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Abstract. Multi-risk assessment is becoming a valuable tool
for land planning, emergency management and the deploy-
ment of mitigation strategies. Multi-risk maps combine all
available information about hazard, vulnerability, and ex-
posed values related to different dangerous phenomena, and
provide a quantitative support to complex decision making.

We analyse and integrate through an indicator-based ap-
proach nine major threats affecting the Lombardy Region
(Northern Italy, 25 000 km2), namely landslide, avalanche,
flood, wildfire, seismic, meteorological, industrial (techno-
logical) risks; road accidents, and work injuries. For each
threat, we develop a set of indicators that express the physical
risk and the coping capacity or system resilience. By com-
bining these indicators through different weighting strategies
(i.e. budgetary allocation, and fuzzy logic), we calculate a
total risk for each threat. Then, we integrate these risks by
applying AHP (Analytic Hierarchy Process) weighting, and
we derive a set of multi-risk maps. Eventually, we identify
the dominant risks for each zone, and a number of risk hot-
spot areas.

The proposed approach can be applied with different de-
gree of detail depending on the quality of the available data.
This allows the application of the method even in case of non
homogeneous data, which is often the case for regional scale
analyses. Moreover, it allows the integration of different risk
types or metrics.

Relative risk scores are provided from this methodology,
not directly accounting for the temporal occurrence proba-
bility of the phenomena.

1 Introduction

In spite of a growing understanding and a great effort of so-
ciety in disaster mitigation, the management and reduction
of existing risks continue to challenge disaster prone com-
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munities (Tyagunov et al., 2005). Frequency and severity of
natural and technological disasters are increasing worldwide;
combined with the development of urbanised areas and with
the growth of population, they result in a dramatic growth of
losses. Their reduction becomes a strategic goal, and is be-
ing recognized as an integral component of both emergency
management and sustainable development, also involving so-
cial, economic, political, and legal issues (Durham, 2003).

Risk management is more effective when: (1) it is an in-
tegral part of a total community risk management approach,
(2) it involves all levels of government and community, and
(3) it is proposed as a prevention and preparedness approach,
rather than purely response (Durham, 2003).

In this paper we present a methodology for multi-risk as-
sessment that can be applied to regional scale analyses. In
the following, we define risk as the measure of the proba-
bility and severity of a damage to life, health, property, and
environment.

The methodology integrates information with different de-
gree of accuracy into an indicator based approach, in order to
develop a regional scale multi-risk assessment and to iden-
tify “hot spot” risk areas for more detailed analysis. Finally,
we investigate the sensitivity of weights, and the effect on
risk assessment of different individual attitudes and percep-
tion (i.e., expert, social, political, risk aversion).

1.1 Background

Risk is generally agreed to be dependent on probability of oc-
currence of hazardous events and on expected consequences
(Baecher and Christian, 2003). According to Kaplan and
Garrick (1981) risk is defined by a combination of the ex-
pected consequences of a set of scenarios, each with a proba-
bility and a consequence. If the scenarios are sorted in terms
of increasing severity of the consequences, then a risk curve
(F-N curve, frequency of fatal events vs. number of fatalities
in such events, and F-D curve, frequency of events vs. eco-
nomical damage in such events) can be plotted, illustrating
for example the probability of losses exceeding a given value
to occur. Hazard is the probability that a particular threat
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occurs within a given period of time at a specific site (e.g.
annual exceeding probability of an event of specified magni-
tude). In technological risk, hazard is also referred to as the
probability of Accidental Event (NORSOK, 2001) or Initiat-
ing Event (Stamatelatos and Apostolakis, 2002).

Vulnerability is the predisposition of some portions of the
physical, social and economical space to suffer damages in
consequence of impact with potentially harmful phenomena
(United Nations Development Programme, 2004). Physical
vulnerability is the degree of loss to a given element or set
of elements within the area affected by a hazard, and it can
be expressed through a mathematical function on a scale of
0 (no loss) to 1 (total loss). Vulnerability functions are com-
monly available only for flood and earthquakes (Porter et al.,
2001; FEMA, 1999; USACE, 2000), and in some examples
for landslides (Glade et al., 2003; Roberds, 2005; Birkmann,
2006; Fuchs et al., 2007; Galli and Guzzetti, 2007; Agliardi
et al., 2009).

As for the other dimensions of vulnerability, a set of
heuristic or empirical indicators are reported in literature
(Coburn et al., 1994; CEPAL/BID, 2000; Barbat, 2003;
Glade, 2003; UNDP, 2004).

Separate investigations of single processes and risks can
result misjudging and inadequate in complex areas where
many threats are simultaneously present, and interacting.
Multi-hazard approaches are not only valuable to get an
overview on the overall risk but have also a high signif-
icance for planning effective countermeasures (Bell et al.,
2004). Sometimes, mitigation strategies developed for one
of the threats affecting an area can increase the risk related to
another one. Where natural and human systems are strictly
interacting, holistic studies are necessary to analyse the inter-
actions and to find adequate solutions for endangered areas
(Bell et al., 2004).

Despite many approaches have been proposed to assess
specific natural and technological hazards and risks, only
few studies combine multiple typologies into a multi-risk
holistic assessment. Trans-national studies have been per-
formed to compare risk levels in different countries (Cardona
et al., 2004; UNDP, 2004; ESPON, 2005) or to identify key
“hot-spots” where the risks of natural disasters are particu-
larly high (Dilley et al., 2005). These studies are based on
approaches that make use of national-level indicators (e.g.,
number of hazardous events, Gross Domestic Product, total
population), without a spatial analysis of hazard and element-
at-risk patterns.

Local scale multi-risk analyses have been proposed in-
cluding multiple sources of natural (Granger et al., 1999;
Granger and Hayne, 2001; Middleman and Granger, 2001;
Van Westen et al., 2002) and natural/technological hazards
(na-tech; Barbat and Cardona, 2003; Ferrier and Haque,
2003). These studies require an accurate description of
each hazard and risk, at the temporal and spatial scale, and
are suitable only for small areas already recognized as “hot
spots”.

2 Study area

Lombardy (Northern Italy) covers an area of 23 855 km2.
17% of the Italian population (almost 9 000 000 people, IS-
TAT Istituto nazionale di statistica, 2006) lives in Lombardy
and about 25% of the Gross Domestic Product (GDP) is pro-
duced here (ISTAT, 2005).

The region presents a wide variety of landscapes and en-
vironments, but it can roughly be subdivided into 3 different
sectors: the Alps, the Po alluvial plain, and the Apennines
(Fig. 1).

The Alps, to the North, cover 11 940 km2, with elevations
up to 4025 m a.s.l., are composed of three major structural
domains, namely: southern Alps, Pennidic and Austroalpine
domain. The East trending Insubric line bounds the southern
Alps to the north. The Lombardy alpine lakes cover over
800 km2.

The Po river plain, (11 221 km2), covers most of the south-
ern part of the region, and half of its total area. It is a
fertile plain, thanks to the abundance of water courses and
springs. The plain is highly populated, and hosts intensive
industrial and commercial activities. The Apennines extends
for 700 km2 in the South-West of the region, with elevations
up to a 1724 m a.s.l.

Climate is continental, with local variations related to the
orographic setting. Mean annual precipitation ranges from
650 to 800 mm/year in the lower plain, gradually increas-
ing towards the Alps. Here we observe a strong orographic
effect, with maximum precipitation in the southern Alps
(2000–2200 mm/year) and minimum values in the northern
sector (700–900 mm/year).

The most populated cities (Milano, Bergamo, Brescia,
Varese) are located in the upper plain area, where 80% of
population and most industrial facilities, services and life-
lines are located (Fig. 1).

3 State of risks in Lombardy

Lombardy is characterized by many risks that threaten the
population and the economic activities. The Regional Civil
Protection Agency (PRIM, 2007), identified nine major
threats, whose analysis has been considered a priority: land-
slide, avalanche, flood, wildfire, seismic, meteorological, and
industrial (technological) risks; road accidents, and work in-
juries. Some potentially relevant threats were not considered,
as pollution, sanitary risks, terrorist attacks.

Landslides, floods and snow avalanches have been
grouped in the “hydrogeological risk” in accordance to the
standards of the Regional Civil Protection Office (PRIM,
2007).

In order to highlight the impact on the territory of the anal-
ysed threats on Lombardy, we collected data about fatalities
occurred in the last century (Fig. 2). Unfortunately, data were
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Fig. 1. Map of Lombardy. Urban areas and main transportation network used for the analysis are shown.

available only for some threats and limited time intervals, and
were not usable in the successive risk analysis.

Since 1906, floods and landslides caused 421 and
239 fatalities, respectively (AVI, Aree Vulnerate Italiane da
frane ed inondazioni, 2007), while snow avalanches caused
53 fatalities and a global amount of 104 injured people since
1985 (SIRVAL, Sistema Informativo Regionale Valanghe,
2007). Road accidents and work injuries show a much larger
impact on human life than other risks, the annual number of
fatalities being orders of magnitude higher with respect to
the other risks. In the period 1999–2004 almost 45 000 road
accidents per year occurred causing about 800–900 fatalities
per year (Fig. 2; source: ISTAT). 160 000 work injuries per
year were recorded on average between 2001 and 2006, with
almost 200 fatalities per year (source: INAIL, national insur-
ance for work injuries, 2007) (Fig. 2).

Wildfires and earthquakes did not have relevant conse-
quences on human lives in the last century. Lombardy has
in general a low seismic risk, with respect to other Italian
regions, with some exceptions in the eastern sector, close

to the Lake Garda (max historical magnitude 6 Richter,
1222 AD, Gruppo di lavoro CPTI, 2004). A moderate seis-
micity characterizes also the Apenninic zone (max magni-
tude 5.5 Richter, 1541 AD, Gruppo di lavoro CPTI, 2004),
the upper Valtellina and the south eastern part of the region.

Other data that we collected to give a general overview of
the state of risk in Lombardy regard the regional expenditure
for risk mitigation. This is not necessarily a good proxy for
risk severity, though it provides a rough idea of the economi-
cal and effective impact of different risks on the community,
from the perspective of the Regional Administration, as a re-
sult of a politic perception.

The mitigation costs sustained in 2006 by public adminis-
trations for the period 2007–2010 amount to 2.1 billionC.
72.95% of the costs have been planned for the mitiga-
tion of road accidents, 24.89% for landslides, floods and
avalanches, 0.95% for seismic risk mitigation, 0.89% for
wildfires, 0.24% for industrial accidents, and 0.06% for work
injuries. It is worth to note that no significant event in 2006
required planning exceptional mitigation expenditure. Thus,
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Fig. 2. Number of fatalities per year in Lombardy caused by floods
and landslides between 1906 and 2005 (AVI), by avalanches be-
tween 1985 and 2005 (SIRVAL), by road accidents between 1999
and 2005 (source: ISTAT), and by work injuries in the period 2001–
2005 (source: INAIL).

the 2006 planning can be considered representative of ordi-
nary mitigation costs. It is also worth to note that public
administration expenditures for seismic risk, industrial risk,
and work injuries are not representative of the actual eco-
nomic impact, because most of the mitigation costs for these
risks are covered by privates or/and insurances.

Though the expenditure for road accidents and hydroge-
ological risk is orders of magnitude higher than the others,
also the other threats have been included in the analysis. The
planning of a civil protection strategy of risk management
and prevention, which is the purpose of this study, needs to
account for all the possible threats active and interacting in a
specified territory, even if their public costs are not so rele-
vant.

4 General methodology

The methodology was developed starting from available data
at different scales, in order to be suitable for use at different
scales and with data at different levels of detail. Risk anal-
yses were performed at the regional scale using as terrain
units 1 km×1 km square polygons. The subdivision of the
study area in vector square polygons reduces the loss of spa-
tial information with respect to the raster format. Besides, the
geometry of the elements at risk and of the areas involved by
dangerous processes is maintained with a high detail within
each polygon. The impacted areas are calculated through ge-
ometric analysis maintaining the highest precision available,
and referred only in the end to each polygon.

The constant area of terrain units ensures the homogeneity
of the analysis in spatial resolution, starting from heteroge-
neous input data with different scale and resolution.
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Fig. 3. Methodological scheme of the analysis. Subscripti refers to
each threat.

The adopted methodology for risk assessment is based on
indicators (Fig. 3). These indicators are developed at differ-
ent levels of complexity according to the availability of data
for each threat, thus allowing both to manage heterogeneous
data (in quality and quantity) and to integrate them iteratively
using all the available information.

5 Databases

Sources of hazard for landslide, snow avalanche and flood
were mapped using inventory maps, susceptibility models,
or national regulatory maps (see Tables 1, 2, and 3 for data
sources and scales). Through inventory maps we identi-
fied areas that are potentially hazardous under the assump-
tion that past events can be reactivated or occur in the fu-
ture under the same conditions (Varnes, 1984). These data
have been integrated with susceptibility zoning for some
phenomena that we considered not exhaustively represented
in the inventory maps, such as rockfalls and shallow land-
slides. For rockfalls, we applied a shadow angle approach
(Hungr and Evans, 1988; Jaboyedoff and Labiouse, 2003),
using 20 m×20 m DTM and two different angles for the
identification of higher (39◦) and lower (33◦) hazard zones.
For shallow landslides, we applied a coupled slope-stability
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Table 1. Hazard sources and relative scores adopted for landslide risk assessment. See Sect. 6 for scores explanation.

Symbol Hazard source Data source Scale Ref Score

HRF Areas susceptible to high-hazard rockfall Shadow cone model 1:10 000 1 0.40
LRF Areas susceptible to low-hazard rockfall Shadow cone model 1:10 000 1 0.30
AL Active landslide Inventory map 1:10 000 2 1.00
DL Dormant landslide Inventory map 1:10 000 2 0.90
IL Inactive landslide Inventory map 1:10 000 2 0.40
ADF Active debris flow Inventory map – buffer 10 m 1:10 000 2 0.80
DDF Dormant debris flow Inventory map – buffer 10 m 1:10 000 2 0.40
SL Areas susceptible to rainfall-induced shallow landslide Slope stability model 1:10 000 3.4 0.20
DSSD Deep seated gravitational slope deformation Inventory map 1:10 000 2 0.20
ADL Active diffused landsliding Inventory map 1:10 000 2 0.70
DDL Dormant diffused landsliding Inventory map 1:10 000 2 0.40
UDL Unclassified diffused landslides Inventory map 1:10 000 2 0.55

1: Jaboyedoff and Labiouse, 2003, 2: PROGETTO IFFI, 3: Dietrich and Montgomery, 1998, 4: Crosta and Frattini, 2003.

Table 2. Hazard sources and scores adopted for flood risk assessment. See Sect. 6 for scores explanation.

Symbol Hazard source Data source Scale Ref Score

FA 80% of 200 yr flood Regulatory map 1:25 000 5 1.00
FB 200 yr flood Regulatory map 1:25 000 5 0.70
FC 500 yr flood Regulatory map 1:25 000 5 0.20
LF Lacustrine flooding Historical data and LIDAR analysis 1:10 000 7 0.50
AAF Active alluvial fan Inventory map 1:10 000 2 0.80
DAF Dormant alluvial fan Inventory map 1:10 000 2 0.20
MiR River network Topographic map – buffer 10 m 1:10 000 8 0.60
DBF Dam-break flooding area Regulatory map 1:10 000 9 0.10

2: PROGETTO IFFI, 5: PAI, 7: Regione Lombardia, 2007, 8: CTR, 9: CIRC.MIN.LL.PP 352/1987.

and steady-state hydrological model (Dietrich and Mont-
gomery, 1998; Crosta and Frattini, 2003). We used a
20 m×20 m DTM, and we parameterized the model consid-
ering different combinations of superficial lithology and land
use, and assigning parameter values according to the litera-
ture and past experiences (Crosta and Frattini, 2003). Both
models provide an approximate assessment of susceptibil-
ity, but appear to be consistent with the scale and the aim of
the analysis, and they have been constrained and calibrated
through available event data.

For floods, we adopted hazard zones delimited according
to national regulatory maps for both major rivers and 73 dam
break scenarios (Table 2).

Data for wildfire risk derive from a Regional database
which includes wildfire events occurred in the period 1975–
2005 (SIAB). For each event, the location of initiation point,
the affected areal extent, and the damages are available.

For seismic risk, we used the Italian seismic hazard map
(MPS working Group, 2004), that expresses the hazard in
terms of peak ground acceleration (PGA) with a return period
of 475 years (exceedance probability of 0.1 in 50 years).

Table 3. Hazard sources and scores adopted for snow avalanche
risk assessment. See Sect. 6 for scores explanation.

Symbol Hazard source Data source Scale Ref Score

SA Snow avalanche Inventory map 1:10 000 6 0.5

6: SIRVAL.

Regarding the industrial risk, due to incomplete documen-
tation about the productive processes and the accident scenar-
ios, we considered only explosion-related accidents, neglect-
ing those related to the release of toxic gas and pollutants.
Sources of industrial hazard are represented by 246 major
risk plants, identified by a national law (D.Lgs. 238/05, ac-
cording to Seveso Directive 96/82/CE), and mainly located in
the plain, in highly urbanised areas. To define a hazard zone,
we considered a 1-km radius buffer around the external bor-
dure. This is not fully realistic because it does not account
for wind direction and velocity, and other meteorological
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conditions for which not enough data are available. Never-
theless, in defining a buffer of 1 km we adopted a conserva-
tive approach. In fact, most industrial accidents are entirely
limited in the plant itself.

Work injury statistics regard accidents occurred to workers
regularly registered to INAIL (national insurance for work
injuries). Irregular non-insured workers are excluded from
the statistics. The database used for work injuries was pro-
vided by INAIL and refers to the period 1999–2001. Acci-
dents are classified according to the causes of injures, and
their severity.

Road accidents include the ones occurring on different
road typologies (i.e. highway, state, municipal, urban and
extra urban roads) and involving all types of vehicles. Ac-
cidents also include injuries to pedestrians. Road accidents
statistics were extracted from the ISTAT database for the
1999–2004 period. A regional traffic model for the main road
network was used to normalise road accidents with respect to
the expected traffic flux.

As for meteorological risk, due to the lack of complete
and homogeneous data, only lightnings were considered, al-
though they represent only a small part of the whole mete-
orological risk. For the 1996–2005 period, data relative to
the number of annual lightnings per 4 km2 cells were pro-
vided by the network of the Italian Survey Lightnings System
(SIRF-CESI). The network is composed of 16 sensors on the
whole Italian territory.

5.1 Exposed elements

The identification and mapping of the elements at risk, were
conducted with a high spatial accuracy, by using different
databases. Human life was not included in the analysis as
an independent element at risk. We indirectly accounted for
the number of people, potentially involved in dangerous phe-
nomena, by attributing a value of human presence to each
class of exposed elements (Table 4), based on the average
assumed annual occupancy.

We identified 23 classes of exposed and vulnerable ele-
ments,Tj , and we mapped each element by using different
1:10 000 maps available at a regional scale. Main categories
of exposed elements include: residential areas, lifelines, ma-
jor industrial plants, strategic buildings (schools, hospitals,
etc.) and natural resources (Table 4, Fig. 4).

6 Weighting strategies

We aggregated the different indicators by applying appropri-
ate weights based on expert knowledge. Case by case, we
selected the most convenient weighting strategy (Budgetary
Allocation, Fuzzy Sets, and Analytic Hierarchy Process).

Budgetary Allocation is the simplest and more direct way
to find weights based on the personal believe. The technique
is based on the distribution and allocation of a budget (i.e.,

100 scores in our analysis) over the different indicators (Car-
dona et al., 2004). It was adopted to assign weights to the
indicators of physical risks and aggravating factors due to its
capability to manage a large number of variables.

Fuzzy sets (Zadeh, 1965) are useful while attempting to
aggregate different dimensions of a complex problem, ex-
pressed also in a linguistic way. For each dimension, the
linguistic attributes correspond to fuzzy sets with Gaussian
membership functions. These are aggregated using the union
defuzzification method (Cardona et al., 2004) in order to pro-
vide a final score This approach was used to aggregate the
different dimensions of the target value scores (Table 4) due
to its capability to account for multidimensional linguistic
attributes.

Analytic Hierarchy Process (AHP, Saaty, 1990) is a widely
used technique for multi-attribute decision making. AHP en-
ables the decomposition of a problem into hierarchy and as-
sures that both qualitative and quantitative aspects of a prob-
lem are included in the evaluation process. The opinion about
the dominance of risks is systematically extracted by means
of pair-wise comparisons. A preference of 1 indicates equal-
ity between two indicators while a preference of 9 indicates
that one indicator is 9 times larger or more important than the
other. The weights are obtained by rescaling between 0 and 1
the eigenvectors relative to the maximum eigenvalue for the
matrix of the coefficients, resulting from the pair-wise com-
parisons. We used this technique for the integration of the
different risks, due to its capability to check the internal co-
herence of the expert’s attributions through the calculation
of the Consistency Ratio (CR, ranging from 0 to 100). CR
values lower than 10 assures an excellent coherence of the
attributions (Saaty, 1990).

For Budgetary allocation, Fuzzy logic and AHP, 15 experts
from different disciplines were involved. They are:

– five research geologists with expertise on landslide,
flood, and avalanche risk,

– three Civil Protection officers responsible for the allo-
cation of economic resources for mitigation projects,

– two environmental researchers working on natural and
technological risks,

– five public administrators with expertise in natural and
technological risks.

7 Physical risk indicators

The physical risk indicator,RP , is a dimensionless score
expressing the expected direct loss consequent to a haz-
ardous event. According to the intrinsic nature of each threat
and data quality and availability, the physical risk has been
evaluated at three different levels of complexity.
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Table 4. List of the exposed elements and scores for the different dimensions of value: HL = human life, ENV = environmental, DIR = direct
economic, INDIR = indirect economic, MIT = Relevance for mitigation. Map scale 1:10 000. See Sect. 6 for scores explanation.

Exposed elements ref HL ENV DIR INDIR MIT Aggregated
fuzzy score

Continuous residential area 1 very high null very high high moderate 0.080
Discontinuous residential area 1 high null high moderate moderate 0.066
Main road 2 high null moderate high high 0.069
Secondary road 2 moderate null low hoderate moderate 0.031
Railway line 2 high null moderate high very high 0.071
Powerline 2 null null low high high 0.082
Power plant 3 null null high high moderate 0.067
School 3 very high null high low high 0.086
Hospital 3 very high null very high very high very high 0.103
Tourist facility 3 low null moderate low low 0.029
Sport structure 1 low null low low low 0.010
Industrial plant 4 moderate null high high null 0.066
Railway station 3 high null high high high 0.086
Airport 3 high null moderate high low 0.067
Industrial area 1 high null high high low 0.077
Forest 1 null low low low null 0.002
Coppice 1 null low low low null 0.001
Bank vegetation 1 null low null low null 0.000
Pasture 1 null low null low null 0.000
Natural park 1 null moderate low low null 0.001
Wooden cultivation 1 null low low low low 0.002
Sowable land 1 null low low low low 0.002
Urban park 1 low low low low low 0.002

1: DUSAF, 2: CTR, 3: MISURC, 4: D.Lgs. 238/05.
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Fig. 4. Sources of hydrogeological hazard(a) and exposed elements(b): example for a selected area (zoom area in Fig. 1). The 1 km×1 km
square polygons used for the analysis are shown.
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Fig. 5. Example of calculation of physical risk with two impact
indicators (i.e. dormant deep-seated landslides impacting on resi-
dential areas and roads). The same methodology has been applied
for landslide, avalanche, flood, industrial, and seismic risk.

The simplest level of analysis was applied to road ac-
cidents, work injuries and lightnings. For these threats,
we built sets of indicators based on statistics of available
data (PRIM, 2007). The physical risk was calculated as a
weighted sum of these indicators.

For landslide, avalanche, flood, industrial and seismic
risks, we built impact indicators,I . Each indicator is defined
as the portion of 1 km×1 km cell where a specific target is
impacted by a specific hazard (Fig. 5). The physical risk,
RP , is then calculated as:

RP =

N∑
i,j=1

(
hi ·vi,j ·wj

)
Ii,j

N∑
i,j=1

(
hi ·vi,j ·wj

) (1)

whereh is the score for the hazard sourcei (see Tables 1, 2,
and 3),w is the score of the exposed element valuej (see
Table 4), andv is the score for the vulnerability of the im-
pacted target. The vulnerability score expresses the level of
potential damage of each target in response to each hazard.

Due to the large number of scores to be assessed, AHP
was not applicable in this case. Scoresh andv have been as-
sessed by means of a budgetary allocation method, while the
scoresw have been obtained through a fuzzy logic approach.
The scorew expresses a multi-dimensional value accounting
for: the economic (direct and indirect) and environmental
value, the potential for human losses, and the relevance for
mitigation. The economic value was assigned on the basis
of regional-averaged economic estimations, without consid-
ering site-specific value distribution (e.g., value of buildings
according to proximity of city centre). The other value com-
ponents (e.g., human lives, environmental value, relevance
for mitigation) were assigned on the basis of expert knowl-
edge.

For wildfires, a large amount of data was available, and
it was possible to develop a scenario-based risk assessment
(PRIM, 2007). For each terrain unit, the wild-fire risk was
calculated by summing up the product of hazardH , vulnera-
bility V , and valueW :

RP =

M∑
m=1

N∑
n=1

HmVm,nWn (2)

whereM is the number of wild-fire scenarios andN the num-
ber of exposed elements.

In order to allow a comparison of physical risks, we nor-
malized each value by the corresponding regional mean.

7.1 Hydrogeological risk

The hydrogeological risk appears to be strongly controlled by
the physiographic setting (Fig. 6), and mainly affects moun-
tainous areas, alluvial plains and valley floors, with maxi-
mum values along alpine valleys, where flood and landslide
risks co-exist with a high urban density. Although this re-
sult was expected, it is important to stress that the analysis
allowed to quantitatively estimate the risk levels among dif-
ferent terrain units, which is important for the development
of mitigation strategies, for the allocation of economic re-
sources, for the planning of new urban areas, and for priori-
tising the mitigation actions.

To investigate the control of physiographic setting on hy-
drogeological risk we grouped the terrain units according to
the mean elevation in classes of 100 units. For each class,
we calculated the mean physical risk for landslide, flood,
and snow avalanche (Fig. 7). The maximum landslide risk
is reached at 500 m a.s.l., where the density of exposed urban
settlements and infrastructures is higher. The snow avalanche
risk is negligible below 1500 m a.s.l. (Fig. 7a), and is gen-
erally low because these processes are common in non ur-
banised areas (Fig. 7b). The flood risk is very relevant in two
different elevation intervals corresponding to either the lower
Po plain or the main alpine valleys (e.g. Valtellina), where
rivers are not entrenched below the plain level and popula-
tion density is relatively high.

7.2 Other risks

Wildfire hazard was assessed for three reference scenarios of
wildfire size (Fig. 8). The choice of the scenarios derives
from the regional fire-prevention plan. For each scenario,
an exceedance probability was extracted from frequency-size
analysis of 2880 events occurred in the 1975–2005 period
(Fig. 8).

By means of a discriminant analysis (Klecka, 1980), the
wildfire spatial susceptibility was assessed for each land unit
as a function of both the previous fire distribution and the pre-
disposing factors (e.g. slope, elevation, aspect, land use, type
of vegetation, pirologic potential, river network density, road
density). This susceptibility expresses the wildfire potential
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Fig. 6. Landslide(a), flood (b), avalanche(c), and aggregated hydrogeological(d) physical risks, RP. Values of risk are normalized by the
regional mean.
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Fig. 7. Flood, landslide, and avalanche physical risk for different elevation quantiles. Risk values are normalised with respect to the regional
mean of:(a) each single threat;(b) the hydrogeological physical risk.

for each unit. Hazard was then calculated by multiplying
this susceptibility by the regional probability of occurrence
of each scenario (Fig. 8). In the assessment of the value of
the exposed territory, a great importance has been assigned

to the presence of protected natural areas, according to their
environmental value (i.e. EU Relevant Places, Special Pro-
tection areas, Natural reserves, Natural Parks, National and
Regional parks).
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Fig. 8. Wildfire area vs annual exceedance probability, for the three
scenarios. Annual exceedance probability (AEP) and recurrence
interval (RI) of each scenario are reported in the table. The ex-
ceedance probability was calculated from annual frequency (wild-
fire n◦/total wildfire n◦/30 years) of logarithmically binned wildfire
areas.

Seismic risk was assessed using the same approach
adopted for hydrogeological risk, with the same targets ex-
cept for buildings, that have been subdivided according to
their period of construction (before 1919, between 1920 and
1945, 1946–1961, 1962–1971, 1972–1981, 1982–1991, after
1992), in order to account for different vulnerability.

Industrial risk was assessed by means of impact indicators
using the same targets of hydrogeological risk and the 1 km
wide buffer around the plant as source of hazard.

Meteorological risk was assessed using the mean num-
ber of annual lightnings for 30 km×30 km grid cells (SIRF-
CESI). Differently from the other threats, this is more a
hazard rather than a risk indicator, because it does not in-
clude any assessment of the impact on the exposed elements.
However, since lightnings are ubiquitous and impacting all
exposed elements in an homogeneous way, this limitation
should not introduce significant errors in the analysis.

For road accidents, a composite indicator was used, aggre-
gating the number of accidents, the number of injured people
and the number of fatalities. These data were analysed for
each municipality and for different road typologies (i.e. high-
way, state, municipal, urban or extra urban road).

For work injuries, the accident rate for different typologies
of activity was used as a risk indicator. This rate expresses
the possibility of an accident for a given activity at a certain
place and in a given time period for a certain number of op-
erators.

For both work injuries and road accidents, the physical risk
was assessed by a weighted sum of these indicators. Weights
were assigned through budgetary allocation.

0 40 80 Km±

Aggravating 
factor

0

1

Fig. 9. Map of the aggravating factor,F , normalised with respect
to the maximum value. Example for the hydrogeological risk.

8 Aggravating factor

The aggravating factor,F , is an indicator that expresses the
lack of coping capacity and resilience of the society, poten-
tially inducing to an aggravation of risk, in terms of indirect
costs. It varies from 0 to 1, under the assumption that it can
induce costs amounting to a maximum of 100% of the phys-
ical risk (Cardona, 2004).

F was assessed through a multi-criteria approach based
on indicators. For each risk we used the same set of indica-
tors, with different weights (Table 5). The aggravating factor
was calculated through the weighted average of the indica-
tors (weights in Table 5), normalized by the maximum value.
The effective distances from each cell to emergency manage-
ment facilities was calculated through a cost distance func-
tion, which minimizes the travel time. A budgetary alloca-
tion was performed to assign the weights to the 10 indicators
with respect to their importance in coping with risks. The
aggravating factor was then mapped at a regional scale in
1 km×1 km square polygons.

The aggravating factor for the hydrogeological risk is pre-
sented (Fig. 9). The factor is null in densely populated re-
gions, where the connectivity is high, the emergency struc-
tures are closer, and the civil protection groups can be
quickly activated. Due to the presence of civil protection
plans and groups, the aggravating factor is low even in some
mountain areas with poor connectivity. This behaviour is
similar for the aggravating of the other threats.

9 Total risk assessment

For each risk, the Total Risk (RT ) indicator was calculated
following Cardona et al. (2004):

RT = RP ·(1+F) (3)

whereRP is the Physical Risk, andF is the aggravating fac-
tor.
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Table 5. Weights for aggravating factor indicators.

Indicator Hydro Wildfire Seismic Meteo Industr Road Work

Presence of volunteer civil protection group 0.01 0.02 0 0 0 0 0
Presence of municipal civil protection group 0.02 0.05 0.02 0.02 0.01 0 0
Presence of inter-municipal civil protection group 0.02 0.05 0.02 0.02 0.01 0 0
Distance from closest first aid station (basic equipment) 0.04 0.04 0.04 0.04 0.03 0.07 0.08
Distance from the closest first aid station (advanced equipment) 0.06 0.05 0.06 0.06 0.05 0.11 0.12
Distance from the closest fire brigade department 0.09 0.08 0.09 0.09 0.11 0.08 0.07
Distance from the closest police department 0.03 0.03 0.03 0.03 0.03 0.12 0.05
Distance from the closest hospital 0.42 0.27 0.42 0.42 0.23 0.47 0.63
Presence of a municipal civil protection plan 0.24 0.27 0.24 0.24 0.4 0 0
Interconnection level (number of road network nodes) 0.03 0.12 0.03 0.03 0.1 0.12 0.03

The spatial pattern of risk seems controlled by different
factors depending on the threats.

Wildfire risk is evenly distributed on forested areas, and
appears to be independent from the distribution of man-made
elements, being the forest itself the principal element at risk
(Figs. 10 and 11). It is quite rare, in fact, that other targets
(e.g. buildings) are completely surrounded by forests and im-
pacted by wildfires. We also considered that roads are not
destroyed or damaged by fire. On the contrary, they are able
to break the forest continuity, thus stopping or slowing down
the fire propagation, or to favour the intervention.

Seismic risk is mostly present in the eastern part of the
Region, where seismic hazard is higher (Figs. 10 and 11),
whereas the meteorological risk spreads over the whole study
area, with a slight increase in the southern Alps, due to more
frequent stormy conditions (Figs. 10 and 11). Industrial risk
shows a spot distribution controlled by the location of major
risk plants, close to the main cities (Milano, Varese, Bergamo
and Brescia) (Figs. 10 and 11). Road accidents and work
injuries show a spatial pattern which is largely controlled by
the distribution of urbanized areas (Figs. 10 and 11).

10 Risk integration

Total risks,RT , normalized by their regional mean value,
were aggregated into a multi-risk index with AHP which pro-
vided a robust set of weights and allowed to evaluate the in-
ternal coherence of each expert by means of the Consistency
Ratio, (CR) (Saaty, 1990) (Fig. 12, Table 6).

By selecting different subsets of threats, we produced
maps of 1) natural risks, including hydrogeological, seismic,
wildfire and meteorological risk (Fig. 13a); 2) social acci-
dents, including work injuries and road accidents (Fig. 13b);
and 3) na-tech risk including both natural risks and indus-
trial risk; (Fig. 13c), and 4) integrated risk, including all risks
(Fig. 14a). In order to analyse the dominance of the threats
over the region, we identified for each cell the risk with the
highest weighted value (Fig. 14b).

Table 6. Weights associated to each risk typology for the production
of the integrated multi-risk map as resulting from AHP analysis.

Risk Mean Median Std. dev Range

Hydrogeological 0.16 0.15 0.05 0.12
Wildfire 0.04 0.04 0.03 0.11
Seismic 0.06 0.05 0.03 0.11
Meteorological 0.06 0.03 0.05 0.17
Industrial 0.10 0.10 0.05 0.18
Road accidents 0.35 0.37 0.09 0.27
Work injuries 0.24 0.23 0.04 0.17

Consistency ratio 14.85 11.75 6.77 20.29

11 Hot spot identification

On the basis of the integrated risk map, we finally detected
risk hot-spots, defined as contiguous areas that respect the
conditions of a minimum number of co-existing threats hav-
ing a relevant risk level. By changing these conditions we
developed three maps characterized by: at least 1 threat with
a very high risk value, 10 times the regional mean, or more
(Fig. 15a); at least 3 threats with medium risk value, 1.5 times
the regional mean, or more (Fig. 15b); at least 2 threats with
high risk value, 3 times the regional mean, or more (Fig. 15c).

To delineate the hot-spots we first calculated for each
1 km×1 km square polygon the number of risks and their
level with respect to the regional mean. Then, we selected all
the terrain units satisfying the given set of conditions, and we
merged contiguous terrain units into large polygons. Finally,
we calculated the area of each polygon, and we reclassified
the hot spots according to their size.

In general, high risk hot spots include large urban areas,
their main industrialized districts and the main traffic cor-
ridors (Milano and its northern neighbourhoods, Bergamo
and neighbourhoods, Brescia, Sondrio, Varese), due to the
high value of the exposed elements, together with a high
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Fig. 10. Maps of normalized total risk, RT, for: hydrogeological risk(a), wildfire (b), seismic(c), meteorological(d), industrial(e), road
accidents(f), and work injuries(g). Risk values are expressed with respect to the regional mean.
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Fig. 12. Risk weights attributed by each of the 15 members of the
technical panel, by means of the AHP method.

number of road accidents and work injuries. When consider-
ing the co-existence of different threats with lower risk val-
ues (Fig. 15b and c), hot-spots appear also in rural areas in
Valtellina, in the northern area of the Milano province, in the
prealpine valleys into the north of Brescia and Bergamo, and
in the low Po plain.

The analysis of the percentage of square polygons with
more than a certain number of threats (Fig. 16) shows that
many cells are affected by more than one threat, especially
for moderate risk level (e.g., 40% of cells have more than
2 risks exceeding level 1). This suggests that the coexistence
of threats in Lombardy is significant, thus justifying the anal-
ysis of the risks in an holistic way. Large areas and many
people are threatened by various risks that do not reach high
levels, but can interact to originate complex or domino ef-
fects. In order to develop an efficient mitigation strategy, the
coexistence of them must be taken into account.

12 Sensitivity analysis

Due to the uncertainties associated to the weighting of the in-
dicators, we decided to perform a sensitivity analysis to eval-
uate the variation of outputs to small changes in the weight.
As example, we present the sensitivity analysis related to: 1)
the scores of hazards and exposed elements for hydrogeolog-
ical physical risk, 2) the weights of aggravating indicators
of hydrogeological risk, and 3) the weights of all different
threats for their aggregation.

The hydrogeological physical risk is linearly correlated
to the variation of both hazard sources and target scores.
The sensitivity is higher for variables characterised by high
scores, and large spatial diffusion (e.g., 500 years flood,
Fig. 17; discontinuous residential areas, Fig. 18). For the
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ber of road accidents and work injuries. When considering
the co-existence of different threats with lower risk values
(Fig. 15b and c), hot-spots appear also in rural areas in Val-
tellina, in the northern area of the Milano province, in the
prealpine valleys into the north of Brescia and Bergamo, and
in the low Po plain.

The analysis of the percentage of square polygons with
more than a certain number of threats (Fig. 16) shows that
many cells are affected by more than one threat, especially
for moderate risk level (e.g., 40% of cells have more than
2 risks exceeding level 1). This suggests that the coexistence
of threats in Lombardy is significant, thus justifying the anal-
ysis of the risks in an holistic way. Large areas and many
people are threatened by various risks that do not reach high
levels, but can interact to originate complex or domino ef-
fects. In order to develop an efficient mitigation strategy, the
coexistence of them must be taken into account.

12 Sensitivity analysis

Due to the uncertainties associated to the weighting of the in-
dicators, we decided to perform a sensitivity analysis to eval-
uate the variation of outputs to small changes in the weight.
As example, we present the sensitivity analysis related to: 1)
the scores of hazards and exposed elements for hydrogeolog-
ical physical risk, 2) the weights of aggravating indicators
of hydrogeological risk, and 3) the weights of all different
threats for their aggregation.

The hydrogeological physical risk is linearly correlated
to the variation of both hazard sources and target scores.
The sensitivity is higher for variables characterised by high
scores, and large spatial diffusion (e.g., 500 years flood,
Fig. 17; discontinuous residential areas, Fig. 18). For the
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Fig. 13. Integrated risk maps normalized with respect to mean re-
gional value, by expert weighting, for(a) natural risks,(b) road,
and work accidents.(c) Na-tech risks (hydrogeological, seismic,
wildfire, meteorological and industrial risks).
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aggravating factor,F , the most sensitive indicators are the
presence of a civil protection plan and the distance from hos-
pitals (Fig. 19). For the integration of risks (Fig. 20), the
slope of the trend line simply corresponds to the weight of
each threat, since the integrated risk is a weighted mean of
the total risks. Hence, a percent variation in the larger weight
causes larger variations in the integrated risk.

13 Discussion

The generation of multi-risk maps is a complex task that
has been tackled in this paper. The first step of the analy-
sis consists in the identification and mapping of the hazard
sources. This step can present some difficulties related to:
the data spatial resolution (especially for landslides, work in-
juries, lightnings, road accidents), the temporal window cov-
ered by the databases (e.g. work injuries, road accidents), the
difficulty in defining the area of influence of some hazards
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Fig. 17. Sensitivity analysis for hazard sources scores. See legends for reference of letters a, b, c, and d.
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Fig. 18. Sensitivity analysis for target value scores See legends for reference of letters a, b, c, and d.

(e.g., industrial accidents, wildfires), the availability of data
for some risks (e.g. meteorological, industrial), for which we
needed to limit our analysis to a sub-set of specific phenom-
ena. As a consequence, the hazard sources are characterized
with different accuracy and homogeneity, thus hampering the
use of more rigorous methods (e.g., Probabilistic Risk assess-
ment, PRA).

Weighting of indicators is a step that may introduce uncer-
tainty. On a case by case approach, we select different tech-
niques to reduce this uncertainty, all based on expert knowl-
edge: fuzzy logic was used to aggregate different dimensions
of value, while AHP was used when the number of consid-
ered variables was limited. Otherwise, the use of AHP would
have been too complex and time costly. This forced us to
perform a simpler budgetary allocation. Evaluating the un-

certainty and its propagation in risk assessment is not simple
at this scale of analysis, and feasible only for more detailed
studies (Lari, 2009).

However, due to these uncertainties, we adopted a conser-
vative approach, by always considering the worst possible
case. This was done both in the identification and mapping
of hazard scenarios, and in the evaluation of the aggravating
factors.

With respect to previous multi-risk assessment studies, our
methodology allows a higher spatial resolution. We preserve
the spatial detail of local scale studies (Cardona and Hur-
tado, 2000; Masure, 2003; Cardona, 2001; Barbat and Car-
dona, 2003) within a regional scale analysis, also considering
different risks as in ESPON (2005) and UNDR/HOT SPOT
projects (Dilley et al., 2005).
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13.1 Spatial pattern of risk

The spatial pattern of different risks in Lombardy is governed
by the distribution of either the hazards or the exposed ele-
ments: the first case is common for risks related to larger and
infrequent events (hydrogeological, seismic, wildfire, and in-
dustrial risks), whereas the second is common for frequent,
and evenly distributed events (road accidents and work in-
juries).

The spatial distribution of different threats in Lombardy
is strongly controlled by the physiographic setting (e.g. land-
slides, avalanches), as results from the analysis of normalised
total risk for all the municipalities located in plain, hilly, or
mountainous areas, according to ISTAT (National Institute of
statistics) classification (Fig. 21). To refine this analysis, we
also grouped the terrain units according to the mean eleva-
tion in classes of 100 units, and we analysed the risk of each
threat within all the elevation classes (Fig. 22).

The area below 100 m a.s.l., which occupy almost 35% of
Lombardy, is characterised by a overall low risk level. This is
a rural area, with a relatively low population density, scarce
industrial activities, and with dominant threats related to road
accidents, hydrogeological risk in the flooding area of the Po
river, and a few localised industrial risks and work injuries
(e.g. Cremona area).

The area between 100 and 200 m a.s.l. (almost 15% of the
territory) shows the highest risk value. This includes the most
populated zones (e.g., Milano and Brescia), and is affected
by severe threats related to human activities (industrial risk,
road accidents and work injuries) and to seismic risk (Bres-
cia). Considering weighted risks, a strong dominance of road
accidents is observed (Fig. 22).

In the area between 200 and 500 m a.s.l. (almost 15% of
the territory), we observe a decrease of the overall risk level,
linked to a decrease of population density and economic
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Fig. 21.Total risks relevance for municipalities classified according
to the physiographic setting.

activities. The dominant threats change progressively from
technological to natural (landslide, wildfire) with the ex-
ception of seismic risk, which is independent from altitude.
Above 500 m a.s.l. (almost 35% of the area), the risk level
decreases because of the scarcity of human-related exposed
elements. In this area the meteorological threat appears to be
dominant, merely because other risks are absent. Road acci-
dents in mountain areas are locally relevant (e.g. higher Val-
tellina, Fig. 19c) along strategic transnational roads (Fig. 22).

In order to observe the relations with the population den-
sity, we calculated the mean physical risk value for each mu-
nicipality (Fig. 23). Work and road accidents are linearly
correlated with population density: these threats are diffused
on the whole study area, and then controlled by the spatial
distribution of the elements at risk, i.e. people.

Industrial and seismic risks appear to be mostly influenced
by the distribution of the hazard sources: spot-like in the
first case, diffused but increasing towards north-east in the
second.
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Fig. 22. Relevance of each total risk for different elevation quantile classes:(a) distribution of population and productive activities,(b)
normalised superimposed risk values with respect to the regional mean,(c) superimposed risk values weighted according to expert AHP
weighting (Fig. 24).

Wildfire and hydrogeological risks do not show a clear
correlation with the population density: being relatively lo-
calised, they affect only some towns of the area, generally
in the mountainous part and characterised by low population
density (e.g. Sondrio).

13.2 Influence of risk perception on weighting process

As mentioned above, the weighting process is intrinsically
subjective. For this reason, the results can be conditioned
by the individual attitude or point of view of stakeholders,
inhabitants and experts involved in weighting. In order to
further investigate this issue, we performed a simple Bud-
getary Allocation considering four possible alternatives: ex-
pert opinion, risk averse attitude, social perception, and po-
litical perception. In Fig. 24, we show the relative averaged
weights assigned to each threat from the different perspec-
tives.

Weights obtained through Budgetary Allocation differ
from those derived by the AHP method. The AHP weights
show a stronger importance of road accidents and work in-
juries, that together amount to 60% of the total. In the Bud-
getary Allocation method, the attribution of the weights is

direct; this can lead single experts to be reluctant and more
cautious in attributing strongly unbalanced weights.

Risk aversion is an attitude to risk where relatively fre-
quent small accidents are more easily accepted than one sin-
gle rare accident with large consequences, although the total
expected losses are equal in both cases. In our case, industrial
and seismic risks, which can potentially have catastrophic
consequences, are perceived to be more severe than road ac-
cidents and work injuries (Fig. 24).

The social perception is considered as the perception of
common non-expert people who accept more easily volun-
tary rather than non-voluntary risks, and who consider more
critical those risks that could be potentially controlled by the
public administrator through defensive works, regulations
and other mitigation strategies. In our analysis, this implies
that a typical risk related to single behaviour, such as road
accident, is perceived as less important, and seismic risk is
also under-estimated because fatalistically perceived as un-
controllable (Fig. 24).

Finally, the political perception is strongly conditioned by
the public administration objectives and by the management
duties: a strong importance is given to the threats related to
human activities or to planning strategies (Fig. 24).
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Fig. 23. Averaged level of risk (normalised by the regional mean)
with respect to the population density of each municipality.

13.3 High risk/hot-spot areas

Within a multi-risk framework, the criticality of an area de-
pends on: 1) the number of interacting risks that co-exist at
the same place, and 2) the level of each risk (a lonely risk, if
acute, can be problematic and conditioning for land planning
and development). On the basis of these criteria, we detected
contiguous areas representing risk “hot spots”. We propose
three possible scenarios for the identification of hot spot ar-
eas. The first scenario highlights areas with maximum risk
level, but does not account for the co-existence of risks. The
other scenarios consider the simultaneous presence of more
than one risk. Since this is a predisposing factor for domino
effects and interactions that can increase the criticality of
an area, for example by increasing the aggravating factor
(destruction of facilities, roads, infrastructures), the second
and third scenarios look preferable (Fig. 15). The choice
among these two scenarios depends on the characteristics of
the territory, and the complexity of the interactions among
different processes.

The extent of the “hot-spots” can be important for land
planning, for development and prioritisation of mitigation
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strategies. Large “hot spots” are more critical for risk man-
agement because they include large and complex socio-
economic systems with potentially strategic infrastructures
and services. The larger the “hot-spot”, the larger the exter-
nal area of influence that can be potentially affected in case
of a system breakdown.

We observe that only few large “hot spots” (Fig. 25) affect
high percentages of the total exposed value: the three largest
areas include 30% (scenario b), 22% (scenario c), 19% of the
regional value (scenario a) and most of the population (see
Table 7). For this reason, some actions focused on these areas
could be significant to control a large part of the regional
criticalities. This underlines the relevance of these results in
developing a risk mitigation and management policy.
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Table 7. Hot-spot risk areas, extension and exposed value.

scenari # threats risk level hot spot population residential productive % regional % value exposed
area area area area elements
(km2) (# people) (km2) (km2)

a at least 1 very high 3264 5 300 516 620.4 284.8 14 40
b at least 2 high 5228 6 637 056 911.3 384.2 21.9 56
c at least 3 medium 4164 5 866 495 778.4 327.9 17.4 48

14 Conclusions

Combining risks with different characteristics, metrics and
distributions is extremely difficult, but it is useful for some
public administrations, which have to manage and plan miti-
gation strategies not only on critical situations deriving from
a single specific risk, but on the territory in its complexity
considering the interaction between threats, processes, and
dynamics.

Presently, the Lombardy region lacks the conditions for a
fully quantitative, probabilistic multi-risk analysis, because
of heterogeneity in data quality and availability. For this
reason, only an indicator based approach was possible at
the scale of the analysis. For the same reason we adopted
1 km×1 km terrain units, that can be considered reasonable
with the current data availability and scale of the analysis.

Although the analysis is perfectible, it allows the detection
of integrated risk areas and “hot-spot” areas useful for deci-
sion making and prevention policies, and for the realisation
of integrated area management plans.
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