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Abstract. We analytically estimate the risk function of natu-
ral hazards (earthquakes, rockfalls, forestfires, landslides) by
means of a non-extensive approach which is based on imple-
menting the Tsallis entropy for the estimation of the proba-
bility density function (PDF) and introducing a phenomeno-
logical exponential expression for the damage function. The
result leads to a power law expression as a special case and
the b-value is given as a function of the non-extensive pa-
rameterq. A discussion of risk function dependence on the
parameters of hazard PDF and damage function for various
hazards is given.

1 Introduction

In recent years, there has been a sustained interest in the frac-
tal nature and the possible power-law behaviour of a vari-
ety of natural hazards, e.g. earthquakes, landslides, rockfalls,
forest fires etc. (Bak and Tang, 1987, 1989; Main, 1996;
Bonnet et al., 2001; Malamud and Turcotte, 1999; Sornette
and Sornette, 1989; Turcotte, 1997, 1999; Hergarten, 2002).
To this effect, risk assessment is an extension of hazard as-
sessment including terms for economic damage due to the
natural disaster. The assessment of hazard is related to the
probability of occurrence of a certain event, while the as-
sessment of risk takes into account the effects of the corre-
sponding disaster on life, urban environment and economy.

Following a well accepted definition of risk
(Hergarten, 2004; McGuire, 2004), ifN is the expected
mean number of events of a certain type, in a certain region
and time interval, and<D> the expected damage caused by
an event of the considered type, then the riskR is defined as

R = N < D > . (1)
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We note that Eq. (1) refers to the risk of a natural hazard of
a certain sizes (i.e. energy) and does not determine the risk
of a natural hazard in a certain region and time. We clarify
that s could be any physical quantity that measures the size
of the hazardous event (e.g. released energy for earthquakes,
displaced volume for landslides, destroyed area in forest fires
etc.).

In order to include the dependence of (1) on event size,
we must introduce an expression that includes: (a) all possi-
ble event sizes, (b) their frequency of occurrence and (c) the
damage corresponding to a specific event size.

To this effect, ifF(s) is the probability that the size of
an arbitrary hazard event is greater than, or equal tos, i.e.
F(s) is the cumulative distribution with probability density
p(s)=dF(s)/ds, then the expected damage induced by an
event of sizes is given by the expression

< D(s) >=

∫
6

p(s)D(s)ds,

and the total riskR is (Hergarten, 2004; McGuire, 2004)

R = N

∫
6

p(s)D(s)ds (2)

where6 is the size range of natural hazards. Equation (2)
indicates that in order to have an estimate of the expected
risk, the probability densityp(s) and the dependence of the
damageD(s) on the event sizes have to be evaluated. The
expression forp(s) involves a power-law size distribution
F(s)≈s−b, indicating scale-invariant statistics (Aki, 1965;
Kanamori and Anderson, 1975; Hergarten and Neugebauer,
1998; Hergarten, 2003; Guzzeti et al., 2002; Malamud et al.,
2004; Turcotte, 1997, 1999).

It is straightforward to see that the estimation ofp(s) and
D(s) plays a crucial role in our attempt to derive an analyt-
ical expression for the risk functionR. In the present work
we apply for first time the concept of non-extensivity to the
estimation of risk, starting from well known first principles
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by introducing a non-extensive formulation forp(s) based
on the maximum entropy principle and a phenomenologi-
cal approach forD(s). Furthermore and in order to support
our theoretical results the special case of the expression of R
which is based on power-law distributionsp(s) is given. We
note that the power law expression forp(s) results from the
presented non-extensive formulation of the PDF under well
defined conditions.

2 Non-extensive modeling in natural hazards

The non-extensive statistical mechanics pioneered by the
Tsallis group (Curado and Tsallis, 1991; Lyra and Tsal-
lis, 1998; Tsallis, 1988; Tsallis et al., 1995, 1998; Tsallis
and Bukman, 1996) offer a consistent theoretical framework,
based on a generalization of entropy, to analyze the behavior
of natural systems with fractal or multi-fractal distribution of
their elements. Such natural systems where long – range in-
teractions or intermittency are important, lead to power law
behaviour. We note that this is consistent with a classical
thermodynamic approach to natural systems that rapidly at-
tain equilibrium, leading to exponential-law behavior.

In order to handle non-equilibrium states in systems
with complex behavior an entropic functional was proposed
(Tsallis, 1988):

Sq = k
1

q − 1

1 −

∫
6

pq(s)ds

 ,

which is, in some sense, a generalization of the classical en-
tropic functional because in the limitq→1 for the Tsallis en-
tropy, we obtain the well known Boltzmann-Gibbs (BG) en-
tropy SBG=−k

∫
6

plnpds. The indexq has been interpreted

as the degree of non-extensivity, that accounts for the case
of many non-independent or long-range interacting systems
(Tsallis et al., 1998; Tsallis, 2001). The functionp(s) is the
probability of finding an event of sizes. The sum of all states
in entropy is expressed through the integration in all sizes of
the natural hazard under investigation.

The maximum entropy formulation for Tsallis en-
tropy involves the introduction of at least two constraints
(Tsallis et al., 1998). The first one is the normalization of
p(s)∫
6

p(s)ds = 1, where 6 = (0, ∞) (3)

and the second is an ad hoc condition about the so-called
q-mean valuemsq , which can be expressed as:∫
6

spq(s)ds = msq (4)

In order to calculatep(s) we apply the technique of Lagrange
multipliers (see Kubo, 1981). Accordingly, we need to max-
imize the functional:

S∗
q=Sq−λ0

∫
6

p(s)ds−λ1

∫
6

spq(s)ds,

with result

p(s)=C [1+(q−1)λ1s]−
1

q−1 ,

where

C=

[
λ0(1−q)

q

] 1
q−1

.

Applying condition (3) we obtain:

lim
ξ→∞

C

λ1(q−2)

[
ξ

q−2
q−1 −1

]
=

C

λ1(2−q)
=1,

which converges only if 1<q<2. In a similar way condition
(4) leads to:

msq = C

∫
6

sds

[1 + (q − 1)λ1s]
q

q−1
=

1

λ1
.

Then the distribution and the escort probability are:

p(s) =
λ1(2 − q)

[1 + λ1(q − 1)s]
1

q−1

(5a)

Pesc(s) =
pq(s)∫

6

pq(s)ds
=

λ
q

1(2 − q)q−1

[1 + λ1(q − 1)s]
q

q−1
(5b)

It is easy to verify that taking the limitq→1 in Pesc we get
λ1e

−λ1s , which is the well known exponential distribution.
From Eq. (5a) it is obvious that if

(q−1)s�1/λ1=msq

then

p(s) ≈ m

2−q
q−1
sq

(2 − q)

(q − 1)
1

q−1

(
1

s
1

q−1

)

indicating power-law behavior observed in a variety of nat-
ural hazards (Turcotte, 1997, 1999; Malamud et al., 1998,
Hergarten, 2002).

From Eq. (5a) we obtain

F(s)=Prob(x>s)=

∞∫
s

p(s)ds=
1

[1+λ1(q−1)s]
2−q
q−1

which for (q−1)s�msq exhibits a power-law behavior as
well, of the form

F(s)∝
1

s
2−q
q−1

≈s−b

whereb(q)=
2−q
q−1.

Nat. Hazards Earth Syst. Sci., 9, 211–216, 2009 www.nat-hazards-earth-syst-sci.net/9/211/2009/



F. Vallianatos: A non-extensive approach to risk assessment 213

In recently published reviews (Dussauge et al., 2003;
Guzzeti at al., 2002, 2003, 2006; Hergarten, 2003, 2004;
Malamud et al., 2004; Stark and Hovius, 2001), the cumu-
lative distribution functionF(s)∝s−b and the value of the
exponentb has been reported for a variety of natural haz-
ards. We note that whenq→1 the quantityb(q) increases
rapidly, while whenq→2, b(q) approaches zero. Forq=1.5
, b=1. For earthquakes, and taking into account earthquake
energy as a size, the b-value falls into the range 0.5–0.8
(Main, 1996 and references therein) For landslides a rather
strong variation exists in the exponentb, attributed to the
triggering mechanism; most studies resulted to values be-
tween 1.0 and 1.6, if landslides size is measured in terms
of affected area (for details see the review by Hergarten,
2003 and the references therein). For rockfalls, size distri-
bution exhibits a power law if the event size is measured
in terms of the volume of displaced rock; most power law
exponents fall into the range between 0.4 and 0.7. For rock-
falls a detailed analysis is reviewed by Dussauge et al. (2002,
2003). Regarding forest fires, the reported b values lie in
the range 0.3 to 0.5, if burnt area is the measure of event
size (Malamud et al., 1998). Taking into account the afore-
mentioned range-value reported forb, we estimate the range
of the non-extensivity parameterq (see Table 1). We ob-
serve that the q value estimated for earthquakes is within the
range 1.55–1.67. The latter is in agreement with the val-
ues ofq estimated using earthquake catalogues from New
Madrid fault zone (q=1.63), San Andreas fault (q=1.6 to 1.7)
(Viral et al., 2006; Vallianatos and Triantis, 2008).

3 A damage model

It is well accepted that the construction of the damage func-
tion D(s) would take into consideration not only of the nat-
ural process (hazard) but also the danger to life and property.
The proposed expressions forD(s) vary from simple ones,
(linear functions of the sizes for forest fires provided they
are not too large), to very complex ones for earthquakes.
Nevertheless, any damage function has to be built on the
basis of some principles, which are summarized as follows
(Hergarten, 2004):

1. For any event below a certain sizesmin the natural haz-
ard does not cause any damage and thusD(s)=0.

2. An event with sizesmax exists, for which any hazard
with size greater than this results in total destruction,
i.e.D(s)=Dmax for s≥smax.

3. For natural hazard sizes betweensmin andsmax we as-
sume a simple power-law dependence forD(s), i.e.
D(s)∝sβ .

4. The damage functionD(s) could be discontinuous, de-
pending on the particular facility hinted by the hazard

Table 1. Observed power law exponents and the estimated non ex-
tensivity parameterq for various natural hazards (see text).

Natural Measured Observed Estimated
hazard size b value q parameter

Earthquakes Energy 0.5–0.8 1.67–1.55
Landslides (area) Affected area 1.0–1.6 1.5–1.38
Rockfalls (volume) Displaced volume 0.4–0.7 1.71–1.59
Forest fires Burnt area 0.3–0.5 1.77–1.67

with sizes. For simplicity, we will not introduce dis-
continuities in our model.

Using conditions (a), (b) and (c) above, we introduce

D(s)=
Dmax

s
β
max−s

β

min

(sβ
− s

β

min) if smin<s<smax, (6)

while D(s)=0 if s<smin andD(s)=Dmax whens>smax. We
note thatβ is a parameter strongly controlled by the type
of hazard and the particular environment connected. A re-
view presentation ofβ for different types of natural hazards
is given in Hergarten (2004).

4 Construction of the risk function

Introducing the probability density functionp(s) expressed
by Eq. (5) and the damage functionD(s) of Eq. (6) into
Eq. (2), we obtain the total riskR as:

R=N

∫
6

p(s)D(s)ds=N

 smax∫
smin

p(s)D(s)ds + Dmax

∞∫
smax

p(s)D(s)


After some algebra we obtain

R= NDmax

[
1

s
β
max−s

β
min

∫
6

p(s)sβds−
s
β
min

s
β
max−s

β
min

∞∫
smax

p(s)D(s) +

∞∫
smax

p(s)ds

] (7)

where

P12=

smax∫
smin

|p(s)ds= [1+λ1(q−1)smin]
q−2
q−1 − [1+λ1(q−1)smax]

q−2
q−1

and

P2∞=

∞∫
smax

p(s)ds= [1+λ1(q−1)smax]
q−2
q−1 .
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We note that since 1<q<2 the exponentq−2
q−1 is negative. The

first integral in Eq. (7) can be written as

smax∫
smin

p(s)sβds = (
2 − q

q − 1
)(

msq

q − 1
)β

x2∫
x1

xβdx

(1 + x)
1

q−1

, (8)

wherex1=(q − 1)(smin/msq) andx2=(q−1)(smax/msq).
In most casessmin�smax leading to a good approximation

for the integral of Eq. (8), of the form

IR(β, q)=

∞∫
0

xβ

(1+x)
1

q−1

dx=B(z, w) ,

where

z=β+1, w=
1

q−1
−(β+1)

andB(z, w) is the Beta function (Abramowitz and Stegun,
1965).

In this case the risk functionR could be written as:

R ≈NDmax

[
2−q

(q−1)β+1 (
msq

smax
)βIR(β, q)−(

smin
smax

)βP12+P2∞

]
≈NDmax

[
2−q

(q−1)β+1 (
msq

smax
)βIR(β, q)+R2∞

]
5 Discussion and concluding remarks

In the present work we apply the Tsallis entropy general-
ization that extends the traditional Boltzmann- Gibbs ther-
mostatistics to natural hazard systems, where non-linearity,
long-range interactions, long memory effects and scaling
(fractal and multifractal) are important. The advantage of
considering the Tsallis distribution is that based on an en-
tropy principle, it can be related to statistical mechanics and
reduces to the traditional BG statistical mechanics as a spe-
cial case.

Using a non extensive approach we conclude that
for (q−1)s�msq , a power law behaviour exists, with
a probability density function given by Eq. (5a) and
b(q)=(2−q)/(q−1). We proceed now to evaluate the risk
function for the special case of a power law. Assuming that
smax is much larger thansmin (i.e. smax�smin�msq/(q−1))
we obtain

R=
NDmaxMsq

bs
β
max

[
1+

b

β−b
sβ−b
max −

β

β−b
s
β−b

min

]
whereβ 6=b and

Msq=m

2−q
q−1
sq

(2 − q)

(q − 1)
1/(q-1)

1

s
1/(q-1)

.

If β>b>0 the terms
β−b
max is much larger thansβ−b

min and thus

R≈
NDmaxMsq

bs
β
max

[
1+

b

β−b
sβ−b
max

]
.

In such a case, when the second term in the above Equation is
much greater than unity,

R≈
NDmaxMsq

β−b

1

sb
max

=
NDmax

β−b
smaxp(smax) .

The latter expression indicates that the risk is mainly de-
termined by the largest event.

In the case where 0<β<b, the terms
β−b
max becomes much

smaller thansβ−b

min and the risk is

R =
NDmaxMsq

bs
β
max

[
1 +

β

b − β

1

s
b−β

min

]
.

When the term

[
β

b−β
1

s
b−β
min

�1

]
,then

R=
NDmax

b

[
β

b−β
(
smin

smax
)β

]
sminp(smin) .

The latter expression indicates that the increase of damage
with event size is insufficient to compensate for the decrease
in the frequency of event occurrence and the risk arises from
a significant number of small events.

The aforementioned equations are valid in the case where
β 6=b. Whenβ=b we obtain

R=
NDmaxMsq

s
β
max

ln
smax

smin
=NDmaxsmaxp(smax) ln

smax

smin
.

The above defined expressions suggest that the cru-
cial parameter in the behavior of risk is the difference
β−b(q)=β−

2−q
q−1 which involves the thermodynamic param-

eterq expressing the non-extensivity of the system.
Although quantifying the damage caused by natural haz-

ards (i.e. the estimation of parameterβ) is difficult, it can
be expected that for earthquakes, the damage increases non-
linearly (i.e. β>1) with released energy (see Hergarten,
2004; McGuire, 2004). Taking into account that for earth-
quakes the parameterq is between 1.55 and 1.67, the dif-
ferenceβ−

2−q
q−1 is always positive, leading to the expected

conclusion, that the risk resulting from earthquakes is dom-
inated by the largest event. For forest fires, the damage pa-
rameterβ varies between 0.5 and 1, scaling with burnt area
(Turcotte and Malamud, 2004; Hergarten, 2004); this leads
toβ−b(q) values in the range from 0 to 0.7 and to the conclu-
sion that the risk resulting from forest fires is dominated by
the largest event. Only in the case whereb=β=0.5 we con-
clude that large and small events contribute evenly to the total
risk. For landslides, the selection of an appropriate damage
model is crucial. In the case of a simple linear model,β=1
the damage function scales linearly with the affected area;
thenβ−b(q)≤0, leading to the conclusion that landslide risk
is coming mainly from small-sized events. However, we note
that slightly increasingβ (e.g. from 1 to 1.6), may change
the quantityβ−b(q) from negative to positive, highlighting
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the importance of selecting appropriate damage models. For
rockfalls, the damage function is scaled with the displaced
volume (or mass). Even in the simple linear case whenβ=1,
the quantityβ−b(q) is positive supporting the result that the
total risk rockfalls arises from the largest events.

In concluding, we point out that in the present work we
indicate that the non extensivity viewpoint is applicable to
natural hazard processes. In the frame of a non-extensive ap-
proach which is based on Tsallis entropy for the construction
of the probability density function (PDF) and a phenomeno-
logical exponential expression for the damage function, we
analytically calculate the risk function of natural hazards
(earthquakes, rockfalls, forestfires, landslides). For the low-
est size (i.e. energy level) of the natural hazard the PDF can
be deduced on the basis of the maximum entropy principle
using BG statistics. In the low energy regime the correlation
between the different parts of elements involved in the evolu-
tion of natural hazards are short-ranged. As the size (i.e. en-
ergy) increases, long range correlation becomes much more
important, implying the necessity of using Tsallis entropy as
an appropriate generalization of BG entropy. The power law
behaviour for the PDF is derived as a special case, leading to
b-values being functions of the non-extensivity parameterq.
The analysis of risk function dependence on the parameters
of hazard PDF and damage function for various hazards indi-
cates that earthquakes, rockfalls and forest fires exhibit sim-
ilar behaviour, in which the total risk arises from the largest
events, while for landslides, in a first linear approximation,
risk is coming from the smaller events. The latter result is
strongly governed by the selection of an appropriate damage
model (i.e. the exponentβ).
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