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Abstract. There will be a change in the Earth’s local sub-
surface thermal structure before and/or after an earthquake.
In this work we have introduced a new parameter (I) which
relates integral effect of temperature variation and seismic
activity. This parameter in its various forms integrates the
temperature variations during one year before and after earth-
quake. Some recent earthquakes are chosen throughout Iran
on Alps-Himalayas fault zone with magnitudes 4.5 and more.
Subsurface temperatures up to one meter depth measured in
nearby weather stations are used as there is no deeper data
available. We found the new defined parameter (I) has a
direct relation with earthquakes magnitude (M) and reverse
relation with distance (d) between earthquake focus and sta-
tion in which temperature is measured. Suitable formulas for
these relations are suggested regarding the magnitude ranges
and time period with respect to the earthquake time. There
may be a way to use this new parameter as a quake precursor.

1 Introduction

Earthquake prediction has always been an effect in many
relevant researches, though there has been usually no desir-
able results. This is because of the complicated behaviour
of Earth’s mechanical and dynamical structure and a limita-
tion of interior data. But there are reports on physical and
even chemical variation during an earthquake which may re-
lates many parameters to earthquake activities; e.g. changes
in Radon flux (Ulomov and Mavashev, 1967), groundwa-
ter flow (Yamaguchi and Otaka, 1978), electrical resistivity
(Mazella and Morrison, 1974; Quian, 1985)), vertical move-
ments (Mogi, 1982and temperature variation related to tec-
tonic activities (Notsu et al., 1980; Shimamura et al., 1985;
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Kitagawa et al., 1996; Hamza, 1997, 1998, 2001; Rezapour
et al., 2007). Thermal anomalies on time and places of earth-
quakes are also reported by satellite studies with desirable
resolution (Tronin, 1996, 2000; Tronin et al., 2002; Saraf and
Choudhury, 2005; Chen et al., 2006).

In fact due to earthquake activities changes in Earth’s lo-
cal sub-surface resistivity, electric and magnetic potentials,
Radon gas, stress and strain, friction, water flow and so
on altogether cause change in local thermal structure. No
matter how much each may affects the temperature, but the
integration of their effects in time of earthquake can have
some effect on sub-surface temperature. The key question is
whether there is a parameter relating this thermal anomaly to
the earthquake parameters. Here by introducing a parameter
we test the seismic thermal anomaly for some earthquakes in
Iran.

2 The I parameter

Due to a shortage of data especially deep soil and water
temperatures, the nearest earthquakes to weather stations are
chosen. In these stations soil temperatures are measured only
up to a maximum one meter. To define the parameterI by
which the variation of temperature (caused by earthquake
activities) relates to the quake parameters the deadly Bam
earthquake, south-east of Iran is chosen. This earthquake of
magnitude 6.5 happened on 26 December 2003 and killed
close to 40 000 people.

Sub-surface temperatures measured in Bam weather sta-
tion indicate that surface and atmospheric conditions have a
smooth influence on deep temperatures (Fig.1a) though the
city is situated the desert. For more stability the time is cho-
sen about sun rise (03:00 UT) during November 2002, a year
before the earthquake. The nine years average temperature at
one meter depth (Tav) with consideration of seasonal effects
has a smooth sine like graph (Fig.1b).
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Fig. 1: a) Temperature variation at 5, 10, 20, 30, 50 and 100 centimeter depth at 03:00 UT during November 2002. 
b) A nine years average temperature at one meter depth in Bam 

 

Annual variation of temperature in this graph is due to heat conduction from the surface 
according to the Fourier’s law;  
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Fig. 1. (a) Temperature variation at 5, 10, 20, 30, 50, and 100 cm
depth at 03:00 UT during November 2002.(b) A nine years average
temperature at one meter depth in Bam.

Annual variation of temperature in this graph is due to heat
conduction from the surface according to the Fourier’s law;
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whereH is the ground heat flux,T temperature,k coeffi-
cient of thermal conductivity,κ=k/ρc is thermal diffusivity,
ρ density andc is specific heat. These, subjected to a sinu-
soidal heat wave at the surface (with amplitudeTs) lead to
relations for temperature at different depths and also surface
heat flux;
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whereT =T (z→∞), ω is wave angular frequency of heat
wave,t is time andD′

=(2κ/ω)1/2 is damping depth (Arya,
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is damping depth (Arya 1998). D' is the damping depth for daily temperature variation if rather 
small, typically 0.1 to 0.15 m. So that the surface heat wave due to daily variation damps very 
quickly below the surface. Hence any changes in temperature in deeper parts are not due to short 
period surface heat wave. 

We will therefore work on temperatures at one meter depth. To eliminate seasonal effects we 
detrend the record and hence acquire ∆� = � − �)* which is a better indicator, where T is 
temperature at one meter depth at the time t and Tav  is the daily mean trend temperature for nine 
years at the same depth (Fig. 2). One reason for the change of ∆� may be seismic activities 
especially during time period of around of an earthquake. For example, considerable ∆� anomaly 
can be seen during the time period of Bam (26 Dec. 2003) earthquake (Fig. 2). There is an 
advantage here that this temperature anomaly consists of the integrated effects of all physical 
processes that may change due to the seismic activities and affect the sub-surface temperature. 
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Fig. 2: a) T (temperature) and Tav (nine years daily average temperature) versus time (t) during 2003-2004 one 

year before and a year after Bam disaster that is shown by ∗. b) ∆� versus time in same period as 2-a, M is 
earthquake magnitude, D focus depth (hypocenter) and R' is the epicentral distance to the weather station. 
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Fig. 2. (a)T (temperature) andTav (nine years daily average tem-
perature) versus time (t) during 2003–2004 one year before and a
year after Bam disaster that is shown by∗. (b) 1T versus time
in same period as2a, M is earthquake magnitude,D focus depth
(hypocenter) andR′ is the epicentral distance to the weather sta-
tion.

1998). D′ is the damping depth for daily temperature varia-
tion if rather small, typically 0.1 to 0.15 m. So that the sur-
face heat wave due to daily variation damps very quickly be-
low the surface. Hence any changes in temperature in deeper
parts are not due to short period surface heat wave.

We will therefore work on temperatures at one meter
depth. To eliminate seasonal effects we detrend the record
and hence acquire1T =T −Tav which is a better indicator,
whereT is temperature at one meter depth at the timet and
Tav is the daily mean trend temperature for nine years at the
same depth (Fig.2). One reason for the change of1T may
be seismic activities especially during time period of around
of an earthquake. For example, considerable1T anomaly
can be seen during the time period of Bam (26 December
2003) earthquake (Fig.2). There is an advantage here that
this temperature anomaly consists of the integrated effects
of all physical processes that may change due to the seismic
activities and affect the sub-surface temperature.

In order to compare the temperature variation due to seis-
mic processes with ones resulting from seasonal fluctuations
and other effects, the Fourier filtering applied to theT (quake
year temperatures) andTav functions and their frequency

Nat. Hazards Earth Syst. Sci., 9, 1815–1821, 2009 www.nat-hazards-earth-syst-sci.net/9/1815/2009/



H. Jalal Kamali et al.: Relation betweenI and seismic effects 1817

(a)

 

4 

 

In order to compare the temperature variation due to seismic processes with ones resulting 
from seasonal fluctuations and other effects, the Fourier filtering applied to the T (quake year 
temperatures) and Tav functions and their frequency spectrum obtained. Comparison showed that 
the relative amplitude of the spectrum components corresponding to the short-term variations in 
the quake year is greater than ones associated with seasonal fluctuations that have a longer 
period. As an example, Fig. 3 depicts this analysis for Ardabil intense quake (28 Feb. 1997 with 
magnitude 0f 6.1). Part (a) of fig. 3 shows the temperature variation among the year of 
earthquake passed through a low pass Fourier filter. Fig. 3-b shows the Fourier transform of  T 
expressed as the amplitude of its frequency components relative to the ones of the Fourier 
transform of the mean annual temperature signal (Tav). It is evident from the spectrum that the 
components which, regarding their periods, could be attributed to seismic effects are one or two 
order of magnitudes larger than ones due to seasonal fluctuations that have a distinct and larger 
period (lower frequencies). This can be considered as a confirmation of the proposition that 
around the time of earthquake there is a distinguishable subsurface temperature variation. 
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Fig. 3: a) Filtered temperature variation with time during the year of earthquake for Ardabil quake (28 Feb. 1997, 
with magnitude of 6.1). b) Fourier transform of T signal relative to the Fourier transform of Tav for this earthquake.  

To find the relation between this temperature anomaly and the seismic activities the 
integration of ∆�(�) function (such as Fig. 2-b) is used. We have used time period of a year 
before and one after the earthquake for the symmetry of seasonal effects on both side of the main 
quake time (tq). This may also take account of the whole physical parameters contribution in 
thermal energy variation and all shocks in an earthquake. There upon we can define Ib , Ia and Iba 
as integration on time periods of before, after and whole time as; 

 +, = - ∆�(�).�
/0

1234
        (5) 

 +) = - ∆�(�).�
5234

/0
     (6) 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0

10

20

30

40

50

60

A
T

 /A
T

(a
v)

 

Frequency (1/day)

Ardabil , M=6.1 , 1997

 

 

0 30 60 90 120 150 180 210 240 270 300 330 360
-3

-2

-1

0

1

2

3

∆Τ∆Τ ∆Τ∆
Τ

Time  (day)

 Filtered (∆T)

Ardabil (1997)

 

 

(b)

 

4 

 

In order to compare the temperature variation due to seismic processes with ones resulting 
from seasonal fluctuations and other effects, the Fourier filtering applied to the T (quake year 
temperatures) and Tav functions and their frequency spectrum obtained. Comparison showed that 
the relative amplitude of the spectrum components corresponding to the short-term variations in 
the quake year is greater than ones associated with seasonal fluctuations that have a longer 
period. As an example, Fig. 3 depicts this analysis for Ardabil intense quake (28 Feb. 1997 with 
magnitude 0f 6.1). Part (a) of fig. 3 shows the temperature variation among the year of 
earthquake passed through a low pass Fourier filter. Fig. 3-b shows the Fourier transform of  T 
expressed as the amplitude of its frequency components relative to the ones of the Fourier 
transform of the mean annual temperature signal (Tav). It is evident from the spectrum that the 
components which, regarding their periods, could be attributed to seismic effects are one or two 
order of magnitudes larger than ones due to seasonal fluctuations that have a distinct and larger 
period (lower frequencies). This can be considered as a confirmation of the proposition that 
around the time of earthquake there is a distinguishable subsurface temperature variation. 

   

 (a)             (b) 

Fig. 3: a) Filtered temperature variation with time during the year of earthquake for Ardabil quake (28 Feb. 1997, 
with magnitude of 6.1). b) Fourier transform of T signal relative to the Fourier transform of Tav for this earthquake.  

To find the relation between this temperature anomaly and the seismic activities the 
integration of ∆�(�) function (such as Fig. 2-b) is used. We have used time period of a year 
before and one after the earthquake for the symmetry of seasonal effects on both side of the main 
quake time (tq). This may also take account of the whole physical parameters contribution in 
thermal energy variation and all shocks in an earthquake. There upon we can define Ib , Ia and Iba 
as integration on time periods of before, after and whole time as; 

 +, = - ∆�(�).�
/0

1234
        (5) 

 +) = - ∆�(�).�
5234

/0
     (6) 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0

10

20

30

40

50

60

A
T

 /A
T

(a
v)

 

Frequency (1/day)

Ardabil , M=6.1 , 1997

 

 

0 30 60 90 120 150 180 210 240 270 300 330 360
-3

-2

-1

0

1

2

3

∆Τ∆Τ ∆Τ∆
Τ

Time  (day)

 Filtered (∆T)

Ardabil (1997)

 

 

Fig. 3. (a)Filtered temperature variation with time during the year
of earthquake for Ardabil quake (28 February 1997, with magnitude
of 6.1). (b) Fourier transform ofT signal relative to the Fourier
transform ofTav for this earthquake.

spectrum obtained. Comparison showed that the relative am-
plitude of the spectrum components corresponding to the
short-term variations in the quake year is greater than ones
associated with seasonal fluctuations that have a longer pe-
riod. As an example, Fig.3 depicts this analysis for Ard-
abil intense quake (28 February 1997 with magnitude of 6.1).
Part (a) of Fig.3 shows the temperature variation among the
year of earthquake passed through a low pass Fourier filter.
Figure3b shows the Fourier transform ofT expressed as the
amplitude of its frequency components relative to the ones of
the Fourier transform of the mean annual temperature signal
(Tav). It is evident from the spectrum that the components
which, regarding their periods, could be attributed to seismic
effects are one or two order of magnitudes larger than ones
due to seasonal fluctuations that have a distinct and larger pe-
riod (lower frequencies). This can be considered as a confir-
mation of the proposition that around the time of earthquake
there is a distinguishable subsurface temperature variation.

To find the relation between this temperature anomaly and
the seismic activities the integration of1T (t) function (such
as Fig.2b) is used. We have used time period of a year before
and one after the earthquake for the symmetry of seasonal ef-
fects on both side of the main quake time (tq ). This may also

take account of the whole physical parameters contribution
in thermal energy variation and all shocks in an earthquake.
There upon we can defineIb, Ia , andIba as integration on
time periods of before, after and whole time as;

Ib =

∫ tq

−365
1T (t)dt (5)

Ia =

∫
+365

tq

1T (t)dt (6)

Iba =

∫
+365

−365
1T (t)dt (7)

wheretq = 0.

3 Data analysis

Seventeen earthquakes with magnitude of 4.5 and larger
(1996–2005) are selected (Table1) all over Iran plateau
(Fig. 4) in a manner to find meteorological data stations
nearby. Table1 consists of earthquakes specifications includ-
ing locus, date, magnitude (Mag.) and hypocentral depth (D)
with sites of data stations.

Some 62 000 temperature data at different soil depths
measured by 17 weather stations near epicenters are anal-
ysed. Graphs off (1T,t) functions for all 17 earthquakes
are drawn. Distances from stations to epicenters (R′) and to
hypocenters (d) are calculated by plane and spherical geom-
etry. The Hayford geoid mean radius (6376.65 km) for Iran
is used. The resulted values ofI parameter,R′ andd for all
these earthquakes are tabulated in Table2.

In this table two key variable parametersd andM affectI .
A logical assumption is direct relationship ofI with M and
in reverse withd. Therefore, as a first step the variations of
Iba/M is plotted with respect to 1/d (or I versusM/d). This
is shown in Fig.5 indicating a meaningful relation. A marked
point in this graph is the separation of intense earthquakes,
M>5.8 (shown by squares) from small ones, 4.5<M<5.3
(shown by circles). This may indicates that there is a more
meaningful relationship ofI with M thand.

The best fit for the graph (Fig.5) confirms the accuracy
of our assumption thatI∝(M/d), among many attempts. In
addition, there is a better correlation between points related
to the large earthquakes as it was expected. This is due to
the fact that larger earthquakes have probably more effects
on temperature variation and cause larger thermal anomalies.
Thereafter we study two groups of earthquakes separately.

3.1 Intense earthquakes (M>5.8)

Among the earthquakes considered (Table2), there are 4
with magnitudes larger than 5.8 (Ardabil, Bam, Ghaen, and
Zarand earthquakes). Graph ofI versusM/d for these earth-
quakes are shown in Fig.6a for all three periods of time (Ib,

www.nat-hazards-earth-syst-sci.net/9/1815/2009/ Nat. Hazards Earth Syst. Sci., 9, 1815–1821, 2009



1818 H. Jalal Kamali et al.: Relation betweenI and seismic effects

Table 1. Earthquakes with magnitude of 4.5 and larger happened in Iran 1996–2005 selected for this study with sites of data stations.

No. City Lon. Lat. Date Mag. D Lon. Sta. Lat. Sta.
(km)

1 Ardabil 48.07 38.11 28 Feb 1997 6.1 12 48.283 38.25
2 Bam 58.38 29.08 26 Dec 2003 6.5 13 58.35 29.1
3 Bandare Daier 51.69 27.8 13 Sep 2000 5 15 51.93 27.83
4 Bushehr 51.17 28.9 2 Mar 2004 5.1 15 50.83 28.98
5 Dehloran 46.99 32.86 26 May 1997 4.6 20 47.27 32.68
6 Ghaen 59.43 33.92 25 Jun 1997 5.9 17 59.17 33.72
7 Jiroft 57.7 28.46 25 May 1999 4.5 30 57.8 28.58
8 Kahnouj 57.72 27.98 6 Jul 2003 5 22 57.7 27.97
9 Kangan Jam 52.26 27.66 15 Feb 2004 4.6 15 52.22 27.49
10 Kashmar 58.21 35.24 2 Feb 2000 5.3 23 58.47 35.2
11 Kermanshah 47.35 34.49 24 Apr 2002 4.8 25 47.15 34.35
12 Khoor Birjand 58.2 33.13 19 Jun 2005 5.2 15 58.43 32.93
13 Lordegan 50.83 31.62 15 Jun 1998 5.2 25 50.82 31.52
14 Mianeh 47.8 37.35 26 Sep 2005 4.8 16 47.7 37.45
15 Nehbandan 59.8 31.55 23 Oct 2000 5.3 37 60.03 31.53
16 Torbate Jam 60.75 35.41 3 Jul 2003 5.2 15 60.58 35.25
17 Zarand 56.76 30.8 22 Feb 2005 6.4 14 56.57 30.8

Fig. 4. Sites of earthquakes (Table1) on Iran’s map.

Ia , andIba). In this graph the Bam earthquake has the closest
epicentral distance (R′=3.7 km) to the Bam weather station
(Table 2). Eliminating the Bam earthquakes from Fig.6a
leads to a better correlation between the other three earth-
quakes in this group (Fig.6b).

The best fitting point for these three (Ardabil, Ghaen and
Zarand) earthquakes is nearly straight lines with coefficient
of determinationR2=1. A considerable point in these two

graphs (Fig.6) is difference between slope of lines related
to Ib (before earthquakes) andIa (after earthquakes). More
inclination inIa indicate more increase in temperature vari-
ation or thermal anomaly after earthquakes. This has also
been reported by satellite studies (Tronin, 2002; Saraf, 2005;
Chen, 2006). Anyhow, what we can say thatI is probably re-
lated to seismic activities and may be considered as an earth-
quake indicator.
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Table 2. CalculatedI parameters, epicentral (R′) and hypocentral (d) distances together with magnitude (Mag) and hypocentral depths (D)
of earthquakes in Table1.

No. City Mag R′ D d Ib Ia Iba

(km) (km) (km)

1 Ardabil 6.1 24.6 12 27.1 −139.8 −194.9 −334.7
2 Bam 6.5 3.7 13 13.5 −87.7 177.2 89.5
3 Bandare Daier 5 23.8 15 28.2 251.8 34.8 286.5
4 Bushehr 5.1 34.2 15 37.4 94.2−188.5 −94.3
5 Dehloran 4.6 32.9 20 38.5 6.9 −269.9 −263.1
6 Ghaen 5.9 32.7 17 36.9 −284 −296.9 −580.9
7 Jiroft 4.5 16.5 30 34.3 −21.5 93.9 72.4
8 Kahnouj 5 2.3 22 22.1 268.6 199.3 468
9 Kangan Jam 4.6 19.3 15 24.4 157.3 172.7 330
10 Kashmar 5.3 24 23 33.3 53.4 97.7 151.1
11 Kermanshah 4.8 24.1 25 34.7 185.9 −64.8 121.1
12 Khoor Birjand 5.2 30.9 15 34.3 −343.4 169.6 −173.8
13 Lordegan 5.2 11.2 25 27.4 −88.6 213.5 125
14 Mianeh 4.8 14.2 16 21.4 52.5 306.8 359.3
15 Nehbandan 5.3 21.9 37 43 120.3 117.3 137.6
16 Torbate Jam 5.2 23.5 15 27.9 −5.1 119.4 114.3
17 Zarand 6.4 18.1 14 22.9 −102.3 −63.5 −165.8

Fig. 5. Graph ofIba variation withM andd, magnitude and di-
rect distance station to hypocenter (Table2). Larger earthquakes
(M>5.8) are shown by squares and small ones by circles.

3.2 Small earthquakes (4.5<M<5.3)

Earthquakes studied in the range of magnitude 4.5 to 5.3 (Ta-
ble2) are Bandare Daier, Bushehr, Dehloran, Jiroft, Kahnouj,
Kangan Jam, Kashmar, Kermanshah, Khoor Birjand, Lorde-
gan, Mianeh, Nehbandan, and Torbate Jam. TheI parameter
in this group is also related toM/d, although not as clearly
as the intense group (Fig.7). The correlation is much better
for Ia (and henceIba) as is expected. This is due to more
energy release and considerable temperature variation after
earthquake than before. This also indicates the difference
betweenIa andIb as the indication of thermal variation after
and before earthquakes.

(a)

(b)

Fig. 6. (a) Graphs of (Ib, Ia , Iba) versusM/d for earthquakes
with magnitude larger than 5.8. The lines formula and coefficient
of correlation (R2) are shown.(b) Same as (a) with elimination of
Bam earthquake (from fitting procedure).

Due to smaller effects of small earthquakes on sub-surface
temperature variation it may be affected by surface seasonal
conditions. This may be a difficulty for correlation of small
earthquakes of Fig.7.
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(a)

(b)

(c)

Fig. 7. Same as Fig.6 for earthquakes of 4.5<M<5.3.

4 Conclusions

Despite the variant surface conditions it seems seismic activ-
ities affect sub-surface temperatures as shallow as one me-
ter up to some distances from epicenters. Data temperature
from the nearest weather stations to 17 earthquake epicen-
ters all over Iran plateau indicate considerable temperature
deviation from long period average values (1T =T −Tav) in
time of earthquakes. There appears that at least for some
earthquake as Bam which occurred in winter time there is a
reduction in temperature before the quake. If water table be-
fore the quake is lowered due to seismic effects, colder near
surface air may inter the ground through the pores and leads
to temperature drop. After the quake the reverse could occur
as we have a temperature rise. These require further study.

A new parameterI as the integration of1T (t) on time
periods around earthquake time is defined. It is shown thatI

is logically related to seismic parameters. Data analysis in-
dicates a direct relation ofI with M (earthquake magnitude)
and inverse relation withd (distance to hypocenter). We sug-
gest the following suitable formula for Iran plateau to relate

Table 3. Values ofα, β andR2 for earthquakes ofM>5.8 shown
in Fig. 6a including catastrophic Bam earthquake (+) and Fig.6b
without Bam earthquake (–).

Diagram Bam α β R2

earthquake

Ib/M vs. 1/d – 1992 −100.5 0.957
Ia/M vs. 1/d – 2402 −116.9 0.974
Iba/M vs. 1/d – 4397 −217.5 1

Ib/M vs. 1/d + 585.2 −51.72 0.558
Ia/M vs. 1/d + 1620 −89.84 0.965
Iba/M vs. 1/d + 2205 −141.5 0.889

thermal variations to seismic parameters;

I

M
= α

(
1

d

)
+β (8)

or

I (T ,t) = α
M

d
+βM (9)

whereα andβ values are defined in Table3 depending on
time periods with respect to earthquakes time (Ib, Ia and
Iba). The coefficient of determinationR2 close to one in-
dicates a good certainty of relations. Further studies may
concentrate on deeper temperature data for more accuracy
and better correlation. Furthermore we may try to find that
whether there is a way thatIb as a pre-earthquake thermal
anomaly indicator can be used as a precursor.
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