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Abstract. Herein, an aerial LiDAR topographic dataset is
analysed and interpolated by means of geostatistical tech-
niques in order to examine the morphology of a scree slope
area in the Eastern Italian Alps. The LiDAR-derived digital
terrain model (DTM) is analysed using variogram maps as
spatial continuity indexes. This allowed for evaluation of the
reproduction of spatial variability of topography and for the
characterization and comparison of different morphological
features occurring in the study site. The results indicate that
variogram maps efficiently synthesise the spatial variability
of topography in a local search window, representing suitable
“fingerprints” of surface morphology.

1 Introduction

Elevation data derived from airborne LiDAR (light detection
and ranging, also known as aerial laser scanning) must be
carefully analysed and interpolated in order to obtain accu-
rate high-resolution (cell size≤1 m2) digital terrain mod-
els (DTMs). LiDAR data, despite their high spatial den-
sity, are affected by errors. In particular, the footprint of
the laser beam depends on observation geometry and acqui-
sition distance: as a consequence, accuracy and resolution
are variable in the same scene. The footprint, which can
be interpreted as support of measurement in geostatistical
terms (Isaaks and Srivastava, 1989), is strongly deformed on
steep slopes. Moreover, multiple reflections lead to filtering-
dependent models. Finally, the performance of the inertial
navigation system and the accuracy of ground-based GPS
network strongly affect data acquisition and modelling. A
geostatistical approach makes it possible to account for these
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issues, thereby maximising the informative content of Li-
DAR data and filtering out noise.

Several studies have demonstrated that statistical and spa-
tial continuity indexes, integrated with morphometric in-
dexes, applied to high-resolution DTMs, provide an impor-
tant contribution toward the recognition of landforms and to-
ward the characterisation of geomorphic processes on land-
slides (McKean and Roering, 2004; Glenn et al., 2006), head-
water channels (Cavalli et al., 2008), alluvial fans (Staley
et al., 2006; Frankel and Dolan, 2007; Volker et al., 2007;
Cavalli and Marchi, 2008), and glaciers (Favey et al., 1999;
Arnold et al., 2006; Kodde et al., 2007).

In the present paper, variogram maps have been used to
characterise surface morphology of a scree slope in the Ital-
ian Alps.

2 Study site and LiDAR data set

The study area (Fig. 1a) is located on the southern flank of the
Sella Group (Dolomites, Eastern Italian Alps) at elevations
ranging from 2550 to 3000 m. Two principal morphological
units are present in the study area: subvertical rock slopes,
comprised of Dolomia Principale (Norian) and entrenched
by steep couloirs, and scree slopes, located at the base of the
cliffs.

The present study focuses on the scree slope area. Debris
cones, with apexes located at the outlet of couloirs, which
cut the superjacent rock slope, are prominent features in the
scree belt. Four main processes influence sediment dynamics
on the scree slopes and cones, and contribute to their complex
morphology, namely, gravitational accumulation of weath-
ered rock fragments, rockfall, snow avalanches, and debris
flows (Marchi et al., 2008). The main morphological features
of the studied slope are debris-flow channels and debris-flow
deposits (at different stages of evolution and activity), rock-
fall deposits, planar gravitational scree deposits, and isolated
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Figure 1. a) study site location with domain of analysis outlined in red; b) surface of 2 

interpolated residuals; c) map of standard deviation of estimation.  3 
Fig. 1. (a) study site location with domain of analysis outlined in
red; (b) surface of interpolated residuals;(c) map of standard devi-
ation of estimation.

rocky outcrops emerging from the debris. It is noteworthy
that these features are often present as mixed morphologies,
for example as debris-flow deposits partly covering rockfall
deposits.

The LiDAR data were acquired in October 2006 by
means of an ALTM 3100 OPTECH (http://www.optech.ca/
prodlatm.htm), flying at an average altitude of 1000 m above

ground level under snow free conditions. During the LiDAR
survey, high-resolution (0.15 m) digital aerial photos were
also collected (camera Rollei H20). The spatial sampling
density of the LiDAR-derived topographic dataset is high,
with raw data having a mean density of 5 point/m2. Raw
data were filtered using the Terrascan™ software classifica-
tion routines and algorithms (http://www.terrasolid.fi/), and
filtered data show a mean density of 3 point/m2.

3 DTM generation and analysis

LiDAR data were analysed and interpolated following a geo-
statistical approach, which is composed of three steps: 1)
explorative and spatial continuity analysis, 2) inference of a
spatial continuity model, and 3) interpolation.

The first phase of the analysis is crucial, because it directly
affects the choice of the subsequent interpolation method.
The main goals of this stage of the analysis are character-
isation of sampling geometry, detection of errors and arti-
facts, delineation of heterogeneities in spatial variability, de-
composition between trend and residuals (i.e. decomposition
between regional and local spatial variability components),
and analysis of spatial continuity. The continuity analy-
sis was performed by means of the experimental variogram
(Goovaerts, 1997):

γ̂ (h) =
1

2N(h)

N(h)∑
α=1

[z(uα) − z(uα + h)]2 (1)

whereh is the separation vector between two point pairs,
z(uα) is the elevation at the locationuα, andN (h) is the
number of point pairs separated byh.

According to Eq. (1), the variogram for a given value of
the separation vectorh, when applied to topographic data,
is half the mean squared differences in elevation between all
point pairs separated by the vectorh. The analysis of this ex-
perimental function for different values ofh allows for char-
acterisation of bivariate spatial continuity (or, conversely, the
spatial variability) of the studied dataset. After calculation of
an experimental variogram, a variogram model must be in-
ferred (phase 2 of the analysis) in order to perform kriging
interpolation (phase 3).

A trend model was calculated by employing a local poly-
nomial method, and locally fitting the polynomial surface by
using ordinary least squares (search windows with a radius of
15 m). A first-order polynomial was adequate for describing
the regional component of variability inside the search win-
dows. The calculated trend surface describes the regional
component of spatial variability or, from a signal-processing
standpoint, represents the low frequency component of vari-
ability. The calculated trend surface was subtracted from
the elevation data in order to obtain statistically stationary
residuals (Goovaerts, 1997) and estimate an experimental
variogram. From the standpoint of signal-processing, the
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Figure 2. Relationship between the variogram map and directional variograms. a) variogram 7 

map of elevation data with profiles of directional variograms; b) directional variogram 8 

calculated along the direction of maximum continuity, (dashed line in a); c) directional 9 

variogram calculated along the direction of minimum continuity (continuous line in a).  10 
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Fig. 2. Relationship between the variogram map and directional variograms.(a) variogram map of elevation data with profiles of directional
variograms;(b) directional variogram calculated along the direction of maximum continuity, (dashed line in a);(c) directional variogram
calculated along the direction of minimum continuity (continuous line in a).

residuals represent the high frequency component of vari-
ability. Once the experimental variogram was computed, a
variogram model was inferred using a least square procedure.
The resulting spherical model bears a sill of 0.497, a range
of 16.5 m, and a nugget of 0.01. The residuals were thereby
interpolated using a block ordinary kriging algorithm, with a
5-m search radius local window and a block size of 1 m2. As
such, the estimated elevation value is the mean elevation of a
1-m2 cell.

The obtained results are the surface of residuals (Fig. 1b)
and the standard deviation of estimation (Fig. 1c), which pro-
vide a measure of interpolation quality. Zones with high
values of standard deviation indicate higher levels of uncer-
tainty in elevation estimates and are directly related to a de-
terioration in sampling density. The overall low values of
standard deviation indicate a satisfactory quality of the inter-
polation. Nevertheless, we observe in Fig. 1c peculiar pat-
terns resulting in locally higher values of standard deviation,
which could be due to a non-optimal filtering processes of
the LiDAR data. Since the focus of this study is to describe
morphologies of limited extent, the analysis was performed
on the surface of residuals. The complete DTM could read-
ily be obtained by adding the surface of residuals to the trend
surface.

The surface of residuals (Fig. 1b), representing the spatial
variability at local scale, outlines morphologies with limited
width, such as debris-flow channels that are represented by
linear patterns with negative values, and debris-flow lobes
that are represented by elongated patterns with positive val-
ues. The primary morphologies occurring in the study do-
main are therefore readily identifiable by their specific pat-
terns (Fig. 1b). The quantitative characterisation of mor-
phologies, although more complex than their visual identifi-
cation on the surface of residuals, is necessary for automated
analysis of landforms, including the application of classifica-
tion and pattern recognition routines (Carr, 1996; Drägut and
Blaschke, 2006; Asselen and Seijmonsbergen, 2006; Ehsani
and Quiel, 2008). In particular, the use of morphological

indexes that are able to catch the specific patterns of the
morphologies being investigated is needed. From this per-
spective, the variogram presented in equation (1) represents
a good candidate.

4 Spatial continuity analysis

The variogram, which is a measure of spatial continuity,
can be viewed as a multiscale directional measure of surface
roughness. For a given value of vectorh, defined by a mod-
ulus and direction, the variogram is an index of dissimilarity
between all point pairs separated by vectorh and contained
within a given search window. The variogram, for a given
direction ofh, is plotted as function of the separation dis-
tance (i.e. the lag) (Fig. 2b and c). Variogram maps, which
visualise the spatial variability along different directions and
for different spatial scales in one shot (Fig. 2a), can represent
suitable “fingerprints” of local morphology.

Variogram maps were calculated inside circular search
windows with a radius of 10 m in correspondence with spe-
cific morphologies (Fig. 3). The radius of the moving win-
dows was chosen in accordance with the prevailing size of
the investigated morphological features. In order to outline
the effect of interpolation in reproduction of spatial variabil-
ity, the variogram maps were calculated both on raw data
(central column of Fig. 3) and on interpolated data (right col-
umn of Fig. 3). Given the moving window size, the vari-
ogram was calculated using a lag separation of 1 m corre-
sponding to DTM cell size up to a distance of 10 m. The cal-
culation was performed using the open source statistical soft-
ware R (http://www.r-project.org) installed on a desktop PC
with an Intel® Core™2 Quad 2.4 Ghz processor and 3 Gb of
RAM.

In Fig. 3a–c, the calculation is performed on three adjacent
morphological features. Starting from the top, the search
window covers debris-flow deposits, a scree slope not af-
fected by debris flows, and a debris-flow channel. For the
elongated debris-flow deposits (Fig. 3a), the variogram map
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Figure 3. Variogram maps for different morphological features calculated on raw data and on 2 

interpolated data. The red circles represent the search window for calculations. a) debris flow 3 
Fig. 3. Variogram maps for different morphological features calcu-
lated on raw data and on interpolated data. The red circles represent
the search window for calculations.(a) debris-flow deposits;(b)
scree slope;(c) debris-flow channel;(d) and(e) debris-flow lobes
of different size;(f) rockfall deposits.

shows moderate values of variability, with maximum values
of approximately 0.08 m2. This indicates a strong anisotropy,
with the direction of maximum continuity along the direc-
tion of deposition of debris flows. A periodicity along the
direction of minimum continuity, related to the presence of
sub-parallel lobes, is also visible. These results are consis-
tent with the visual recognition of the morphology of debris-
flow deposits; the added value of spatial continuity indexes
resides in the quantitative and objective assessment of their
topographic features. Comparison of the two variogram
maps of the original and interpolated data suggests that the
interpolated surfaces effectively reproduce the spatial vari-
ability, although moderate smoothing tends to slightly ob-
scure the periodicity. The scree slope (Fig. 3b) is charac-
terised by very low values of variability, with a maximum of

0.014 m2, an undefined continuity structure, and an absence
of anisotropy. In the case of the DTM surface, the variogram
map shows a defined continuity induced by the interpolation
procedure. The debris-flow channel (Fig. 3c) shows high
values of variability, with maximum values of 0.4 m2, and
strong anisotropy parallel to the direction of maximum conti-
nuity along the channel direction. Additionally, there is some
periodicity in the variogram along the direction of minimum
continuity. The variogram map calculated on the interpolated
surface shows a good reproduction of spatial variability.

The analysis was also conducted on two debris-flow de-
posits, with lobes of different sizes. In the case of larger
lobes (Fig. 3e), the presence of periodicity in the direction of
minimum continuity is evident for both the variogram com-
puted on the raw data and the interpolated data. Conversely,
in the case of the small lobes (Fig. 3d), periodicity is not
readily recognisable in the variogram map of raw data (cen-
tral column), and is absent in the variogram map calculated
on the interpolated surface (right column). This can be as-
cribed to the spatial resolution of the data, which is too low
for the description of these small morphological features.

In the case of rockfall deposits (Fig. 3f), the variogram
map shows high values of variability, maximum values of
0.4 m2 with a poorly defined structure of continuity, and a
moderate anisotropy at short distances. There are no ma-
jor differences between the calculation performed on the raw
and interpolated data, apart from smoothing in the latter.

5 Conclusions

Spatial continuity measures, such as the variogram, synthe-
sise the spatial variability structure of morphological fea-
tures and provide informative tools for the characterisation
of surface roughness. Spatial continuity indexes highlight
and characterise terrain morphologic features, such as debris-
flow deposits, channels, and rockfall deposits, resulting in
“fingerprints” of surface morphology. Variogram maps can
be used to derive and calibrate simpler morphological in-
dexes that are capable of picking up the most distinctive char-
acteristics of the spatial variability of different morphological
features, such as the anisotropy, the presence of periodicity,
and the spatial variability calculated at specific lags. These
indexes could serve as the basis for subsequent automated
classifications and pattern recognitions (Carr, 1996; Asselen
and Seijmonsbergen, 2006; Drägut and Blaschke, 2006).

Although most of the morphologies considered in this
study could be identified through visual mapping, the possi-
bility of quantifying land surface features by means of spatial
continuity indexes is of great importance, as allows for ob-
jective comparisons between morphologies. Moreover, the
quantification of spatial variability could be useful to eval-
uate the relationships between spatial patterns and the pro-
cesses involved. Finally, these indexes may enhance the
mapping of morphological features not readily identifiable
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through traditional techniques, such as field observations
or aerial photo interpretation, or other DTM-derived maps
(e.g. shaded relief maps).

The present interpolation procedure, based on the block
ordinary kriging algorithm, facilitated an accurate surface
model of the residuals to be calculated, with a satisfactory
representation of the spatial variability. In case of lower data
densities or the need for higher resolution, a local kriging
approach (Stroet and Snepvangers, 2005) could further im-
prove the quality of the DTM. In particular, the correct repre-
sentation of spatial variability of ground surface in presence
of anisotropic morphologies should be closely considered, as
represented in the study area by debris-flow deposits or chan-
nels.
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