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Abstract. The power law relation between the stress
drop of “non thrust” earthquakes and the lead time of
precursory Seismic Electric Signals (SES), obtained by
Dologlou (2008a), has been tested by using additional data
from the most recent earthquake that occurred on 8 June
2008, in Andravida, NW. Peloponnesus, Greece and from
two other destructive earthquakes that occurred in the past
in Ionian sea. A critical exponentα=0.33 is derived which
is close to the one (e.g. 0.29) reported by Dologlou (2008a).
The above preliminary result strengthens the hypothesis that
probably signatures of criticality are present in the earth-
quake preparation and precursory SES processes and that
both phenomena are governed by same physics.

1 Introduction

Low frequency (<1 Hz) transient changes of the electrotel-
luric field, the so called Seismic Electric Signals (SES), have
been monitored at different sites in Greece since 1981 and
were found to precede large earthquakes (Varotsos and Alex-
opoulos, 1984a, b; Varotsos et al., 1986). The SES signals
are characterized by some features as: the selectivity, which
states that a SES station can be sensitive to specific seismic
areas at long distances and inactive to some others at shorter
distances; the lead time,1t , which is the time difference be-
tween the SES detection and the earthquake occurrence with
a lead time span of few months (Varotsos and Alexopoulos,
1984a, b, 1987; Varotsos et al., 1993). To distinguish the
SES signal from artificial noise the criterion1V/L=constant
is applied, where1V is the potential difference between two
points on the ground at a distanceL measured by a pair of
buried electrodes (Varotsos and Alexopoulos, 1984a; Sarlis
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et al., 1999; Varotsos et al., 1998, 2003). (This distinc-
tion is alternatively achieved by using the criteria based on
a new time domain, termed the “natural time”, see Varotsos
et al. (2004) and references therein). The quantity1V/L is
the SES amplitudeE which is connected to the magnitudeM

of the impending earthquake by the experimental formula:

logE = αM + b (1)

wherea≈0.3−0.4 andb is a site constant. This in fact is a
power law relation that is reminiscent of the theory of critical
phenomena (Varotsos and Alexopoulos, 1984a, b; Varotsos,
2005).

Before an earthquake, the pressure increases in the future
focal area and produces changes in various physical prop-
erties like porosity, conductivity (Varotsos, 1981), dielectric
constant (Varotsos, 1978, 1980), etc. In addition, it affects
the relaxation time of electric dipoles which are formed in an
ionic solid between introduced aliovalent impurities (Varot-
sos and Miliotis, 1974) and vacancies created for charge
compensation (Varotsos and Mourikis, 1974; Kostopoulos et
al., 1975). This relaxation time,τ , is given by the equation

τ = (λν)−1exp(g/kT ) (2)

whereν is the attempt frequency for a jump to a number of
λ accessible paths (Varotsos and Alexopoulos, 1980a, 1981)
in the vacancy vicinity,T is the temperature andg the Gibbs
energy for the orientation process.

As the pressure increases the relaxation time becomes
significantly smaller, provided that the migration volume
v=(dg/dP)T (Varotsos et al., 1982, 1999) or the activation
(Varotsos and Alexopoulos, 1980b) is negative, and when
the pressure reaches acritical value, Pcr , a transient cur-
rent is emitted due to the cooperative re-orientation of dipoles
(Varotsos and Alexopoulos, 1986).

Beyond the above model the electrokinetic effect (Ishido
and Mizutani, 1981; Mizutani et al., 1976) has been sug-
gested for the SES generation, in terms of criticality, which
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Fig. 1a. Map of Western Greece, with the distribution (forming a
cluster) of all reported by USGS aftershocks withMw≥3 (a) for
Andravida earthquake (8 June 2008) for the period 8 June 2008
to 20 September 2008(b) for Strofades earthquake (18 November
1997) for the period 18 November 1997 to 31 May 1998 and(c)
for Killini earthquake (16 October 1988) for the period 16 October
1988 to 1 March 1989. The epicentres of the corresponding main
shocks are presented by stars and their focal mechanisms by a lower
hemisphere projection with black and white quadrants for compres-
sion and dilatation, respectively (beach ball). Representative after-
shock areas of lengthL and widthW for all cases are marked. Black
squares denote the position of the SES station of PIR and IOA and
red triangles the cities of Andravida and Killini.

leads to an exponent of 0.3–0.4 for critical phenomena
(Surkov et al., 2002). Alternatively, Sornette et al. (1989)
support the hypothesis that fracture processes exhibit criti-
cal behavior expressed by a power law relation with critical
exponent values of 0.33 and 0.47 for 2 and 3 dimensions,
respectively.

In previous papers by Dologlou (2008a, b) a power law
relation with fractal critical exponent has been obtained be-
tween the earthquake stress drop and the SES lead time.
Stress drop is an earthquake parameter which basically re-
flects the difference between two states of stress at a point
on a fault before and after rupture (Kanamori and Anderson,
1975).

It is of great interest and the purpose of the present work
to check the validity of this relation by using additional
data from three destructive earthquakes which occurred in
Greece, the first in Andravida on 8 June 2008, the second in
Strofades on 18 November 1997 and the third in Killini on
16 October 1988.

 

Fig. 1b. Continued.

2 Data and analysis

In previous papers (Dologlou, 2008a, b) we referred to earth-
quakes for which Brune’s stress drop values have been re-
ported in literature. In this work, in order to extend our data
set, we tried to overcome the lack of published stress drop
values for some events by using an indirect method based
on the aftershock area (Kiratzi et al., 1991). This technique
can be only applied to strong and shallow earthquakes (i.e.
M>5.8 depth<40 km) since a rich aftershock sequence is re-
quired to well define the aftershock area. Thus, earthquakes
of considerable depth such as the two large events which oc-
curred in Greece on 8 January 2006 withMw=6.7 and depth
h=66 km in Kithira and on 6 January 2008 withMw=6.2 and
h=75 km in Leonidio, can not be treated with this method.

On 8 June 2008 at 12:25 UTC an earthquake of magnitude
Mw=6.3 occurred in Andravida (37.9 N 21.5 E) NW of Pelo-
ponnesus, Greece (Fig. 1a) and caused severe damage and
human losses. It was preceded by a SES activity recorded at
PIR station (Fig. 1a) on 29 February 2008 which was pub-
lished on 29 May 2008 (Sarlis et al., 2008). The lead time of
this event was1t=98 days. Additionally on 18 November,
1997 at 14:07 UTC a strong earthquake ofMw=6.6 occurred
near Strofades island (37.33 N 20.84 E) in Ionian sea and it
was preceded by a SES activity at IOA station on 4 October
1997 with1t=45 days. Furthermore, on 16 October 1988 at
12:34 UTC a damaging earthquake ofMw=5.9 occurred near
Killini (37.95 N 20.90 E) in Ionian sea with precursory SES
activity recorded at IOA station with1t=17.5 days.

Nat. Hazards Earth Syst. Sci., 9, 17–23, 2009 www.nat-hazards-earth-syst-sci.net/9/17/2009/



E. Dologlou: Power law between EQ and SES revisited 19

Table 1. The updated version of the table reported by Dologlou (2008a) including Andravida, Strofades and Killini cases (events no. 16, 9
and 5). All 16 earthquakes are presented with available stress drop values and precursory SES signals in Greece from 1981 to 2008, along
with their dates, epicentres, depths, moment magnitudesMw , stress drop values (1σB ), SES station, SES lead times1t and mechanism
type (strike-slip, normal or thrust). Events are numbered in chronological order and references for the stress drop values are given in the last
column.

n yy mm dd H min S Lat Long Depth Mw 1σB SES Source References
(km) bars 1t (days) mechanism

1 81 12 19 14 10 50.7 39.24 25.23 12 6.8 9.01 0.3 strike-slip Dologlou (2008a)
2 82 01 18 19 27 24.5 40 24.32 6 6.6 10.5 0.3 strike-slip Dologlou (2008a)
3 83 01 17 12 41 29 38.09 20.19 10 6.9 14.0 1.8 strike+thrust Stavrakakis and Blionas (1990)
4 86 09 13 17 24 34 37.03 22.2 15 5.9 5.0 5 normal Papazachos et al. (1988)
5 88 10 16 12 34 06 37.95 20.90 29 5.9 2.53 17.5 strike-slip see text
6 95 05 04 0 34 11 40.54 23.63 15 5.4 2.5 28.5 normal Chouliaras-Stavrakakis (1997)
7 95 05 13 8 47 15 40.16 21.67 15 6.5 6.3 25.5 normal Chouliaras-Stavrakakis (1997)
8 95 06 15 0 15 56 38.1 22.46 15 6.5 2.9 46 normal Chouliaras-Stavrakakis (1997)
9 97 11 18 14 7 53 37.33 20.84 22.9 6.6 1.42 45 strike slip see text

10 99 09 07 11 56 56 37.97 23.6 15 6 3.0 6 normal Stavrakakis-Chouliaras (2002)
11 01 07 26 0 21 44 38.96 24.29 15 6.5 9.0 130 strike-slip Benetatos et al. (2002)
12 03 08 14 5 15 8 38.7 20.67 15 6.3 8.0 6 strike-slip Papadimitriou (2007)
13 08 01 06 5 14 20 37.22 22.69 75 6.2 9.0 60 thrust+strike Papadimitriou (2008)
14 08 02 04 20 25 9.5 38.08 21.94 20 5 1.6 25 strike-slip Papadimitriou (2008)
15 08 02 14 10 9 22.7 36.5 21.67 29 6.9 9.0 30 thrust Papadimitriou (2008)
16 08 06 08 12 25 29.7 37.96 21.52 16 6.3 1.83 98 strike-slip see text

Since stress drop values for these events were not avail-
able in literature, the Brune’s stress drop (Brune, 1970,
1971) has been calculated using the formula by Hanks and
Wyss (1972):

1σB = 0.44Mo/r3 (3)

whereMo is the seismic moment andr the radius for a cir-
cular fault derived fromP andS teleseismic waves displace-
ment spectra. In our case, the radiusr is estimated from
the dimensions of the aftershock area according to Kiratzi et
al. (1991) for the three events as follows:

All aftershocks of Andravida, Strofades and Killini earth-
quakes withMw≥3 reported by USGS for the periods, 8
June 2008 (12:30) to 20 September 2008, 18 November
1997 (14:07) to 31 May 1998 and 16 October 1988 (12:34)
to 1 March 1989, respectively are shown on three separate
maps in Figs. 1a,b, and c, along with their main shock epi-
centres, denoted by a star and their focal mechanisms pre-
sented by a beach ball. From the distribution of the af-
tershock epicentres, which forms a well defined cluster, an
areaS=L×W with length L and widthW is estimated in
all cases (Fig. 1a, b, c). For Andravida event the range
of values forL and W , due to estimation error, is con-
sidered as (60–70) km and (18–22) km, for Strofades earth-
quake (80–90) km and (30–38) km and for Killini (35–40)
and (8–12), respectively . The radiusr is obtained from
the relationS=πr2. Two slightly different seismic moment
values M01=3.9×1025 dyn. cm M02=3.1×1025 dyn. cm are
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Fig. 1c. Continued.
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Table 2. The date, the magnitudeMw and the seismic moment of Andravida earthquake along with the range of values in the dimensions of
the aftershock areaL andW , and the corresponding calculated values for1σB . Mean values are given in the last row.

Date Mw Mo (1025dyn. cm) L (km) W (km) 1σB (bars)

yy mm dd
08 06 08 6.3 3.9 60–70 18–22 2.6–1.58

3.1 60–70 18–22 2.14–1.26

Mean value 3.5 65 20 1.83

 1 
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Fig. 2a. Map of central Greece with the distribution (forming a
cluster) of the all reported by USGS aftershocks withMw≥3 (a) for
Athens earthquake (7 September 1999) for the period 7 September
1999 to 7 September 2000 and(b) for Egion earthquake (15 June
1995) for the period 15 June 1995 to 15 June 1996. The epicentres
of the corresponding main shocks are presented by stars. Represen-
tative aftershock areas of lengthL and widthW for both cases are
marked. Red triangles denote the position of the cities of Athens
and Egion, respectively.

reported for Andravida by USGS while for Strophades and
Killini events the seismic moment is 9×1025 dyn. cm and
7.5×1024 dyn. cm, respectively. The stress drop1σB is cal-
culated through Eq. (3) in all cases (Tables 2, 3 and 4). The
critical exponentα in the power law relation between the
stress drop and the lead time is derived from the list (Ta-
ble 1) of1σB and1t values of all “non thrust” earthquakes,
included the Andravida, Strofades and Killini events. It is
difficult to give an explanation why earthquakes of thrust
type mechanism do not obey the power law relationship. A
very tentative suggestion could be the fact that geodynamics
of thrust mechanism are quite different from those of other

 

Fig. 2b. Continued.

mechanisms (i.e., normal, strike-slip). Earthquakes of thrust
type usually occur in collision or subduction zones which are
characterized by high accumulation of strain.

Table 1 is the updated version of the table reported
by Dologlou (2008a) by adding Andravida, Strofades and
Killini earthquakes (events no. 16, no. 9 and no. 5), and in-
cludes all sixteen earthquakes numbered in chronological or-
der along with their seismic parameters (dates, epicentres,
depths, moment magnitudesMw), source mechanism (strike-
slip, normal or thrust type), stress drop1σB and SES lead
times. Bibliographical references for the stress drop val-
ues are given in the last column of this Table and the lead
times,1t , for events no. 1, 2 are reported by Varotsos and
Alexopoulos (1984a) – see their Figs. 2 and 3, respectively
– while for events no. 3–12 by Varotsos (2005). The three
recent events (no. 13–15) are given by Varotsos et al. (2007),
for the event no. 13 and Varotsos et al. (2008) for no. 14, 15.
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Table 3. The date, the magnitudeMw and the seismic moment of Strofades earthquake along with the range of values in the dimensions of
the aftershock areaL andW , and the corresponding calculated values for1σB . Mean values are given in the last row.

Date Mw Mo (1025dyn. cm) L (km) W (km) 1σB (bars)

yy mm dd
97 11 18 6.6 9 80–90 30–38 1.88–1.10

Mean value 85 34 1.42

Table 4. The date, the magnitudeMw and the seismic moment of Killini earthquake along with the range of values in the dimensions of
the aftershock areaL andW , the corresponding calculated values for1σB , the critical exponentα and associated correlation coefficientR.
Mean values are given in the last row.

Date Mw Mo (1025dyn. cm) L (km) W (km) 1σB (bars) α R

yy mm dd
88 10 16 5.9 0.75 35–40 8–12 3.9–1.77 0.32–0.34 0.80–0.79

Mean value 37.5 10 2.53 0.33±0.1 0.80

Table 5. Date, epicenters, magnitudeMw, seismic moment Mo, range of values in the dimensions of the aftershock areaL andW , corre-
sponding calculated values for1σB , mean value1σBmeanand reported1σB for Egion and Athens earthquakes.

EQ Date Lon (N) Lat (E) Mw Mo L (km) W (km) 1σB 1σBmean 1σB

yy mm dd (1025dyn. cm) (calclulated) (bars) (reported)
(bars) (bars)

Egion 95 06 15 38.4 22.3 6.5 6 45–50 25–30 3.9–2.5 3.2 2.9
Athens 99 09 07 38.1 23.6 6 1.1 20–35 20–25 3.4–1.05 2.2 3.0

The value range for the estimated dimensionsL andW and
the corresponding calculated stress drop1σB for Andravida,
Strofades and Killini events, are given in Tables 2, 3 and 4,
respectively. The derived critical exponentα with the asso-
ciated correlation coefficient are shown in Table 4. A mean
value ofα with its error is also inserted.

Event no. 11 is excluded from the present paper for the
same reasons referred by Dologlou (2008a) and thoroughly
discussed by Dologlou et al. (2008). Briefly, this earthquake,
with an unusual long lead time, occurred in an area which
is characterized by specific structural features such as small
thickness of the crust (Le Pichon et al., 1984) and high heat
flow rate (Jongsma, 1974).

3 Discussion

In order to check the compatibility between the reported
Brune’s stress drop values and those derived by using the
dimensions of the aftershock area we tested two well known

for the severe casualties and victims cases, the Athens earth-
quake on 7 September 1999 and the Egion earthquake on 15
June 1995.

The USGS seismic moment value for the fist
event was Mo1=1.1×1025 dyn. cm and for the second
Mo2=6×1025 dyn. cm. The space distribution of all reported
by USGS aftershocks withMw≥3 for the period 7 Septem-
ber 1997 to 7 September 2000, for Athens earthquake and
from 15 June 1995 to 15 June 1996, for Egion (Fig. 2a, b),
define the corresponding areas with dimensionsL and W .
In a similar way to Andravida Strofades and Killini cases,
we calculated the stress drop for the upper and the lower
limit of the value range ofL andW , for both events, as well
as their mean value1σBmeanand the results along with the
reported Brune’s stress drop values are given in Table 5. A
comparison between the reported and calculated1σB for
Athens and Egion earthquakes does not show remarkable
difference, thus implying that the calculated stress drop
for Andravida, Strofades and Killini is quite reliable. The
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Fig. 3. The plot of the relation between the stress drop and the lead
time of all “non thrust” earthquakes, including the Andravida, Stro-
fades and Killini data, which are listed in Table 1. Event no. 11
is excluded. The derived power law equation along with the corre-
sponding correlation coefficientR are displayed on the top of the
diagram.

derived power law relation between the stress drop and the
lead time values of all “non thrust” earthquakes, (except
event no. 11), listed in Table 1, is given by the formula:

1σB = 8.331t−0.33 (4)

which is close to the one obtained by Dologlou (2008a). Ad-
ditionally, is notable from Table 4 that even when the value
range ofL andW is considered, the critical exponentα is not
considerably affected and varies within the limits 0.32–0.34
with a correlation coefficientR>0.79 in all cases.

The following comment might be worthwhile to be added.
After the SES recording, upon studying the order parameter
of seismicity defined in the natural time domain (Varotsos
et al., 2005), the time-window of an impending main shock
can be shortened to a few days. Since this parameter is just
the power spectrum in natural time (for frequencies close to
zero) of the seismicity evolving in the area suspected for the
occurrence of the main shock, on the basis of SES prop-
erties, it might reveal a deep interconnection between the
lead time and seismological parameters confirming the above
mentioned power law relation of Eq. (3) between1σB and
1t .

4 Conclusions

New data from the destructive Andravida, Strofades and
Killini earthquakes were used to test the credibility of the
obtained by Dologlou (2008a) critical exponentα=0.29
in the power law relation between the stress drop and the
precursory SES lead time for “non thrust” earthquakes. The
new derived critical exponent valueα=0.33, after including
the Andravida, Strofades and Killini events, with correlation
coefficientR=0.80, is close to the previous one reported by
Dologlou (2008a). This experimental result strengthens the

hypothesis that signatures of criticality might be present in
the SES generation and the earthquake preparation indicat-
ing that probably both processes are governed by the same
physics. The accumulation of additional data in the future
will check the degree of the validity of these preliminary
findings.

Edited by: M. Contadakis
Reviewed by: S. Uyeda and another anonymous referee
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