sound speed,V 2

�c2, and when characteristic space
and time scales satisfy the conditionL2

�c2T 2. In this case,
instead of the exact continuity condition, one can use the ap-
proximation divv=0.

For tsunami and other seismic-type periodical wave pro-
cesses, velocities of fluid particles are typically small,V�c.
The first condition is then satisfied. The second condition,
which can be rewritten in formL2/T 2

�c2, physically sig-
nifies that if in the process of wave generation, wave modes
of spatial scaleL are excited, they are characterized by the
time scaleT (L) following from the dispersion relationship
for these modes. Thus, the relationshipL/T defines the
phase velocity for this type of waves,cph, and the condi-
tionL2/T 2

�c2 makes transparent physical sense: perturba-
tions of scaleL propagating with smaller speedcph(L) than
the sound speed,cph(L)�c, can be considered as pertur-
bations propagating in incompressible fluid. This is always
valid in case of a tsunami for which the speed of propagation
cph(L)'

√
gD�c regardless of the velocity of the traveling

source.

Appendix B Nonlinear effects

In this paper we considered, in the linear approximation, ra-
diative effects caused by a propagating rupture front under-
neath the ocean. However, when the amplitude of the ra-
diated waves is sufficiently large, or when the waves have
traveled sufficiently large distances, accumulated nonlinear
effects have to be taken into account. In the framework of
the formulated method, these nonlinear effects are captured
in the evolution equations by the (non-zero) HamiltonianHint
which describes wave interactions and field excitation. The
presence ofHint leads to the appearance of additional terms
in the wave equation.

To illustrate the point, let us consider the manifestation
of nonlinear effects in the framework of a slowly varying
wave train for the surface displacement which is described
by Eq. (7)

η(x, t)=

∫
dk

2π

√
ωk

2gk
(bke

−iωk t+b∗

−ke
+iω−k t )eik·x . (B1)

Here, ωk=
√
k gk tanhkD is the dispersion law for free

waves,k is the wave vector,D is the thickness of the water
layer, gk=g+σk2, g is the gravitational acceleration,σ is
the surface tension coefficient. The normal variablesbk, b

∗

k
satisfy the nonlinear equations

∂tbk= − i
δHint

δb∗

k

, ∂tb
∗

k=+i
δHint

δbk

, (B2)

which result from Eq. (10) and whereHint includes both
terms describing wave interactions and terms describing the
field excitation. Suppose that the conditions of field for-
mation are such that the significant contribution comes only
from a small range of wave-numbers and frequencies neark0
andω0 corresponding to the carrier wave. Then the surface
displacement, Eq. (B1), can be written as

η(x, t)'e−i[ω0t−k0·x]
×√

ω0

2g

∫
dκ

2π
(bke

−i[(ωk−ω0)t−κ ·x]

+c. c.(k → −k), (B3)

specifying a wave train with a local (envelope) amplitude of

A=

√
ω0

2g

∫
dκ

2π
bke

−iψ . (B4)

Here,κ=k−k0, ψ=(ωk −ω0)t−κ ·x. Because the wave in-
teractions are weak but non-negligible (Hint 6=0), the normal
amplitude of an individual wave componentbk is a slowly
varying function of time. Therefore, the rate of change of the
local amplitude is

∂tA=

√
ω0

2g

∫
dκ

2π
[ḃke

−iψ
− i(ωk − ω0) bke

−iψ
]. (B5)

Since the wave spectrum is narrow, frequencyωk can be ex-
panded aboutk0, giving

ωk − ω0=κi(∂kiω)0+(1/2)κiκj (∂ki∂kjω)0+... . (B6)
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Having in mind that

∂iA=i

√
ω0

2g

∫
dκ

2π
κi bk e

−iψ , (B7)

and ∂2ω/∂ki∂kj=(vg/k)(δij−kikj/k
2)+(v′

g/k
2)kikj ,

Eq. (B5) for the envelope simplifies to

(∂t+vg∂x)A+i
v′
g

2
∂xxA+i

vg

2k0
1⊥A=

= − i

√
ω0

2g

∫
dκ

2π

δHint

δb∗

k

e−iψ . (B8)

Here,vg=(∂kω)0 is the group speed,v′
g is the derivative of

the group speed module with respect tok, the first two terms
on the left hand side of the equation represent the envelope
propagation along thex−axis with the group speedvg, the
next terms on the left represent the effects of linear longitudi-
nal and transversal dispersion about the carrier wave-number
and frequency with the finite but small spectral band-width.
All terms in the left part of the equation describe only lin-
ear propagation effects. All information about interactions
and excitation is contained in the final term of Eq. (B8) for
which ḃk={bk, Hint}≡ − iδHint/δb

∗

k 6=0 where the bracket
defines the functional Poisson bracket. Calculations of the
functional derivative of typeδHint/δb

∗

k (expressed in terms
of A, A∗) for a specific model can be accomplished using
standard procedures.

The advantages of the Hamiltonian approach for wave
and vortex dynamics are now well-established (see for
exampleGoncharov and Pavlov(1997, 1998, 2008) where
a numerous bibliography is given). In particular, for wave
processes in Hamiltonian description, specific features of
the medium are fully contained in the dispersion relation; all
versions of perturbation theory are considerably simplified
and standardized; the results of calculations obtained for
a particular medium are easily interpreted and assigned
physical meaning. One of the consequences of the Hamil-
tonian approach is that the integro-differential evolution
equations are expressed in a standard form for the so-called
normal variables(a, a∗) which are related to the “natural”
physical variables via Fourier’s transformations. The general
structure of these nonlinear equations is the same for waves
of different physical nature in nonlinear dispersive media.
From these evolution equations for normal variables, one
usually derives somewhat simpler integro-differential equa-
tions (called “simplified equations”) for auxiliary variables.
The simplified equations usually serve as a starting point for
the study of wave instabilities, long-time wave evolution,
derivation of transfer equation for spectrum of random wave
field, and for many other applications.

Edited by: S. Tinti
Reviewed by: two anonymous referees
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