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Abstract. The consideration of non-stationary landslide
causal factors in statistical landslide susceptibility assess-
ments is still problematic. The latter may lead to erroneous
model predictions, especially in times of dramatic environ-
mental change. In this case study in the Central Swiss Alps,
we aim to evaluate the effect of dynamic change of landslide
causal factors on the validity of landslide susceptibility maps.
Logistic regression models were produced for two points in
time, 1959 and 2000. Both models could correctly classify
>70% of the independent spatial validation dataset. By sub-
tracting the 1959 susceptibility map from the 2000 suscepti-
bility map a deviation susceptibility map was obtained. Our
interpretation was that these susceptibility deviations indi-
cate the effect of the change of dynamic causal factors on the
landslide probability. The deviation map explained 85% of
new landslides occurring after 2000. We believe it to be a
suitable tool to add a time element to the susceptibility map
pointing to areas with changing susceptibility due to recently
changing environmental conditions.

1 Introduction

The alpine terrain with its rugged topography and extreme
climatic conditions is naturally disposed to soil erosion. Be-
sides water erosion, mass movements are typical erosion fea-
tures that constitute an important proportion to total soil loss
(Meusburger and Alewell, 2008). Shallow landslides are a
type of mass movement highly correlated to extreme events.
Thus, unrecognised landslide causal factors can lead to haz-
ardous surface damage and soil loss within one extreme rain-
fall event. The damages caused by a typical shallow trans-
lational landslide with a thickness of 0.3 to 2 m, as defined
by Tasser et al. (2003), often persist for several decades
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(Meusburger and Alewell, 2008) due to slow vegetation re-
settlement, and hampered possibilities for stabilisation mea-
sures in the alpine environment.

Landslide hazard assessment, as defined by Varnes (1984),
aims at improving the knowledge of processes that lead to
slope instability and, in addition, at identifying the locations
where and when landslides or potentially instable slopes may
occur. According to Carrara et al. (1998) approaches for
landslide hazard assessment can generally be grouped into
two main categories: the direct, qualitative method that re-
lies on the ability of the investigator to estimate actual and
potential slope failures and indirect, quantitative methods
that produce numerical estimates (probabilities) of the oc-
currence of landslide in any hazard zone. The choice of the
method mainly depends on the spatial scale (Van Westen,
2000) and, thus, the data availability. To assess landslide
susceptibility on a regional scale, multivariate statistical ap-
proaches were commonly used in the last decades. Espe-
cially discriminant analysis (Carrara et al., 1991, 2003; Davis
et al., 2006; Santacana et al., 2003), logistic regression (Ay-
alew and Yamagishi, 2005; Ayalew et al., 2005; Dai and Lee,
2002; Ohlmacher and Davis, 2003; Tasser et al., 2003; Van
Den Eeckhaut et al., 2006; Yesilnacar and Topal, 2005) and
neural networks (Ermini et al., 2005; Yesilnacar and Topal,
2005; Kanungo et al., 2006; Gomez and Kavzoglu, 2005)
have successfully been applied.

Unconstrained by the statistic method chosen, the basic
concept of landslide hazard assessment with statistical
methods is to compare the conditions that have lead to land-
slides in the past with the conditions at regions currently free
of landslides (Carrara et al., 1998). The assumption made
when using multivariate statistics for landslide hazard pre-
diction is that catchment characteristics leading to landslides
in the past will also be susceptible to landslides in the fu-
ture. This relation (between past and future) may weaken
and become invalid when landslide causal factors become
variable with time (called “dynamic factors” in the follow-
ing) and may lead to a loss of model validity under changed
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future conditions (Guzzetti et al., 1999). In view of changing
climate conditions and agricultural changes the importance
of the problem is increasing and validation of landslide pre-
diction maps is essential (Chung and Fabbri, 2003; Zêzere et
al., 2004).

Various studies highlight the impact of dynamic factors
such as climate and land use on the probability of landslide
(Frei et al., 2007; Schauer, 1975; Tasser et al., 2003; Gorse-
vski et al., 2006; Meusburger and Alewell, 2008). However,
compared to the quantity of landslide susceptibility studies,
relatively little effort has been made to validate the predictive
capability of the obtained maps (Chung and Fabbri, 2003)
and even less to generate maps of likely future landslide sce-
narios (Guzzetti et al., 2006; Irigaray et al., 2007; Zêzere et
al., 2004). The latter was done for instance by integrating the
susceptibility map with the return period of rainfall (Zêzere
et al., 2004). The approach of return period does not account
for the non-stationary behaviour of the geomorphologic sys-
tem (Hufschmidt et al., 2005) and the spatially and tem-
porally nonlinear relationship between landslides and their
causative factors (Zhou et al., 2002). Hence, the spatial dis-
tribution of susceptibility zones remains unchanged and a
change of the spatial susceptibility pattern over time is not
considered (Ẑezere et al., 2004). A strong element of uncer-
tainty exists, when the importance of landslide causal factors
changes rapidly. For instance, human action, mainly land-
cover- and land use changes may increase the sensitivity of
the geomorphic system to the effects of precipitation and,
thus, cause a shift of susceptibility zones. This negligence
may impede the identification of new potential susceptibility
areas and, hence, may hamper the timely initiation of preven-
tion measures.

The aim of this study is to evaluate the impact of dynamic
landslide causal factors on the validity of landslide suscep-
tibility maps. Our hypothesis is that a temporal change of
landslide causal factors cause a shift of landslide susceptibil-
ity zones. We propose an approach to extract the impact of
temporal variation (changing landslide causal factors) on the
probability of landslides from multi-temporal data. The sub-
catchment of the Urseren Valley (Central Swiss Alps) was
chosen as investigation site because of its severe slope degra-
dation by landslides and the evidence of a trend in landslide
occurrence (Meusburger and Alewell, 2008).

2 Study area and landslides

The sub-alpine study area (30 km2; Fig. 1) is characterised
by rugged terrain with elevations ranging from 1400 m to
3200 m a.s.l. The average slope angle is approximately 27◦.
The valley is formed by the gneiss massif of the Gotthard
system to the south and the granite massif and the pre-
existing basement (named “Altkristallin”, Labhart, 1999) of
the Aare system in the north. Intermediate vertically dip-
ping layers consist of Permocarbonic and Mesozoic sedi-
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Fig. 1. Map of Switzerland and the study area (Projection: CH1903
LV03). Details on the rectangle area are shown in Fig. 3.

ments (Labhart, 1999). During the Permocarbon sandy-
clay sediments deposited while during the Mesozoic, dif-
ferent materials from the geologic periods Trias (sandstone,
rauhwacke and dolomite), Lias (dark clay-marl and marl)
and Dogger (clays, marl and limestone) deposited. Through-
out the mountain development the materials were heavily
metamorphosed to shale (Kaegi, 1973). Due to erosion of
these soft layers a depression developed (Kaegi, 1973). The
valley axis corresponds to the direction of the strike of the
layers from SW to NE. Weathering of the calcareous ma-
terial produced clay-rich soils that are prone to landslides.
Riverbeds are characterised by glaciofluvial deposits. On the
valley slopes, Quaternary moraines and talus fans are com-
mon and consist mainly of siliceous loamy gravel material.
The reader is referred to Wyss (1986) for a detailed descrip-
tion of the tectonic and lithostratigrapical evolution of the
region. Dominant soil types in the catchment classified after
WRB (2006) are Podsols, Podzocambisols and Cambisols,
often with stagic properties. Above 2000 m a.s.l. and on steep
valley slopes, Leptosols are common (with rendzic Leptosols
on the calcareous substrates). At the valley bottom and lower
slopes, clayey gleyic Cambisol, partly stagnic Histosols, Flu-
visols and Gleysols developed.

Nat. Hazards Earth Syst. Sci., 9, 1495–1507, 2009 www.nat-hazards-earth-syst-sci.net/9/1495/2009/



K. Meusburger and C. Alewell: On the temporal validity of landslide susceptibility maps 1497

Shallow translational landslides are frequent in the area.
The mean area of a single landslide in 2004 is approximately
250 m2 with an average slope angle of 33.9◦. The single
landslides move along planar slip surfaces affecting soil lying
upon an impermeable substratum, such as clays and marls
or at the contact between regolith and bedrock. The main
triggering factor is intense rainfall>150 mm within 3 con-
secutive days (Meusburger and Alewell, 2008). Sporadic
triggering of landslides occurs due to snow movement and
snowmelt in spring.

The valley is characterised by a high mountain climate
with a mean air temperature of 3.1◦C (1901–1961). The
mean annual rainfall at the MeteoSwiss climate station in
Andermatt (8◦35′/46◦38′; 1442 m a.s.l.), located at the outlet
of the valley, is about 1400 mm year−1. The rainfall maxi-
mum occurs in October, the minimum in February. The val-
ley is snow covered for 5 to 6 months (from November to
April) with the maximum snow height in March. The river
Reuss has a nivo-glacial runoff regime. Nevertheless, sum-
mer and early autumn floods represent an important contri-
bution to the flow regime. The peak runoff period is in June
(BAFU, 2009).

Vegetation shows strong anthropogenic influences due to
grassland farming for centuries. The four main land-cover
types are (i) alpine grasslands and dwarf-shrubs (64%), (ii)
scree (16%), (iii) at higher elevations bare rock (11%), and
(iv) shrubs (8%). Urban areas and forest cover are each
less than 1% of the area. The forest was cultivated for
avalanche protection above the villages. Frequently occur-
ring avalanches are associated with the scarce forest cover.
The valley has been a cultural landscape for centuries. How-
ever, land use (grassland management) has undergone de-
cisive changes during the last decades (Meusburger and
Alewell, 2008). The main developments are (i) the aban-
donment of remote areas, which led to an intensification of
the accessible areas close to the valley bottom and (ii) a de-
crease of farmers, which resulted in less maintenance of the
grassland areas.

3 Concept and methods

3.1 Logistic regression model (LRM)

Logistic regression predicts the probability distribution
of a dichotomy dependent variable (landslide occurrence)
through numeric (e.g. elevation) as well as categorical
(e.g. geologic formations) predictors. For the categorical
predictors dummy variables are used. The strict data
requirements of discriminant analysis and linear regression
(like e.g. normal distribution) are relaxed. The multiple
logistic regression equation (Backhaus, 2006; Ohlmacher
and Davis, 2003) is:

P(yi=1)=
1

1+ exp
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whereP is the probability of the occurrence dichotomy de-
pendent variable (here 0 is for stable and 1 for instable condi-
tions),i is the number of observations (here: number of pix-
els),xpi, . . ., xni are the values of the independent numeric
predictorsx1, . . ., xn for the i-th observation,b0, . . ., bn and
b1, . . ., bk are the numeric and categorical coefficients of the
logistic regression,n is the number of independent numeric
predictors,z are values of the independent categorical predic-
tor transformed in dummy variables equal to 1 if the specific
class of the categorical predictor is present and 0 if not, and
k are the classes of the categorical predictor.

When using multivariate analysis multi-collinearity is a
critical point. Multi-collinearity is the undesirable situation
when one predictor (here: landslide causal factor) is a linear
function of other predictors. Thus, a multi-collinearity diag-
nosis was applied prior to the logistic regression to reduce
redundancy and to improve numerical stability in the subse-
quent analyses (Backhaus, 2006; Tasser et al., 2003) Predic-
tors with high cross-correlations to several other predictors
and with high variance inflation factors (VIF) were excluded
in order to reduce collinearity. There is no fixed threshold for
VIF values, but as a rule of thumb predictors with VIF<2 can
be included (Backhaus, 2006; Tasser et al., 2003). The ex-
clusion process was guided by expert knowledge supported
by a field mapping of landslides and related landslide causal
factors (see Sect. 4.1). With the remaining set of indepen-
dent predictors the multivariate logistic regression analysis
with a stepwise forward selection method was used. The re-
gression parameters were estimated with the maximum like-
lihood method.

3.2 Procedure and database construction

Data collection and preparation was accomplished by means
of a geographic information system (GIS). We used Arc-
Desktop 9.2 by ESRI to visualize, superimpose, and anal-
yse the diverse predictor maps (e.g. geology, slope, elevation,
etc.).

3.2.1 Landslide inventory maps

The production of the landslide inventory maps of the study
area (30 km2) was done by visually vectorising the land-
slide source area using aerial photographs of the different
years 1959, 2000, and 2004 (Table 1). Landslide source
areas>25 m2 were mapped, rasterised and included in the
analysis. The photographs had a scale of at least 1:12 000.
The photographs from 1959 were black and white images
that were georeferenced and orthorectified with the help of
ground control points, a DEM (25 m grid; vertical accu-
racy in the Alps of 3 m) and the camera calibration proto-
cols (Swisstopo, 2006). For the years 2000 and 2004 the
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Table 1. List of aerial photographs used for the mapping of the landslide inventory maps.

Aerial Data Resolution Landslides Landslide Mean area Standard
photograph source (>25 m2) area (ha) (m2) deviation (m2)

22 Jul 1959 ©swisstopo (DV063927) 1 m 190 5.0 263 588
20 Aug 2000 ©swisstopo (DV043734) 0.5 m 324 7.3 226 573

9 Sep 2004 ©swisstopo (DV043734) 0.5 m 383 9.4 246 566

orthorectified RGB “Swissimages” with a pixel resolution
of 0.5 m were directly used for landslide mapping without
pre-correction. The landslide inventory map resulting from
the orthophoto of the year 2004 was verified by ground con-
trol during field investigations in 2005. The separation of
the landslide database according to landslide type (rotational,
translational) was not done, because it could neither be dis-
tinguished from aerial photographs nor checked by field in-
vestigations for the dataset of 1959. During the field ex-
cursions, 27 accessible landslides were investigated in more
detail. The landslide inventory map of 1959 could not be
verified. However, most of the landslides in 1959 are still
present today and could be compared to data of our ground
truth measurements. This is due to slow regeneration of the
landslides that takes about decades. The quality and relia-
bility of the landslide inventory map generated with aerial
photographs was found to be high as all landslides were cor-
rectly identified in the field. The aerial photograph interpre-
tation method, that is a standard method for landslides map-
ping (Wills and McCrink, 2002), was found to be very suit-
able for the investigation area due to the low percentage of
forest cover. In 1959, 190 shallow landslides (>25 m2) were
present. In 2000 the number of landslides increased to 324
and in 2004, 383 shallow landslides were mapped.

3.2.2 Landslide causal factors maps

Several of the causal factor maps are derivates of the DEM
(slope aspect, elevation, curvature, morphologic index and
slope angle) and were calculated with a three-pixel square
kernel. The morphologic index is a classification of the slope
and curvature map into the topographic features: peak, ridge,
pass, plane, channel, or pit. Further derivates of the slope and
aspect map are the flow direction and the flow length, which
is the distance along a flow path. The flow accumulation is
based on the number of cells flowing into each cell in the out-
put raster. In addition, topographic wetness index was used,
which is defined as ln (α/tanβ) whereα is the local upslope
area draining through a certain point per unit contour length
(here the flow accumulation) andβ is the local slope (Beven
and Kirkby, 1979). The VECTOR25 dataset of Swisstopo
offers vector data of rivers, roads and land-cover. It is based
on a 1:25 000 map (position accuracy 3–8 m) of 1993, thus, it
was updated with the aerial photograph of 2004 to reflect the
present-day land-cover situation. The land-cover map (con-
sisting of the categories grassland, forest, shrub, rock, debris,

snow and water) was converted to raster format (25 m raster
resolution). Another land-cover map constructed from the
aerial photograph of the year 1959 was used in the logistic
regression model of 1959 because land-cover changed dur-
ing the last decades. Land-cover and the pasture maps (con-
sisting of the categories Freiberg, private land, sheep-, goat-
and cattle pasture and cattle alp) were the only causal factor
maps variable over time. The remaining causal factor maps
were identical and used for the logistic regression of both
years, 1959 and 2000. Raster maps of the distance from river
and roads were obtained with ArcGIS distance and density
functions (with a 500 m moving window). Point density and
line density calculate the quantity that falls within the iden-
tified neighbourhood (here 500 m) and divide that quantity
by the area of the neighbourhood. ArcGIS density functions
were also used to obtain a raster map of avalanche density.
The avalanches that occurred since 1695 (data source: Swiss
Federal Institute for Snow and Avalanche Research) were av-
eraged for each pixel with a 500 m moving window to gen-
erate the avalanche density map. The factor map geology
was created based on the definition of geologic formations
by Labhart (1999) and refined by field and aerial photograph
mapping. Thus, for the lower accessible formations (Meso-
zoic, Permocarbon) mapping scale could be improved from
1:200 000 to 1:25 000. A geomorphologic map (consisting
of the categories alluvium, debris fan, moraine, hillside col-
luvial deposit and solid rock) was generated based on a Qua-
ternary map with a scale of 1:33 000 (Fehr, 1926) and the
aerial photographs. The revised geologic and geomorpho-
logic maps, originally in vector format, were then converted
to raster format. Tectonic fault lines were digitized (Lab-
hart, 1999) and the map of the distance from those was cal-
culated and stored as a raster map. The present and past land
use was determined with pasture maps of the years 1955 and
2006 (Russi, 2006) that were digitised, georeferenced, and
rasterised. The precipitation map used is based on long-term
(1961–1991) mean precipitation data (©Hydrological Atlas
of Switzerland, Swiss Federal Office for the Environment).
The resolution of data points is very coarse (1 km), thus, in-
verse distance weighted (IDW) interpolation was used to de-
termine cell values. This map shows an east-west gradient,
ranging from about 1800 mm year−1 in the western part, to
about 1400 mm year−1 in the eastern part. No elevation gra-
dient is evident. Further information about these maps and
data origins is presented in Table 2.
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Table 2. List of the considered predictors and search radius applied for the generation of the map, data scale/resolution, evidence of multi-
collinearity (O = independent predictors; X = excluded predictors due to multi-collinearity), significance (Sig) of the predictors for the logistic
regression model (LRM) of 2000 and 1959 (∗∗∗ =P<0.001).

No. Predictors Data source Search radius Scale/ Inde- Sig Sig
Resolution pen- LRM LRM

dent 2000 1959

1 Elevation DHM25©swisstopo (DV002234.1) 3 raster kernel 1:25 000 X
2 Aspect DHM25©swisstopo (DV002234.1) 3 raster kernel 1:25 000 O
3 Slope DHM25©swisstopo (DV002234.1) 3 raster kernel 1:25 000 O ∗∗∗ ∗∗∗

4 Curvature DHM25©swisstopo (DV002234.1) 3 raster kernel 1:25 000 X ∗∗∗

5 Flow length DHM25©swisstopo (DV002234.1) 1:25 000 X
6 Morphologic index DHM25©swisstopo (DV002234.1) 3 raster kernel 1:25 000 X
7 Flow accumulation DHM25©swisstopo (DV002234.1) 1:25 000 O 0.07
8 Flow direction DHM25©swisstopo (DV002234.1) 3 raster kernel 1:25 000 X
9 Topographic wetness index DHM25©swisstopo (DV002234.1) 1:25 000 X
10 Stream-density VECTOR25©swisstopo (DV002213) 500 m 1:25 000 O ∗∗∗ ∗∗∗

11 Distance to stream VECTOR25©swisstopo (DV002213) 1:25 000 O
12 Road-density VECTOR25©swisstopo (DV002213) 500 m 1:25 000 O ∗∗∗

13 Distance to roads VECTOR25©swisstopo (DV002213) 1:25 000 O 0.03
14 Land-cover 2000 based on VECTOR25©swisstopo <1:25 000 X

(DV002213) and aerial photograph (2000)
Land-cover 1959 based on aerial photograph (1959) <1:25 000

15 Geologic formation changed after Labhart (1999) 1:25 000; O ∗∗∗ ∗∗∗

1:200 000
16 Distance to fault line Labhart (1999) 1:200 000 X
17 Quaternary based on Fehr (1926) 1:33 000 X
18 Mean precipitation © Hydrological Atlas of Switzerland 1 km grid X
19 Avalanche density Swiss Federal Institute for Snow 500 m O 0.002∗∗∗

and Avalanche Research (SLF)
20 Pasture maps 1955, 2006 Korporation Urseren; Andermatt 1:25 000 X

3.2.3 Data analysis

All georeferenced raster maps (landslide causal factor maps
and landslide inventory maps) were resampled with a refer-
ence raster to guarantee a correct allocation of the pixel cen-
troids of the different maps. The grid cells of the reference
raster contained unique integer values. The reference raster
was superimposed with the causal factors and the landslide
inventory maps by the ArcGIS function “combine”. The re-
sult is a numbered data matrix where the rows represent the
number of grid-cells and the columns contain the attributes
of the predictor maps at the grid location plus the information
of the inventory map. The resulting two data matrices (1959,
2000) were randomly split into a calibration and validation
data set. More details on the model validation is given in
the next section. For the logistic regression analysis we used
the statistical software package SPSS (version 15.0). Finally,
the logistic regression equation was entered in the ArcDesk-
top raster calculator to produce the landslide susceptibility
map for the entire region by means of the most significant
landslide causal factors. The predicted probabilities for the

investigation area were classified into five different suscep-
tibility zones with very low susceptibility for probabilities
between 0.0 and 0.15, low susceptibility for 0.15 to 0.35,
medium from 0.35 to 0.65, high between 0.65 and 0.85 and
very high susceptibility for probability of 0.85 to 1.0.

3.3 Validation based on temporal and spatial strategies

The success rate is commonly used in evaluating cell-based
landslide susceptibility model performance. It is based on
the ratio of successfully predicted landslide sites over total
actual landslide sites. However, Fabbri et al. (2003) pointed
out that this is not a verification of the predictive value. For
validation of the predictive power of the model, a compari-
son between the map (model) obtained and independent land-
slide data, which is more recent than the used model set is
necessary. The comparison can be qualitative – for instance
by a visual overlay – or quantitative, using different indices
such as area of a class affected by landslides per total area
of class (Suezen and Doyuran, 2004; Yesilnacar and Topal,
2005; Zhou et al., 2002), a confusion matrix (Carrara, 1983;
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Fig. 2. Evaluation steps of the logistic regression models of 1959 and 2000. The ellipses show processes and the rectangles results. The
numbers and letters refer to the explanation given in the text.

Carrara et al., 2003) or by using the Receiver Operating Char-
acteristic (ROC) curve (Chung and Fabbri, 2003; Fabbri et
al., 2003). We applied these methods to assess the accu-
racy of the susceptibility maps. With the statistical software
the percentage of correctly classified instable and stable grid
cells is given as weighted average in a confusion matrix (x,
Fig. 2) and ROC curves of the predicted probabilities were
plotted (y, Fig. 2). With the GIS the Spearman’s rank correla-
tion between the modelled susceptibility zones and observed
percentage landslide density in these zones is assessed (z,
Fig. 2). Chung and Fabbri (2003) proposed three strategies
to obtain an independent validation dataset: (a) landslides of
the study area are randomly split into two groups, one for
analysis (calibration) and one for validation (b) the analysis
is carried out using landslides occurred in a certain period
and validation is performed by means of landslides occurred
in a different period (c) the analysis is carried out in a part
of the study area and the obtained map (model) is validated
in another part. The temporal validation strategy (b) permits
testing the predictive capability of a model (Remondo et al.,
2003). In this study, we used the random split approach (a)
to test the validity of the prediction for extrapolation in space
and the approach (b) to test the validity of the model for the
extrapolation over time. The following six evaluation steps
were executed (Fig. 2):

1. We applied a random split of the entire dataset (for 1959
and 2000 data separately). Approximately 33% of insta-
ble grid cells and an equal amount of stable ones were
used to setup the LRMs. The remaining dataset was re-
tained for spatial validation.

2. We setup LRMs for the years 1959 and 2000 and deter-
mined the “goodness of the fit” or “success rate” of both
models by means of maximum likelihood classification
with the independent causal factor maps The number of
“selected cases”, here grid cells randomly selected for
the model setup are shown in Table 3. A comparison
between the number of stable (0) and instable (1) pre-
dictions between model and inventory data is shown as
percentage in the third column.

3. Validation of the LRM for the spatial prediction, was
done with the independent data set obtained by the ran-
dom split (“unselected cases”, Table 3). The percentage
of correct predictions is shown in the 6th column.

4. To evaluate the predictability of the LRM of 1959 and
2000 for extrapolation in time, we used the independent
52 new landslides that occurred between 2000 and 2004
(Table 1). These landslides were mapped on the aerial
photograph of 2004.
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Table 3. Classification of stable (0) and instable (1) cases (here pixels) by the three most significant predictors of the two logistic regression
models (1959 and 2000).

Observed Selected Cases Unselected Cases

0 1 correct 0 1 correct
stable instable (%) stable instable (%)

2000

Step 1 Geologic formation 0 131 119 52.4 183 280 158 408 53.6
1 35 215 86.0 42 454 91.5

Overall percentage 69.2 53.7

Step 2 Slope 0 169 81 67.6 232 275 109 413 68.0
1 40 210 84.0 55 441 88.9

Overall percentage 75.8 68.0

Step 3 Stream-density 0 176 74 70.4 240 328 101 360 70.3
1 40 210 84.0 67 429 86.5

Overall percentage 77.2 70.4

Step 7 Overall percentage 81.4 74.5

1959

Step 1 Geologic formation 0 140 100 58.3 200 717 141 215 58.7
1 25 215 89.6 27 244 90.0

Overall percentage 74.0 58.7

Step 2 Slope 0 171 69 71.3 248 111 93 821 72.6
1 33 207 86.3 38 233 86.0

Overall percentage 78.8 72.6

Step 3 Stream-density 0 185 55 77.1 255 641 86 291 74.8
1 49 191 79.6 51 220 81.2

Overall percentage 78.3 74.8

Step 5 Overall percentage 82.3 76.3

5. In order to extract the influence of dynamic landslide
causal factors on landslide susceptibility, the suscepti-
bility zones of LRM of 1959 were subtracted from the
ones of the LRM of 2000. We know that in 1959, the
traditional land use was still present (Russi, 2006) and
assume that the effects of climate change were less than
today (IPCC, 2007). Hence, the susceptibility map of
1959 shows more the traditional long established sus-
ceptibility situation compared to today’s situation. In
contrast, the susceptibility zones, based on the landslide
inventory map of 2000 already include new susceptibil-
ity zones due to impact of dynamic factors. This map
is already a combination of the initial traditional and
“human-induced” susceptibility. Thus, we hypothesise
that by subtracting the susceptibility zones of the LRM
of 1959 from the LRM of 2000 the obtained map (called
“deviation susceptibility map”) displays the shift of sus-
ceptibility zones over time. This shift over time is due
to the influence of dynamic landslide causal factors, e.g.
the relevance of landslide causal factors change over
time.

6. To confirm this hypothesis, the obtained deviation sus-
ceptibility map is validated with the set of 52 new land-
slides that occurred between the year 2000 and 2004.

4 Results and discussion

4.1 Field mapping of potential landslide causal factors

In the Urseren Valley, many potential landslide causal factors
are spatially correlated, thus, prior to the statistical analysis
a mapping of potential landslide causal factors in the field
was done to assist the exclusion process of inter-correlated
predictors (Fig. 3). In the Urseren Valley (shallow) transla-
tional landslides are predominant. These landslides are very
frequent in the foot zone of the south-facing slope, where
return flow in form of small springs causes relatively high
water saturation in the soils. The highly instable calcare-
ous material of the Mesozoic layer weathers to clay miner-
als, which further favours the development of layered stagnic
soils. During field observations, we found that about 80% of
the 27 landslides had small springs and stagnic soils at the
tear-off line. In addition, land use type changes within this
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zone. Where the slopes become too steep for mowing by
machines they are intensively pastured. A fence separates
the meadows close to the valley floor from the pastures. Pas-
turing was observed to have several effects possibly related
to soil stability (Pietola et al., 2005): trampling leads to (i)
a compacting of the soil and the development of a water re-
taining horizon, (ii) the retention of water is further raised by
the micro topography of the trails, and (iii) the reduction of
the vegetation cover. Stagnic soils and the occurrence of re-
turn flow would probably be good predictors for landslides.
However, to derive these parameters for the entire catchment
would be very work intensive. Furthermore, most of the area
is difficult to access. Therefore, these parameters need to be
replaced by other related parameter maps that could be spa-
tially derived from GIS tools. For example the likelihood of
return flow can be represented by the topographic wetness
index (Beven and Kirkby, 1979).

4.2 Results of the logistic regression analysis

The setup of the logistic regression model of 2000
(LRM 2000) was accomplished based on the landslide in-
ventory map of 2000 and 20 static causal factor maps. Dur-
ing multi-collinearity analysis, 11 predictors were excluded
from further analysis due to multi-collinearity. Column 5
in Table 2 displays the inter-correlating predictors. For in-
stance, an inter-correlation between elevation and land-cover
was observed; the higher the area the less grass- and the more
rock surfaces are present. However, there is no causal rela-
tionship between landslide occurrence and elevation. Hence,
the elevation was excluded from further analysis. After
the model generation with the stepwise forward selection
method, seven of nine predictors were included due to a sig-
nificant explanation of the variance (Table 2): geology, slope,
stream-density, road-density, avalanche density, distance to
roads and flow accumulation. With this set of seven predic-
tors, a success rate of 81.4% was achieved (selected cases;
Table 3). The logistic regression model of 1959 (LRM 1959)
identified five significant predictors (geology, slope, stream-
density, avalanche density, and curvature) with a success rate
of 82.3%. The three most significant predictors are identical
to the LRM of 2000.

Both pasture maps are highly correlated with the geologic
map. Including the pasture map of 1955 instead of geology
into the LRM of 2000 achieved a success rate of 68.6%. The
described effects of pasturing on the conditioning of land-
slides (Sect. 4.1) are related to trampling and, thus, to pasture
intensity. However, the pasture maps do not display pasture
intensity and its variability within the single classes of the
map. Moreover, even within same classes management was
not static. For the single pasture maps as well as derived land
use change maps could not be quantified and, thus, were no
suitable predictors for the multivariate analysis. Nonetheless,
the pasture map information is useful to interpret the devia-
tion susceptibility map (see below).
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Fig. 3. Slope section near Hospental showing the overlap of some
landslide causal factors: geologic formation, topography, springs,
and land use (below the fence meadows; above the fence pasturing).
The location of the area is shown by rectangle in Fig. 1.

We found, that in correspondence to many other studies
the most significant predictors are slope and geology to ex-
plain landslide susceptibility (Ayalew and Yamagishi, 2005;
Carrara et al., 1991; Clerici et al., 2006; Dai and Lee, 2002;
Komac, 2006; Ohlmacher and Davis, 2003; Santacana et al.,
2003; Van Westen and Lulie Getahun, 2003; Zhou et al.,
2002; Rickli et al., 2001; Suezen and Doyuran, 2004). These
predictors can be physically explained with the equation for
the critical altitudeHc for slopes (Carson, 1971):

Hc =
4c sinχ cos8

γ ∗ (1.0 − cos(χ − 8)
(2)

wherec is cohesion,γ is bulk density,χ is slope and8 is
friction angle. The equation describes slope stability as a
function of soil strength (cohesion and friction angle) and
shear forces (density and slope). A slope/soil becomes insta-
ble if the actual height/thickness exceeds the critical height.
The higher the slope angle and the greater the soil depth, the
higher becomes shear force and the less stable becomes the
slope.

A further significant predictor in our study is stream-
density. The balance between soil strength and shear force is
a function of soil water content (Kemper and Rosenau, 1984).
Wet places and hollows where water can infiltrate are espe-
cially prone to landslides (Fig. 3). Stream-density as well
as flow-accumulation are proxy variables for the important
physical parameter of “soil water content” in the statistical
model. With increasing density of the stream network, water
saturation and the occurrence of return flow increases, which
results in two processes that potentially decrease soil stabil-
ity: positive pore water pressure, which reduces cohesion of
soil particles (c), and heavier soils that increase the bulk den-
sity (γ ).

Furthermore, soil strength parameters are influenced by
parent material, which is represented by geology in the
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model. Geology was found to be the most important predic-
tor as it appears to be most important for the material prop-
erties and additionally effects runoff generation. Minor im-
provements of the model are yielded by the predictor maps
distance to roads and road density, which explain the occur-
rence of few landslides due to constructional interferences.
Road distance and road density maps may show high vari-
ability over time (Petley et al., 2007). However, in Urseren
Valley where the road networks remained basically identical
during the last fifty years.

Avalanche density (since 1695) is a further predictor,
which improved the explained variance of the landslide dis-
tribution. Avalanches are regarded as potential landslide
causal factors because of the additional friction forces that
may trigger tension fissures. A spatial relationship is evident
even though the causal relation is questionable because sta-
bility of snow cover depends on similar topographical condi-
tions as the stability of soil cover (Meusburger and Alewell,
2008).

4.3 Validation of the landslide susceptibility model for
spatial predictions

With all seven predictors 74.5% of the validation data set
for the LRM of 2000 could be correctly predicted. If the
three most significant predictors (geology, slope and stream-
density) were used for the production of the susceptibility
map (selected cases), the validation procedure (unselected
cases, see Table 3) produced only slightly worse results. In
total 70.4% of the observations could be accurately classi-
fied, thereof 70.3% of the non-erodible sites and 86.5% of the
erodible sites were correctly assigned. Overall, 53.7% of the
observations were correctly classified with geology alone.
Slope increased the explained spatial variance to 68.0% and
stream-density to 70.4%. Areas, which are stable today, but
were predicted as being instable by the model, can be inter-
preted as the hazard zones for future management considera-
tions.

In addition to the regression coefficients (Table 4, for dis-
cussion see below), the logistic regression model yields a
map of probabilities expressed by numbers that are con-
strained to fall between 0 and 1. The closer the numbers
are to 1, the higher is the probability for a landslides. We
chose a subdivision of the probabilities obtained into five
susceptibility zones. A visual comparison between the land-
slide susceptibility map and the landslide inventory map of
2000 indicates a good agreement (Fig. 4). The exceptions are
two clusters of landslides located at the border of geologic
formation of the Altkristallin and the granite of the Aare sys-
tem. This might be due to the lower spatial accuracy of the
geologic map in the upper part of the study area, as explained
in Sect. 3.2. To evaluate the performance of the susceptibil-
ity mapping methods, the method of the Relative Operating
Curve (ROC) was used (Table 5; Fig. 5; left panel). The area
under the curve for the LRM 1959 and 2000 is 0.86, which

Fig. 4. Final landslide susceptibility map obtained with logistic re-
gression model of 2000 for the 30 km2 sub-catchment (Projection:
CH1903 LV03).

Table 4. Regression coefficients (b) and significance (Sig) for
the parameters stream-density (Denstr), slope, and five geologic
units (1 = granite of the Aare system, 2 = Altkristallin, 3 = Mesozoic,
4 = Permocarbon, 5 = gneiss of the Gotthard system) of the two lo-
gistic regression models.

Predictors Model 2000 Model 1959

b Sig Exp (b) b Sig Exp (b)

Denstr 2.15-E01 3.54-E05 1.24+E00 4.50-E01 1.17-E10 1.57+E00
Slope 1.21-E01 1.30-E15 1.13+E00 1.18-E01 3.27-E13 1.13+E00
Geo 3.56-E10 5.09-E13
Geo (1) 2.96+E00 8.14-E01 1.93+E01 1.75+E01 9.99-E01 4.15+E07
Geo (2) 5.59+E00 6.57-E01 2.67+E02 2.04+E01 9.99-E01 7.24+E08
Geo (3) 5.90+E00 6.39-E01 3.66+E02 1.86+E01 9.99-E01 1.17+E08
Geo (4) 5.87+E00 6.41-E01 3.55+E02 1.81+E01 9.99-E01 7.18+E07
Geo (5) 5.38+E00 6.69-E01 2.17+E02 2.00+E01 9.99-E01 5.06+E08
Constant –9.37+E00 4.56-E01 8.49-E05 –2.44+E01 9.99-E01 2.60-E11

is very satisfactory (it is quite close to the ideal value of 1.0).
Also as seen from the table the asymptotic significance is less
than 0.0001, which means that using the probability model is
much better than guessing.

Also the comparison between the modelled landslide prob-
ability and the actual landslide density in 2000 (Fig. 5; mid-
dle panel) showed good correspondence, which is expressed
in a significant correlation (P<0.01) between observed land-
slide density and predicted landslide probability.

The prediction for the extrapolation in space with the three
most significant predictors of the LRM of 1959 produced
slightly better validation results of 74.8% correct predictions
(see unselected cases in Table 3). The regression coefficients
(b) of the two LRMs are presented in Table 4 together with
the odds ratio (Exp (b)) and the significance.
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Fig. 5. Receiver operating characteristic (ROC) curves for the two logistic regression models (left) and dependency of modelled landslide
susceptibility and actual landslide densities (Spearman’s rank correlation coefficient (P ); ∗∗ correlation is significant at a 0.01 level). The
landslide density values are based on 324 mapped landslides for the year 2000 (upper part), 190 mapped landslides for the year 1959 (lower
part), and 52 mapped landslides for the period 2000–2004 (right).

Table 5. Test result variable “predicted probability” by LRM 2000
and 1959.

LRM Area Std. Asymptotic Asymptotic 95%
Error Sig.a Confidence Interval

lower upper
bound bound

2000 .861 .005 .000 .851 .872
1959 .864 .006 .000 .852 .876

a Null hypothesis: true area = 0.5.

4.4 Validation of the landslide susceptibility model for
temporal predictions

To test the suitability of the model for the prediction of fu-
ture events, we compared the produced landslide suscepti-
bility map of 2000 with the “new landslides” that occurred
after 2000 until 2004. It is presumed that a spatial database
containing the distribution of all the landslides over a period
can be used to predict the distribution of future landslides
over a period of the same length (Fabbri et al., 2003). This
presumption is critical for the LRM of 1959. Accordingly
there is no relation between the observed new landslides in
2004 and the predicted probability be the LRM 1959 (Fig. 5,
right panel). For the LRM of 2000 the presumption is valid,
nonetheless, the prediction of the new landslides was rather
unsatisfactory. This is illustrated by the weak relationship
(P=0.29) and the loss of significant correlation (at the 0.01

level) between predicted landslide probability and observed
landslide density in 2004 (Fig. 5, right panel). The new land-
slides occurred mainly in the zone that was predicted with
only medium susceptibility. This could indicate a loss of
prediction quality and the decrease of predictive power of
the landslide causal factors with time.

Temporal validation adds a time element to susceptibility
maps and makes the transfer to a landslide hazard map possi-
ble (Remondo et al., 2003). However, the susceptibility map
failed to predict the new landslides. Thus, another approach
was needed to introduce a temporal component to the suscep-
tibility map in order to allow prediction of future landslides.

4.5 Effect of temporal change on the probability
of landslides

In order to confirm our hypothesis that the recent landslides
are a result of the increasing influence of dynamic factors
and not an accidental deviation of the predicted probability,
we subtracted the modelled susceptibility zones of the LRM
of 2000 from the zones of the LRM of 1959. The result is a
map, which shows the deviations of the susceptibility zones
between the two LRMs and, thus, the change of susceptibility
over time (Fig. 6). The values are negative where the land-
slide susceptibility zones was lower (indicating less landslide
probability) in 1959 and positive where it was higher. The
landslide susceptibility mainly increased near the valley bot-
tom and the adjacent lower slopes, a decrease is visible for
the more remote slopes except for the higher elevated areas
with high rock and debris content that behaved unchanged.
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Fig. 6. Differences of susceptibility zones between the logistic re-
gression models of 1959 and 2000 (Projection: CH1903 LV03).

The deviation susceptibility map shows good correspon-
dence with the new landslides that predominantly occurred
at the foot of the slope after 2000 (Fig. 6). About 85% of the
new landslides occurred in the zone with the highest suscep-
tibility deviation (value: –2) towards an increased landslide
probability over time. We interpreted the obtained agreement
of the deviation susceptibility map with the occurrence of the
new landslides as a validation of our approach. With this
multi-temporal data analysis the temporal shift of suscepti-
bility zones could be spatially captured and visualized. Thus,
it is possible to add a spatial explicit time element to suscep-
tibility maps in order to improve the assessment of future
landslide susceptibility zones.

The pattern of the deviation zones may give information
about the dynamic landslide causal factors, that caused the
shift of susceptibility zones. The deviation susceptibility
map includes the combined effect of temporal environmental
change. An increase of maximum 3-day rainfall events was
observed (Meusburger and Alewell, 2008). Prolonged rain-
fall mostly triggers zones with already high susceptibility.
Nevertheless, it is necessary to stress that different rainfall
amount-duration combinations and difference in rainfall dis-
tributions can produce different landslide patterns (Zêzere et
al., 2004). To which extend altered snow processes change
the susceptibility zones was not evaluated in this study. Geo-
morphologic feedback mechanism may have effects on land-
slide susceptibility. On the one hand, susceptibility may de-
crease over time due to the “emptying” of the slope (Huf-
schmidt et al., 2005), on the other hand susceptibility may
increase over time due to a steepening and undercutting of
slopes (Claessens et al., 2007).

The most plausible explanation of a local shift in suscep-
tibility zones is the change in land use types between 1955
and 2006 (Fig. 7). A detailed description of the land use
changed that occurred in the valley is given in Meusburger

Fig. 7. Difference in area percentage of land use types in 1955 and
2006.
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and zero (0) where no shift of susceptibility occurred.

and Alewell (2008).The percentage of susceptibility devia-
tion zones per land use type of 1955 is given in Fig. 8. The
majority of new high susceptibility zones (with a deviation of
–2) are located within two land use types (Freiberg and Pri-
vate land). These two land use types were intensified during
the last decades. “Freiberg” is a special pasture, which is
used only part time of the season. Since the early 70ties, this
land use type was replaced by a permanent pasture. This led
to severe degradation of the pasture mainly along the lower
fence. It is typical for permanent pastures that the pasture
intensities are heterogeneously distributed due to the influ-
ence of topography and the location of the water sites. Thus,
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in other parts there is also a decrease of susceptibility. The
Private land is used as meadow and is nowadays more fre-
quently mown with machines and intensely fertilized with
organic manure. Especially the addition of organic fertilizes
may be a reason for the enhanced landslide susceptibility,
because it favours species with flat rooting (Von Wyl, 1988).
For all other land use types, there is no distinct shift of land-
slide susceptibility zones evident. Generally, land use change
seems to be the a plausible dynamic causal factor explaining
the spatial shift of landslide susceptibility zones over time.

5 Conclusions

Geology, slope and stream-density were the most significant
and reliable static parameters for the logistic regression mod-
els of 1959 and 2000 and their assessment warrant good po-
tential for spatial landslide susceptibility predictions. Yet, for
more recent landslides (since 2000) model prediction was not
successful, which confirmed our proposed hypothesis that
the predictive capability of statistical susceptibility models
may decrease over time. Discrepancies between predicted
susceptibility and observed landslides may be due to various
dynamic landslide causal factors (e.g. changes in snow and
precipitation dynamics, surface cover change). However, the
influence of land use changes seemed to be the most likely
causal factor in the Urseren Valley. With the proposed new
method to analyse multi-temporal data we were able to ex-
tract the effect of changing landslide causal factors on the
probability of landslides and could improve the prediction
for future landslides.

This study implies that the validity of commonly used
static landslide susceptibility maps under changing environ-
mental conditions is questionable. Slopes that are predicted
as stable can rapidly and mostly unnoticed increase in land-
slide susceptibility. Thus, a update of the susceptibility maps
or a consecutively validation with new landslide data is nec-
essary. Generally, it was shown that it is of decisive im-
pact to understand the dynamic of landslide causal factors in
order to guarantee validity of landslide susceptibility maps.
The objective of future work would be to develop regional
scale models that can include temporal variations of landslide
causal factors and, thus, account for changes in landslide sus-
ceptibility zones.
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