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Abstract. PREVIEW is an European Commission FP6 In-
tegrated Project with the aim of developing, at an European
level, innovative geo-information services for atmospheric,
geophysical and man-made risks. Within this framework, the
Landslides Platform Service 2 (forecasting of shallow rapid
slope movements) has developed an integrated procedure for
the forecasting and warning of distributed shallow landslid-
ing to be used for civil protection purposes.

The Service consists of an automated end-to-end forecast-
ing chain which uses data from a probabilistic downscaled
short-term rainfall forecast, soil saturation estimates and me-
teorological radar outputs. The above data are entered into
a hydro-geological model that makes use of an infinite slope
approach to calculate the distributed Factor of Safety over
the entire basin. All outputs, and much of the input data, are
shown on a WebGIS system so that end-users can interac-
tively access and download data. A distinctive feature of the
service is the use of an innovative soil depth model for pre-
dicting the distributed thickness of the regolith cover within
the basin, which is one of the most important parameters con-
trolling shallow landslide triggering.

The service was developed in a pilot test site in NE Italy,
the Armea basin. Validation makes use of two rainfall events:
one that occurred in 2000 and a smaller, more recent event
(2006) that caused fewer landslides. Rainfall data have been
used to compute a distributed factor-of-safety map that has
been overlaid onto the landslide inventory. Instead of a tra-
ditional validation approach based on the number count of
correctly identified landslides, we carried out an alternative
procedure based on the landslides area that gave outcomes
which, for this preliminary stage of the research, can be con-
sidered promising.

Correspondence to:S. Segoni
(samuele.segoni@unifi.it)

1 Introduction

The research described here is partially the result of the work
carried out within the PREVIEW (PREVention, Information
and Early Warning, pre-operational services to support the
management of risks) project, an initiative funded within the
EU Sixth Framework Programme (FP6) with the aim of de-
veloping innovative geo-information prototype services for
atmospheric, geophysical and man-made risks to be applied
at a European scale. The Landslides Platform is part of the
Geophysical Cluster and comprises of two prototype ser-
vices: monitoring of deep-seated, slow-moving landslides
(Service 1) and forecasting of shallow rapid slope move-
ments (Service 2). This work focuses on the results achieved
within the development of Service 2.

The main objective of the service was to develop an in-
tegrated procedure for the forecasting and warning of dis-
tributed shallow landsliding to be used for civil protection
purposes. The service combines advanced techniques and
tools from different fields including meteorology, hydrology,
geomorphological and geotechnical modelling, remote sens-
ing and GIS.

Advanced meteorological forecasting techniques were
employed to overcome the limits of traditional approaches.
Traditional warning systems, based only on rainfall obser-
vations, do not leave enough time to adopt appropriate pro-
tection measures against fast phenomena. This concept has
been elaborated by different authors (Siccardi, 1996; Ferraris
et al., 2002; Siccardi et al., 2005; Bartholmes and Todini,
2005) with reference to flash floods and holds even more
strongly when rainfall induced shallow landslides are con-
cerned. Therefore, the challenge is to develop tools able
to anticipate what meteorological and hydrological condi-
tions may trigger these landslides before the precipitation
event arrives. To succeed, two major sources of uncer-
tainty have to be addressed: the uncertainty associated with
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the meteorological forecast and the uncertainty at the inter-
face between meteorology and hydrology (Castelli, 1995;
Droegemeier et al., 2000; Hostetler, 2005).

The uncertainty related to meteorological forecasting of
precipitation (meteorological uncertainty) can be dealt with
by using meteorological ensemble forecasts. With this ap-
proach, for each forecasted event, an ensemble of possible
scenarios of precipitation is produced as an input for the hy-
drological modelling (see e.g. Siccardi et al., 2005). The
probabilistic forecasts are based on the assumption that the
initial conditions of the model and the physical parameteri-
sations are affected by an intrinsic error which increases with
the lead time of the forecast.

The hydrological modelling determines how rainfall inter-
acts with soil, changing its physical properties. This inter-
action is fundamental to model where and when landslides
will occur. In this context, hydrological uncertainty is con-
sidered negligible when compared to meteorological uncer-
tainty with reference to the time and space scales of concern
in this work.

Another relevant source of uncertainty is the exact defini-
tion of the spatial organisation at basin scale of soil proper-
ties such as geotechnical parameters and soil thickness. In
this paper, this uncertainty will be reduced using a geomor-
phological based model to consider soil thickness as a ran-
dom space variable and differentiating geotechnical parame-
ters for each geological unit encountered in the study area.

In this work, the term shallow landslide or soil slip refers
to a slope movement in a soil mantled landscape of gener-
ally limited size that involves a 1–2 m thickness of soil and
is characterized by a rapid onset and runout. According to
the classification of Cruden and Varnes (1996), most of these
events would appropriately be described as “complex, very
rapid, wet, earth slides, debris flows”. This designation also
takes into consideration the fact that, after the initial move-
ment, the soil structure often collapses and the slide trans-
forms into a debris flow as material is entrained along the
flow path. The absence of precursory warning signs, the un-
certainty in accurately predicting where the slide will occur,
the rapid runout and the capability to increase in volume all
make these phenomena very hazardous from a civil protec-
tion standpoint.

Many studies have shown that most shallow landslides are
triggered by the infiltration of water into a slope (Camp-
bell, 1974; Caine, 1980; Johnson and Sitar, 1990; Wiec-
zorek, 1996; Iverson, 2000). However, this knowledge has
not yet led to a reliable forecasting of temporal occurrence,
i.e. when the landslide will be triggered. For this reason,
many approaches focus more on predicting where a land-
slide will take place rather than on the timing. Suscepti-
bility maps, for example, generally consider quasi-static pa-
rameters such as slope gradient and curvature, soil thickness
and permeability to provide an empirical indication of the
tendency of slopes to landsliding (Soeters and van Westen,
1996; Aleotti and Chowdhury, 1999; Guzzetti et al., 1999;

Catani et al., 2005). This type of approach, however, is not
very helpful in alerting civil protection authorities or other
stakeholders to when a potential damaging event could oc-
cur. The use of rainfall triggering thresholds to determine
when soil slips are likely to occur, on the other hand, is able
to provide a statistically-based temporal indication of land-
slide occurrence on a threshold-alert basis and a large body
of literature exists on the topic (Caine, 1980; Innes, 1983;
Cannon and Ellen, 1985; Wieczorek, 1987; Larsen and Si-
mon, 1993; Glade et al., 2000; Gabet et al., 2004; Guzzetti et
al., 2008). When the rainfall threshold is exceeded during a
storm, an alert can be sent out by authorities to provide warn-
ing for potential landslides. The drawback of this method is
that the spatial prediction is very coarse; usually these alerts
are generically raised for large regions without further indi-
cations of where landslides are more likely to occur. This
method has the advantage of being relatively simple to im-
plement. However, if both a spatial and a temporal forecast-
ing of shallow landslide occurrence are desirable, the most
effective approach is to use deterministic models that couple
water infiltration schemes with a one-dimensional slope sta-
bility analysis (Montgomery and Dietrich, 1994; Wu and Si-
dle, 1995; Montgomery et al., 1998; Pack et al., 1998; Borga
et al., 1998; Burton and Bathurst, 1998; Baum et al., 2002;
Casadei et al., 2003; Crosta and Frattini, 2003; Simoni et al.,
2008). If the rainfall characteristics of the triggering event
are known, these models become useful tools for modelling
where and when shallow landslides are likely to occur at a
basin scale. Starting from the first attempts, such numerical
physically based models have now evolved towards very ac-
curate computation schemes (see e.g. Iverson 2000; Casadei
et al., 2003; Simoni et al., 2008). However, most of them
(e.g. TRIGRS, Baum et al., 2002 or GEOtop-FS, Simoni et
al., 2008) are only capable of evaluating slope stability after
the occurrence of a rainfall event when all the weather data
are already available, thus, it cannot be used in real time dur-
ing the evolution of a rainstorm. Moreover, software of this
kind use, as input precipitation datum, a single rainfall inten-
sity value to be uniformly applied to the whole studied area.
This approach does not allow the spatial variability of a rain-
storm to be taken into account, while the use of distributed
rainfall maps, like those derived by radar measurements, can
greatly improve the result of a distributed soil stability simu-
lation (Crosta and Frattini, 2003).

One of the next logical steps in the evolution of these mod-
els, is the coupling with weather forecasts which will make
them valuable tools for predicting possible shallow landslide
generating events with a lead time sufficient to provide alerts
to authorities and the local population (Keefer et al., 1987;
Aleotti, 2004; Schmidt et al., 2008). PREVIEW-Landslides
Service 2 follows this approach, providing an experimental
operative platform for a real-time forecasting network. This
completely automated end-to-end chain is composed of a me-
teorological model (which, properly downscaled, provides
short term high resolution rainfall forecasts), an hydrological

Nat. Hazards Earth Syst. Sci., 9, 2119–2133, 2009 www.nat-hazards-earth-syst-sci.net/9/2119/2009/



S. Segoni et al.: Real-time forecasting network for shallow landslides 2121

Fig. 1. The Armea valley (outlined in red). The test site is limited to the mountainous mid and high portion of the basin.

model (which, in turn, computes a distributed soil saturation
map using radar rainfall maps as input) and a geotechnical
model, whose output is a factor-of-safety map to be used for
early warning or for civil protection purposes.

2 Test site

2.1 Geographic setting

The test site is located in Liguria, a region in NW Italy south
of the Alps (Fig. 1, top right corner).

Meteorological conditions change at a local and regional
scale, due to localized storm cells or to regional cyclonic con-
ditions. The latter is the case when storms move from the
Alpine–pre-Alpine sectors to the Tyrrhenian coast. Mean an-
nual precipitation ranges from 750–1250 mm in the western
to 1350–1850 mm in the central and eastern parts of the re-
gion.

Due to the geographical location and to the morphologi-
cal and geological setting, landslides are frequent in Liguria.
According to the Italian archive of historical information on
landslides and floods, 1806 landslide events damaged 1233
localities during the period 1800–2001 in the four Provinces
of the Liguria Region. The historical information reveals
that damaging events are most frequent in the rainy season,
during the period September through December, in all four
Provinces. Landslides are prevalently represented by soil

slips, soil slumps and soil slip-debris flows. These landslides
cause economic losses and sometimes casualties. They dam-
age agriculture, settlements, infrastructures and pose threats
to the safety of people. Soil slip-debris flows are gravity-
induced mass movements and are one of the most hazardous
natural phenomena. Their considerable hazard potential is
related to the abundance of susceptible areas and the high
velocity of the movements. A peculiarity of some failures
affecting the area is represented by the presence of old, dry
stone walls used to retain soil for agricultural purposes and
now completely covered by colluviated material. In general,
shallow landslides can be triggered by rainstorms of high in-
tensity and short duration or by prolonged rainfall of moder-
ate intensity.

2.2 Armea valley

The studied area corresponds to the middle and high portion
of the Armea basin, a 33 km2 wide mountain district charac-
terized by a very high energy of relief, with steep slopes and
deeply incised valleys (Fig. 1). Altitudes range from a mini-
mum of 73 m a.s.l. to a maximum of 1298 m a.s.l. while slope
gradient, extracted from a 5 m resolution DEM, has a mean
value of 26◦. From a geological point of view, the area is oc-
cupied by Cretaceous Flyschs made up of mainly sandstone
and marlstone. Limestones are present as well and a tectonic
window lets Eocenic sandstones outcrop in the northern por-
tion of the area.
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Figure 3. Architecture of the forecasting chain. 930 

Fig. 2. Debris flows(a) and earth flow(b) from the November 2000
event and two of the superficial landslides triggered on 8 December
2006 in the Armea basin(c) and(d).

The area under investigation has been affected by several
rainfall-induced landslide events in the last years. In Novem-
ber 2000, a high-intensity winter storm hit the coast of Lig-
uria. Damage was particularly severe in the Imperia Province
where landslides caused three fatalities and severely dam-
aged the infrastructures, some private homes, the agriculture,
and the flower industry. Landslides were most abundant at
Ventimiglia, near San Remo, and in the Armea and Argentina
valleys (Fig. 2). Soil slips were also reported near Mentone,
in France. After the event, 1024 rainfall induced landslides
were recorded in an area of about 500 km2. Landslides trig-
gered by the high-intensity rainfall were both shallow and
deep seated. Shallow landslides were mostly soil slips mo-
bilized into debris flows. In many cases they travelled long
distances (up to 1.5 km in the Armea valley), involving con-
siderable volumes of material.

More recently (8 December 2006), another severe rainfall
event struck the Armea valley triggering several rapid, shal-
low landslides (Fig. 2). This last episode was less destructive
than the previous one but, nevertheless, wounded a person
and damaged infrastructures, agricultural areas and assets.

3 Methodology: an end-to-end forecasting chain

In the PREVIEW-Landslides Service 2 the meteorological,
hydro-geological and geomorphological modellings were in-
tegrated in an end-to-end chain aimed at forecasting and pro-
viding distributed Factor of Safety maps relative to rainfall
events with enough lead-time to allow public administrations
to undertake safety measures. The various steps, described in
the following sections, are logically connected since the out-
put of a modelling is the input of the following one (Fig. 3).
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Fig. 3. Architecture of the forecasting chain.

3.1 High resolution rainfall

Because of the problems of scales outlined in the introduc-
tion, the service needs to represent the rainfall spatial patterns
and temporal development with the highest possible detail,
both with regard to observed rainfall and forecasted one. In
the service, high resolution rainfall fields observed from me-
teorological ground-based radar and high resolution rainfall
forecast by means of a stochastic downscaling procedure are
used to feed the hydro-geological models which represents
the core of the system.

3.1.1 Radar rainfall maps

Observations of intense precipitation events at small spa-
tiotemporal scales are a crucial element both for develop-
ing procedures for stochastic downscaling and for provid-
ing high-resolution fields to be used to derive soil conditions
(e.g. soil moisture).

Meteorological radars are able to reliably detect the spa-
tiotemporal pattern of the observed precipitation field but are
not completely satisfactory in estimating the correct precipi-
tation amounts being an indirect measure. On the other hand,
rain gauges, due to direct measurements, provide a better es-
timate of the point precipitation amounts but lack informa-
tion on precipitation spatial structure and organization.

To overcome such limitation, it is possible to use radar-
derived rainfall maps that account for the precipitation mea-
sured by rain gauge networks. This is done through algo-
rithms that allow for correcting radar-measured precipitation
fields by using rain gauge measurements. There is a great
number of publications about the theme of radar-rain gauge
adjustment, various algorithms have been designed and some
operationally implemented (Tonelli et al., 2002; Cuccioli,
2004; Goudenhoofdt et al., 2009; Vincendon et al., 2009);
in any cases the use of geostatistic has been introduced to
make more sophisticated methodologies and to improve rain-
fall estimation (Krajewski, 1987; Velasco-Forero et al., 2008,
2009).

In this work, we use an algorithm that combines the
uniform range dependent adjustment, by which the bias is
removed from radar estimates, and the spatially varying
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adjusting method, by which radar measurements can be ad-
justed to fit individual gauge observations (Koistinen and
Puhakka, 1981; Alberoni and Nanni, 1992). However, the
method used is quite simple to implement and it has been
used in different contexts, for example at ARPA-SMR, Me-
teorological Service of Emilia Romagna (Italy) (Alberoni et
al., 1992) or in Michelson’ (2000); moreover, it does not
need great computational resources. The authors consider the
proposed algorithm suitable for applications in a real-time
operational framework, however, the introduction of differ-
ent methodologies for radar gauge adjustment could be taken
into consideration in future developments.

In the definition, the proposed method consists of an
anisotropic adjustment factor for each precipitation structure
observed by the radar. This factor is composed of

– a range-dependent component, which depends on the
distance between the precipitation structure and the
radar,

– a rain-gauge dependent component, that depends on
the rain-gauge observations used to constrain the radar-
measured precipitation field.

Multiplication of the adjustment factor field and the original
radar field produces the corrected radar field.

3.1.2 High resolution rainfall forecasts

Intense rainfall events are one of the main factors that trig-
ger surface landslides. Procedures for issuing early warn-
ings to the population require the knowledge of the precip-
itation field down to scales of a few square kilometres and
tens of minutes. Current operational practice relies heavily
on the use of Limited-Area Meteorological Models (LAMs)
that, despite the increase in resolution (now up to 10 km2

in some operational configurations), provide reliable precip-
itation forecasts on scales of about 102–103 km2 and a few
hours (Rebora et al., 2006a). A gap, thus, exists between the
scales resolved by limited-area meteorological models and
the scales required for properly modelling the landslide pro-
cess. An option to fill the scale gap and to obtain small-scale
rainfall estimates is based on the use of stochastic models for
rainfall downscaling.

A stochastic disaggregation algorithm is capable of gener-
ating a small-scale fluctuating field from a smoother rainfall
distribution on larger scales. In principle, this approach pro-
vides precipitation fields that should simultaneously satisfy
the large-scale constraints imposed by meteorological fore-
casts (e.g., the expected average rainfall intensity) and are
consistent with the known statistical properties of the small-
scale rainfall distribution (Rebora et al., 2006b).

A downscaling model, suitable for operational use in a hy-
drometeorological forecasting chain, should be simple, ro-
bust, computationally fast and linked in a clear way to the
large-scale prediction.

In past years, several stochastic models for rainfall down-
scaling have been proposed (for a review on disaggregation
model types, see Ferraris et al., 2003a). All available dis-
aggregation models have been proven to score fairly well
in reproducing the small-scale statistical properties observed
for precipitation (Ferraris et al., 2003a). However, linking
these models with the features of the large-scale fields is not
easy. Many downscaling procedures, currently available for
operational purposes, account only for the total precipitation
predicted by the LAM, while some other models are based
on CAPE (Convective Available Potential Energy) predic-
tions (Perica and Foufoula-Georgiou, 1996; Venugopal et al.,
1999), while other information provided by the meteorologi-
cal model are not preserved.

In this project, a downscaling procedure, able to account
for the reliable features of the meteorological forecasting,
will be used. Its parameters can be directly derived from the
large-scale field with no need for calibration.

Ferraris et al. (2003a, b) have shown that the multifrac-
tal properties of radar-measured rainfall fields are compatible
with those obtained from a nonlinearly transformed autore-
gressive process. Starting from these results, a new down-
scaling model has been developed. This procedure is called
RainFARM, Rainfall Filtered AutoRegressive Model, and it
was proposed by Rebora et al. (2006b) to which we refer for a
complete description and further details. The RainFARM be-
longs to the family of algorithms called metagaussian models
(see, e.g. Guillot and Lebel, 1999) and it is based on a non-
linear transformation of a linearly correlated process. The
model is able to generate small-scale rainfall fields that take
into account not only the total amount of precipitation pre-
dicted by the meteorological model but also its (linear) cor-
relation and the position of the large-scale rainfall patterns.

Here the model is used to produce an ensemble of high-
resolution precipitation forecasts starting from the most re-
cent precipitation prediction produced either by Ensemble
Prediction Systems (EPS) or by Limited area Ensemble Pre-
cipitation System (LEPS) or deterministic LAM forecasts.

For each forecasted precipitation field, RainFARM pro-
vides 100 high-resolution fields on a spatial domain of
448 km by 448 km and for the whole temporal extension
of the forecast run, at a resolution of 1.75 km in space and
10 min in time.

3.2 Hydro-geological methods

A further step in forecasting rapid shallow landslides occur-
rence requires a hydro-geological simulation aimed at de-
picting how rainfall influences soil moisture over the stud-
ied area. This behaviour is derived by a complex nonlin-
ear process that includes a large number of components at
different spatial and temporal scales, such as the geological,
geomorphological and vegetational characteristics of the hill-
slopes, the properties of the infiltration process, soil moisture
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re-distribution, the interplay of erosion and deposition, and
the spatiotemporal structure of the precipitation fields.

This service provides the soil moisture conditions of a hill-
slope within a catchment as a basic element of the landslides
triggering model.

A minimum set of thematic data is needed in order to build
a physically based model for hydro-geological simulations
able to reproduce soil moisture conditions of the hillslopes
of a basin. These data regard land use, soil properties, to-
pography and spatial data on geology and geomorphology.
Therefore, the characterization of the study area, in terms of
soil properties and soil thickness, is a crucial step.

3.2.1 Soil depth

Although landslides triggering can be often caused by rain-
fall, many other factors influence slope stability, such as
slope morphometry and the physical properties of the soil
itself (thickness and mechanical resistance among the most
important). The former can be easily derived from an accu-
rate DEM of the area, while the latter requires more attention
because of their complex spatial autocorrelation structure.

From this point of view, a distinctive feature of Preview
Landslide Service 2 is the use of a spatially variable soil
thickness as an input for the landslide forecasting tool. Sev-
eral studies have shown that soil thickness is one of the most
important parameters controlling shallow landslide initiation
(Johnson and Sitar, 1990; Wu and Sidle, 1995; Van Asch et
al., 1999). Even if there are many methods to estimate soil
depth at discrete measurement-points and some able to cope
with slope-scale estimates, no effective models have been
proposed so far to predict soil thickness over sites as large
and as geologically heterogeneous as the Armea catchment.
Therefore, at present, when this parameter is needed in basin
scale modelling, a constant value (inferred from a few in situ
measurements) is often used. This is an extreme simplifica-
tion, since soil thickness shows a very high spatial variability
(Selby, 1993; Birkeland, 1999; Taylor and Eggleton, 2001).
Some authors have proposed using spatially distributed soil
thickness schemes based on simple correlations between soil
depth and morphometric attributes (slope gradient or eleva-
tion are the most used) (Saulnier et al., 1997; Salciarini et al.,
2006). Such methods, however, despite being easily applica-
ble, are not reliable at the basin scale since the correlation
between the used morphological parameter and soil depth
is not constant in space and is in turn conditioned by other
factors (lithology, vegetation, soil water, climate, human ac-
tivity, etc.) (Gessler et al., 2000; Saco et al., 2006; Segoni,
2008).

To use the soil thickness as a spatially variable input to
the slope stability computation, a recently proposed model
called GIST (Geomorphologically Indexed Soil Thickness)
was used. GIST is an empirical model that can produce
distributed soil thickness maps at catchment scale with a
high spatial resolution (5 m in this work); it uses cheap and

easily available data and gives a major importance to geo-
morphological and geological factors (Segoni, 2008; Segoni
and Catani, 2008; Catani et al., 2009). The model links soil
thickness to gradient, curvature and relative position within
the hillslope profile. While the relationship with gradient and
curvature reflects the kinematic stability of the regolith cover,
allowing greater thicknesses of soil over flat and concave ar-
eas (Heimsath et al., 1999; Braun et al., 2001), the distance
from the hill crest (or from the valley bottom) should instead
account for the position of the considered soil unit within the
soil catena (Carson and Kirkby, 1972; Conacher and Dalrym-
ple, 1977; Moore et al., 1993). This last parameter is funda-
mental: points having equal gradient and curvature can have
very different soil thickness due to their different position
along the hillslope profile. To be applied, this model requires
a few computations to be carried out in a GIS system and a
geomorphological survey aimed to recognize the soil catena
typical of the hillslopes and to acquire soil thickness mea-
sures needed for the model calibration (Segoni, 2008; Catani
et al., 2009).

The obtained soil thickness map (5 m resolution) is shown
in Fig. 4 and a high dependence on bedrock lithology and on
the relative slope position is clearly detectable. In fact, a gen-
eral tendency of the soil to thicken downvalley is noticeable
and sharp discontinuities are met at the boundaries between
very different geological units. Both trends match with field
observations. In particular, the shallowest soils are met in the
calcareous lithotypes (as they usually outcrop at divides and
because they undergo a slow pedogenesis), while the highest
thickness values are situated in down-valley debris accumu-
lations.

In order to validate the results, the soil thickness was
measured at 91 sample points during the field survey.
The comparison between the expected (calculated by the
GIST model) and observed (measured in the field) soil thick-
ness measures reveals that the overall performance of the
model is quite satisfactory: the mean absolute error is 0.28 m,
with a 0.27 m standard deviation. If we consider the accuracy
needed in basin scale modelling and the fact that soil thick-
ness in the Armea Creek catchment varies from 0 to 3 m, this
accuracy can be considered acceptable. The highest point er-
rors are a small number and in their vicinities or in analogue
positions correct estimations are achieved as well. These
outcomes suggest that the largest errors are uncorrelated and
might be generated by local isolated errors in the estimation
of independent variables. For this reason it is quite easy to
automatically detect and eliminate such outliers: if we con-
sider the four largest point errors as anomalous data and we
remove them from the sample point population, the mean ab-
solute error is reduced to 0.23 m with a 0.17 m standard de-
viation.

Nat. Hazards Earth Syst. Sci., 9, 2119–2133, 2009 www.nat-hazards-earth-syst-sci.net/9/2119/2009/



S. Segoni et al.: Real-time forecasting network for shallow landslides 2125

3.2.2 Initial soil moisture

The initial soil moisture condition of hillslopes is a crucial
factor in determining the activation of soil slips as a conse-
quence of an intense rainfall. Initial soil moisture conditions
combine with the real-time rainfall to determine the stability
conditions of the soil.

Because of the simplicity of the stability model used in this
work, which do not account for the soil moisture evolution
especially as far as the medium/long term is concerned, it is
necessary to use alternative ways in order to determine and
update the initial conditions of the soil at catchment scale.

Given the difficulties associated with estimating the spa-
tial distribution of soil moisture from point measurements
on one side and from satellite observations from the other,
soil moisture is often estimated from hydrological models
(Mancini and Troch, 1995; Bolognani et al., 1996) and this
work makes no exception to this tendency.

Published hydrologic models vary in the level of detail
they use in representing the physical system and temporal
variations of the driving forces. Some of the important dif-
ferences among the several published hydrologic models are:
(i) the computation of evapotranspiration; (ii) the partition-
ing between infiltration and runoff; (iii) the temporal defini-
tion of evapotranspiration demand and precipitation; (iv) the
computation of vertical and lateral redistribution; and (v) the
number of soil layers used (Schmugge et al., 1980; Singh,
2002).

Two different philosophies affirmed themselves in mod-
elling soil moisture maps at catchment scale. The first one
makes use of SVAT (Soil Vegetation Atmosphere Transfer)
models (e.g. Arnold et al., 1993, 1995, 1998; Neitsch et al.,
2002a, b). This family of models concentrate on the repre-
sentation of the vertical fluxes and are often implemented in
1-D configuration. The second one refers to fully distributed
continuous hydrologic models (e.g., TOPMODEL, Beven et
al., 1995). These models include the schematization of hor-
izontal and vertical fluxes, but, often, they do not solve ex-
plicitly the energy balance and make use of closure models
for the computation of the evapotranspiration term. Both ap-
proaches show advantages and drawbacks.

In this work, a continuous distributed hydrological model
has been used that tries to merge the two above mentioned
approaches: the C-DRiFt model (Gabellani, 2005; Delogu,
2008).

The model solves explicitly both the continuity equation
and the energy balance in a distributed scheme, using well-
known simplifications. It uses a modified Horton method
to simulate the infiltration process (Gabellani et al., 2008)
and considers the soil a porous medium schematized as a
reservoir with two parameters:Vmax andf0 (Gabellani et al.,
2005). The first represents the soil-water capacity expressed
in millimetres (mm), the latter is the initial infiltration capac-
ity for a dry soil expressed in millimetres per hour (mm/h).
Both parameters are a function of soil type and soil use. For
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Fig. 4. Soil thickness map obtained by means of the GIST model.

the energy balance the model uses the widely used approxi-
mation called “force-restore equation”, to explicitly allow for
the computation of evaporation and transpiration without the
need of empirical closure models (Dickinson, 1988; Ren and
Xue, 2004). These schematizations allow the quantification
of the partitioning of precipitation water into infiltration and
runoff and regulate the hypodermic flow and the recharge of
deep water, where vertical and lateral distribution are man-
aged in a distributed model. In this way, a dynamic descrip-
tion of the soil moisture state is possible for each pixel in
which the basin is discretized (Giannoni et al., 2000, 2005;
Gabellani, 2005 for details).

Results of the simulations are hourly maps of soil moisture
content for each pixel within the target area. The soil mois-
ture content is expressed as a degree of saturation defined
asV (t)/Vmax whereV (t) is the actual soil-water content at
time t andVmax is the soil retention capacity. This quantity
in an essential input for the geological model of soil slips
triggering.

3.2.3 Soil stability model

The last element of the forecasting chain is the soil stability
model, with its aim at computing the Factor of Safety on a
pixel by pixel basis over the entire area. For this purpose, a
modified version of the infinite slope formula, formerly pro-
posed by Skempton and Delory (1957), has been adopted and
applied in a distributed way in the Armea basin:

FS=

(
c′

γ z

)
+

(
cos2θ −

u
γ z

)
tanφ′

sinθ cosθ

Where:
FS is the Factor of Safety (see Sect. 3.3 for details),
z is soil thickness, provided by the GIST model
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(cf. Sect. 3.2.1),
u is pore water pressure, obtained with the C-DRiFt model
(cf. Sect. 3.2.2),
θ is local slope gradient, derived from the DEM,
γ is soil unit weight,
φ′ is soil internal friction angle,
c′ is soil cohesion.

Each input data is provided in the form of a 5×5 m cell
raster, thus, allowing the calculation of the Factor of Safety
(FS) with the same spatial resolution.

To grant geotechnical parameters of the soil (c′, γ , φ’) a
certain degree of spatial variability, a distinct value was as-
signed to each geological unit encountered in the area, so
that 5×5 m cell rasters could be set up and used as random
space variables in the soil stability model. The geotechni-
cal parameter values were derived from laboratory analyses
of samples and from data sets already available at the Earth
Science Department of Florence (Leoni, 2009).

The Infinite Slope theory requires that the slip surface be
parallel to the topographic surface and that the slip surface
depth be approximately constant and small compared to the
overall length of the displaced mass. Both circumstances
seem to be verified in most part of the shallow rapid land-
slides occurred in the Armea basin. At this, the infinite slope
stability approach, but not very accurate, was chosen mainly
because it is simple and easy to apply over large areas in
which detail scale continuous measurements of geotechnical
parameters are lacking.

3.3 Factor of Safety map

The outcome of the soil stability model (and, eventually, of
the entire forecasting chain) is a raster map containing the
spatial distribution of the Factor of Safety within the Armea
basin (Fig. 5). The FS, produced for each pixel of the raster
map, is expressed as a pure number that represents the stabil-
ity of the slope: the higher the FS value the higher the slope
stability. In more detail: a value of less than one indicates
unstable conditions, implying that at this location the slope
should already have failed; values just above one indicate
critical conditions that could lead to failure, while greater
values indicate more stable slopes. Classification of the dis-
tributed FS values will then identify the landslide prone areas
and provide a synoptic view of the slope stability within the
study site at each computational step.

3.4 Service description

The forecasting chain described above has been completely
automated so that a new procedure may be launched at 6 h in-
tervals with updated rainfall information.

The final product is a Factor of Safety map published on
a WebGIS platform that is accessible to the end users of the
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Fig. 5. The Factor of Safety map related to 8 December 2006.

service (public administration offices such as Civil Protec-
tion, Province or municipalities).

3.4.1 Data flow

The network realized for the development of the Service is
composed of three Linux servers: one is located in Savona at
the Centro di ricerca Internazionale in Monitoraggio Ambi-
entale (CIMA), one in Florence at the Earth Science Depart-
ment and one in Rome at Telespazio (a Finmeccanica/Thales
company) headquarters. With the use of synchronization
tools, data are copied from one server to another as soon as
they are created in near real-time (Fig. 6).

The data flow (Fig. 6) starts at CIMA where data from
the Monte Settepani radar and the precipitation forecast of
the COSMO-LAMI LAM are received and processed to pro-
duce soil saturation maps and downscaled weather forecasts
for the Armea basin. Using a synchronization tool, the me-
teorological data are transferred on the server of the Earth
Science Department in Firenze where they merge with the
local database on geomorphological and geotechnical prop-
erties. A shell script checks every five minutes if new data
are available and as soon as it finds a new saturation map, a
new stability analysis routine is launched. This software, de-
veloped at the Earth Science Department, uses as input data
the maps of the geomorphological and geotechnical proper-
ties and the new saturation map and produces as output an
updated map of the Factor of Safety for the Armea basin.
Right afterwards, this new map is transferred to Telespazio
headquarters’ web server where it is published on a WebGIS
platform and shared with the end users. An important feature
of this data flow is that the whole procedure is completely
automatic and efficient with a delay of 10 to 15 min from
the computation of a new saturation map to the publication
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of the new Factor of Safety map on the WebGIS platform.
Consequently, the time interval between each launch of the
forecasting chain (set to 6 h at the moment) could be reduced
to meet specific needs of the end-users.

4 Validation

The processing chain, described above, can be used for self-
validating predictions using the observed radar rainfall with-
out applying the forecast segment that uses the downscaling
procedure. In this way, the modelling chain will be tested for
its capacity in identifying the landslide hazard in a hind-cast
exercise on two events.

Validation of shallow landslides forecast is not an easy
task. It requires the occurrence of several factors: one or
more severe rainstorms that trigger landslides, localization of
the occurred landslides, detailed temporal and spatial knowl-
edge of the triggering rainfall intensity and duration charac-
teristics, and knowledge of the antecedent soil moisture con-
ditions in the basin.

In the Armea basin, the November 2000 storm satisfied the
first two of these requisites, but unfortunately only sketchy
information about the rainfall data is available and none re-
garding antecedent soil moisture conditions. However, on
8 December 2006, a storm occurred in the Armea basin.
Although it was significantly smaller than the 2000 event,
it nonetheless triggered several superficial landslides and
caused a certain amount of damage. Thus, for validation pur-
poses, data related to the 2006 event were used.

As far as the mapping of landslides through remote sens-
ing data is concerned, optical satellite remote sensing tech-
nology has recently been exploited and also used for land-
slide hazard and risk assessment (Metternicht et al., 2005),
since it is capable of providing reliable, cost-effective and
repetitive information over wide areas. Very high resolu-
tion (VHR) satellite imagery (Ikonos, Quickbird, Orbview,
Worldview) can provide a powerful tool for a quick reproduc-
tion of a map, up to a scale of 1:2000, of local events: thus,
they represent a viable tool in many fields including land-
slides in providing important observations that supplement
traditional field reconnaissance (Hervas et al., 2003; Chad-
wick et al., 2005; Casagli et al., 2005). In fact, one benefit
of obtaining satellite imagery is the ability to evaluate the
extent of damages even in areas where field surveys are diffi-
cult. Furthermore, due to the synoptic view, satellite imagery
allows a wide overview of environmental parameters and po-
tential interactions between failures. These observations are
difficult to formulate from the ground during traditional sur-
vey and can complement field reconnaissance observations.

Following the landslides occurrence of December 2006,
a multispectral, pan-sharpened Quickbird satellite imagery
was acquired on 13 March 2007, three months after the
events, with a mean ground pixel size of 0.70 m; the aver-
age sun azimuth and elevation angles at the acquisition time
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were 160.82◦ and 41.62◦, respectively, while the off nadir
angle was 14◦. The image was orthorectified applying the ra-
tional polynomial coefficients (RPC) model to a selection of
70 evenly distributed ground control points (GCP) retrieved
from recent topographic maps at 1:5000 scale. The eleva-
tions of the points were taken from a digital elevation model
(DEM) with a grid resolution of 5 m, produced from the dig-
itized topographic maps with a contour interval of 5 m. Op-
tical data have been processed through radiometric enhance-
ment in order to produce the best false colour composites for
visual interpretation. Simple red-green-blue colour compos-
ites were used as the most effective way for landforms inter-
pretation (Fig. 7); the image analysis allowed to accurately
identify new landslides as small as 2–3 m in width (Fig. 8),
as well as relict landslides. The photointerpretation of the
satellite image was performed in a GIS environment using
the typical criteria of feature analysis and recognition due
to the difference in spectral reflectance, texture and pattern.
Main interpretation keys were gathered from the ancillary
data, photos and observations collected during the field work.

The final result was a complete post-event landslide inven-
tory map retrieved from the satellite image (Fig. 8). The main
step of the validation consists of the direct comparison of the
FS map generated by the Service with the new landslide in-
ventory using the data from the 8 December 2006 rainfall
event. But if it is clear that a single pixel is to be considered
stable (unstable) when its FS value is greater (lower) than
unity, uncertainty arises from how to consider a landslide
prediction as accurate. How many pixels within the landslide
area should have a value near or below unity? Is one unstable
pixel enough to destabilize a larger area? Where should the
unstable pixels be located within the landslide boundary?

We decided to classify the pixels in three instability
classes according to their Factor of Safety value: high in-
stability (FS≤1), moderate instability 1<FS<1.3 and sta-
bility FS≥1.3. The break value between the first two
classes directly follows the definition of Factor of Safety
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Fig. 7. Detail of the satellite image showing a landslide which is affecting a road. On the left: false colour composite of bands 4, 3, and 2;
on the right: true colour composite (bands 3, 2, and 1).

Fig. 8. New landslide inventory map generated from the 8 Decem-
ber 2006 event.

(see Sect. 3.3), while the intermediate class of stability was
adopted as a “security measure” to avoid possible misinter-
pretation of hazardous conditions due to errors in the model
or in the parameterization of its physical variables. Subse-
quently, we decided to classify a landslide area as highly un-
stable when at least 10% of the area is composed by pixels
with high instability (FS≤1). If the landslide area has at least
one tenth of highly or moderately unstable pixels, it is clas-
sified as moderately unstable, while if the sum of the highly
and moderately unstable pixel does not reach one tenth of the
total amount of pixel composing the landslide area, the latter
is classified as stable.

The digital inventory of the 2006 landslides was overlaid
on the FS map in a GIS environment and the values of the
cells falling within the landslide polygons were extracted and
analyzed statistically using the definitions given above. Since
landslides reported in this inventory are recent and, how-
ever, subsequent to the time of acquisition of the DEM (from
which many static data used in the model were derived), even
a static inventory of landslides can be used to validate the FS
map. The number of correct predictions is rather low: only
the 13% of the 2006 landslides are located in an area classi-
fied as highly unstable by the model and the 19% are clas-
sified as moderately unstable. In addition, false-negatives
(landslides occurred but not correctly identified) are common
(the 68% of the total number of landslides is situated in ar-
eas predicted as stable). False-positives are quite frequent
as well: the 4.2% of the area of the basin that was not af-
fected by landslides during the rainfall event is erroneously
classified as highly unstable and the 8.1% is considered mod-
erately unstable. These results can be considered quite poor,
but the high number of errors is explainable as follows:

1. Many landslides did not occurred in 2006 just because
they had already happened in 2000, therefore, a high
number of false-positive occurs if the sole 2006 event is
used for the validation given the fact that all input data
(but rainfall) pre-date the November 2000 event. This
issue can be worked out by including in the validation
the landslides from the 2000 event as well. To stress the
fairness of this modus operandi, it has to be reminded
that the November 2000 rainfall event was more severe
than the one occurred in 2006 and that the topography
used in the forecasting chain is older than 2000.

2. Many of the missed landslides (false-negatives) are very
small: the histogram in Fig. 9 shows that 71 landslides
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Fig. 9. Landslides composing the 2006 event, grouped into classes according to their extension (x-axis). Large landslides are less abundant
than the small ones, but their relevance becomes evident when their extension is taken into account (yellow bars): validation should consider
this effect.

occurred in 2006 are less than 100 m2 (49% of the to-
tal number but only 6% in terms of areal extension).
They are mainly represented by tiny soil slips, many
of which corresponding to just a single pixel (25 m2).
Such events may be considered insignificant from a risk
assessment point of view, because a very small risk is
associated to them and their validation should be more
properly done integrating over sub-basins according to
e.g. Strahler ordering (Catani et al., 2008). Therefore,
failures of the model in predicting such small events
cannot be considered as critical errors. Moreover, this
occurrence suggests that a different weight should be
given to landslides proportionally to their damaging po-
tential. Since the magnitude of a shallow landslide can
be directly correlated with its area, more relevant statis-
tics may be computed by analyzing not the number of
missed and correctly identified landslides but their ex-
tension, comparing the total areas of the events correctly
identified and missed.

Taking into account the above points, the FS map has been
validated making use of a landslide inventory composed of
both the 2000 and 2006 events and considering the extension
of the landslides (with this approach, a landslide of 1000 m2

counts as 1000, one of 25 m2 counts as 25). By means of
this approach, better results were achieved. Landslides cor-
rectly identified represent 30% of the total (135 amongst a
population of 446) but 54% in terms of area. This means
that the 54% of the area affected by landslides was correctly
identified by our modelling. The 26% was classified in the
moderately unstable class (thus, providing a risk awareness
even if at a lower extent) and only the 20% was erroneously
interpreted as stable. The number of false positives is also
quite low, since only the 4.0% and the 4.9% of the stable area
of the Armea basin was erroneously mapped as, respectively,
highly and moderately unstable.

5 Discussion

The validation of the proposed forecasting network has a
fairly strong dependence on the validation procedure. This is
due to the fact that both landslide inventories are composed
by many small events and fewer large ones. In particular,
the 2006 event is represented by 71 (49% of the total popu-
lation) tiny slides with a lower than 100 m2 areal extension.
The forecasting chain fails to detect most of these very small
events in their exact location.

A crucial point of the procedure is the quantification of
the influence of different sources of uncertainty on FS maps.
The error in the Factor of Safety prediction is the sum of
the errors in the input static data (physic and geotechnical
properties of the terrain), the errors in acquiring the dynamic
data (radar measurement of rainfall intensity) and the errors
of each single computational component of the end-to-end
chain, e.g. downscaling of rainfall intensity, calculation of
the soil moisture (by means of C-DRiFt model) and, finally,
computation of the Factor of Safety using the infinite slope
formula. At present, a sensitivity analysis has been carried
out only on the soil stability model (Leoni et al., 2008) as
a stand-alone static module. Figure 10 shows that the static
input data (geotechnical and geometrical parameters) weigh
in the Factor of Safety value more than soil saturation. But,
considering the declared intent of tuning and upgrading the
Service, in the long run, those relative weighs could invert:
the uncertainty of the static data could be more easily reduced
(e.g. by measuring and defining their values once and for all),
while the prediction of soil saturation variation in time ap-
pears more challenging. Many hydrometeorological studies
confirm that meteorological uncertainty has the highest in-
fluence on flood forecasting procedures output (e.g. Siccardi
et al., 2005; Rebora et al., 2006a; Hardenberg et al., 2007).
Since the procedure proposed here shares many elements
with a flood-forecasting procedure, we might also assume
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Fig. 10. Graphic showing how much each input parameter of the
slope stability module weighs in the Factor of Safety value. The
sensitivity analysis was performed by Leoni et al. (2008), using the
partial derivative error propagation method.

that the uncertainty Factor of Safety maps is dominated by
the uncertainty associated with rainfall forecast. However,
the weight of uncertainty derived from different elements of
the procedure has to be further investigated. This result can
only be achieved by a long-term pre-operational test that al-
lows evaluating the performances of the procedure under dif-
ferent input conditions.

In addition, the infinite slope formula used in the slope
stability module is not appropriate to compute the Factor of
Safety related to landslides with a low depth/length ratio.
This is probably the main reason why the model produces so
many errors in recognizing tiny soil slips; their length is com-
parable with their depth. However, errors of this kind can be
considered negligible since such small events pose a very low
risk. Instead of removing the small soil slips from the valida-
tion process, we decided to adopt another approach: as an al-
ternative to counting how many landslides were correctly or
erroneously identified by our forecasting chain, we took into
account their areal extension. This is equivalent to assigning
each landslide to a different weight directly proportional to
its extension. The results achieved with this approach can be
considered more reliable and quite satisfactory for this stage
of the research. In fact, the main objective of this work was
the building-up of the automated forecasting chain and the
testing of its capability to be used in landslide risk assess-
ment. The results, that are far from being definite, should be
considered preliminary since further advances will be neces-
sary to improve the overall performance of the Platform.

Each element of the automated end-to-end forecasting
chain (namely the meteorological, hydrological and geotech-
nical models) can be replaced with an improved one in or-
der to enhance the final results of the whole network and we
have already planned some further refinements. First of all, a
more sophisticated slope stability model will be included in
the Platform, making use of Iverson’s approach to the infinite

slope theory (Iverson, 2000) and adding the effect of the ap-
parent cohesion that takes place in unsaturated soils because
of suction forces (Mitchell and Soga, 2005; Leoni, 2009).
Secondly, the whole forecasting chain will be based on a
probabilistic approach, to be used both in the radar rainfall
predictions and in the slope stability modelling. Lastly, sig-
nificant advances in prevention and early warning could be
made when outcomes of other PREVIEW services (e.g. flash
flood forecasting, Vincendon et al., 2009) will be finally in-
tegrated in a single operational procedure involving related
risks.

6 Conclusions

In the framework of the Preview Service 2, a forecasting
chain for the provision of spatial location and temporal oc-
currence of shallow landslides has been set up. The network
is composed of: i) a meteorological module for the fore-
casting of short-term rainfall data; ii) a hydrological module
which models the spatial and temporal distribution of the wa-
ter content in the terrain; iii) a geotechnical module for the
modelling of slope stability.

The forecasting chain can be upgraded at any time, since
every model used at each computational step can be substi-
tuted with a more effective one without influencing the gen-
eral functionality of the processing flow. From this point of
view, the results presented here should be considered prelim-
inary: in fact, at present, we are working to include in the
network a more sophisticated approach for the modelling of
slope stability.

Among the static data used in the forecasting chain, a spe-
cial mention is due to soil thickness, a very important param-
eter in controlling shallow landslides occurrence. We have
used it as a spatial variable to feed-in both the hydrologi-
cal and the geotechnical models. The spatial distribution of
soil thickness was obtained by means of a newly proposed
method (Catani et al., 2009; Segoni, 2008) with an accept-
able error (23 cm mean absolute error).

The chain has been completely automated in every step,
from the acquisition of the dynamic rainfall data to the cal-
culations of the hydrological and geotechnical models and,
finally, to the publishing via WebGIS of reliable predictive
Factor of Safety maps with enough lead-time to raise alerts
when necessary.

The automated network allows shallow landslides fore-
casting but it can be used manually with any set of data of in-
terest. The latter modality has been used for the validation of
the Service, using rainfall data from a severe meteorological
event which triggered several shallow landslides in Decem-
ber 2006. Validation showed somewhat contradictory results:
only when it was performed taking into account the areal ex-
tension of the occurred landslides it provided outcomes that
can be considered promising. In fact, this stage of the re-
search consists primarily in the building of a completely au-
tomated chain for shallow landslides forecasting; even if the
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Service is not perfectly tuned and not fully validated, due to
the limited data available, each of its components reports a
practical solution to a specific technical problem involved in
the complex process of modelling time and space of occur-
rence of shallow landslides. At this stage, the various issues
were addressed considering simple and easily implementable
solutions, but in the near future, we plan to upgrade the ser-
vice substituting each component with a more advanced one,
in order to reduce the errors in shallow landslides risk assess-
ment.
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