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Abstract. In this work we use the multiscale entropy method
to analyse the variability of geo-electric time series moni-
tored in two sites located in Mexico. In our analysis we con-
sider a period of time from January 1995 to December 1995.
We systematically calculate the sample entropy of electro-
seismic time series. Important differences in the entropy pro-
file for several time scales are observed in records from the
same station. In particular, a complex behaviour is observed
in the vicinity of a M=7.4 EQ occurred on 14 September
1995. Besides, we also compare the changes in the entropy
of the original data with their corresponding shuffled version.

1 Introduction

Nowadays, the efforts to develop earthquake prediction
methods, have not been succesful. However, despite some
pressimism, in many seismically actives zones around the
world there exist research programs for the study of pos-
sible precursory phenomena of eathquakes (Lomnitz, 1990;
Hayakawa, 1999; Hayakawa and Molchanov, 2002; Telesca
et al., 2005). In particular, one of the techniques used in
the search of earthquake precursors since more than three
decades ago consists in monitoring the so-called electric self-
potential field. This was motivated by the following aspects
(Varotsos, 2005): It is expected that before an earthquake
occurrence, the stress (pressure) gradually varies in the fo-
cal area, which affects various physical properties, for ex-
ample the static dielectric constant (Varotsos, 1978, 1980).
In addition, this stress variation may change the relaxation
time for the orientation of the electric dipoles formed due to
lattice defects (Lazaridou et al., 1985). It may happen that,
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(lguzmanv@ipn.mx)

when the stress (pressure) reaches a critical value (Varotsos
and Alexoupoulos, 1984b), these electric dipoles exhibit a
cooperative orientation (collective organization), thus lead-
ing to emission of transient electric signals termed Seismic
Electric Signals, SES. Hence, since criticality is always as-
sociated with fractality, it is expected that precursory elec-
tric signals should exhibit fractal properties (Varotsos, 2005).
We have measured the ground electrical potential (the self-
potential) in several sites along the Mexican coast, near the
Middle American trench, which is the border between the
Cocos and the American tectonic plates. In some previous
articles we have reported more detailed descriptions of that
region and some studies of possible precursory electric phe-
nomena associated to several earthquake of magnitude larger
than six (Muñoz-Diosdado et al., 2004; Raḿırez-Rojas et al.,
2007; Flores-Ḿarquez et al., 2007). Recent studies focused
on fractal and non linear properties of physical and biological
times series have revealed that this organization is strongly
related to a complex interaction of multiple components and
mechanims across multiple scales. In particular, published
studies about the complexity of ground electric self-potential
behavior have pointed out that changes in the fractal organi-
zation have been observed in a period prior to an important
earthquake. However, a clear evidence with statistical sup-
port about the mechanisms involved in these changes, has not
been presented, although some important suggestions and
discussions have been proposed to address this problem (Go-
toh et al., 2003, 2004; Smirnova et al., 2004; Ida et al., 2005;
Ida and Hayakawa, 2006; Telesca and Lapenna, 2006; Varot-
sos et al., 2008). One important feature of geolectric signals
is the asbsence of regularity patterns when a time series is
observed by means of traditional methods. The direct appli-
cation to this kind of signals of nonlinear methods such as
power spectrum, detrended fluctuation analysis (DFA) and
fractal dimension method reveals that different correlation
levels are present in the vicinity of a big event. It is important
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to apply different kinds of methods to the same data, to con-
firm and make sure that something is really taking place prior
to a big earthquake.

In this work, we present a study to evaluate the changes
in the variability of geolectric signals during a one year pe-
riod from 1 January to 31 December 1995 in two sites lo-
cated in the Guerrero coast in southern Mexico. In particu-
lar, our study is related to anMs=7.4 earthquake ocurred on
14 September 1995. Previous studies by our group have re-
ported changes in the correlation dynamics observed prior to
this earthquake (Raḿırez-Rojas et al., 2007, 2004). We use
the sample entropy algorithm to evaluate the level of regu-
larity of geolectric time series across multiple time scales. A
similar study, but with a different entropy defined (Varotsos
et al., 2003) in a new time domain termed natural time, has
been made byVarotsos et al.(2004), to distinguish SES ac-
tivities from signals emitted from man-made sources. We ob-
serve important changes in the irregularity of the signals for
a period in the vicinity of the earthquake mentioned above.
The results presented here are consistent with previous stud-
ies of the same data based on power spectral analysis and
fractal dimension methods (Raḿırez-Rojas et al., 2004). The
paper is organized as follows. In Sect. 2, a brief description
of the approximated entropy and sample entropy methods are
presented. We also describe the electroseismic time series.
In Sect. 3, we present the results and discussions. Finally in
Sect. 4, some concludings remarks are given.

2 Data and methods

2.1 Entropy methods

The entropy of a single discrete random variableX is a mea-
sure of its uncertainty. In the Shannon’s entropy definition,
the average uncertainty of a discrete random variable that
obtains values from a finite setx1, ..., xn, with probabilities
p1, ..., pn, is given by

H(X) = −

∑
xi

p(xi) logp(xi), (1)

where X is the random variable andp(xi)=Pr(X=xi) is
the probability mass function. In the case of a stochas-
tic process, the mean rate of creation of information is
known as the Kolmogorov-Sinai (KS) entropy (Eckmann
and Ruelle, 1985). However, the KS definition is not ap-
plicable to finite length real world series because numer-
ically only entropies of finite order can be computed and
KS is understimated as the order becomes large. An al-
ternative procedure to estimate the entropy of a signal was
given by Grassberger and Procaccia (Grassberger and Pro-
caccia, 1983). They proposed theK2 entropy to charac-
terize chaotic systems which is a lower bound of theKS

entropy. Later, based onK2 definition, Pincus introduced
the Approximate Entropy(ApEn) to quantify the regularity

in time-series (Pincus, 1991, 1995). Briefly, ApEn is con-
structed as follows: given a time seriesXi=x1, ..., xN of
lengthN . First, m-length vectors are considered:um(i) =

xi, xi+1, ..., xi+m−1. Let nim(r) represent the number of
vectorsum(j) within r of um(i). Ci

m(r) = nim(r)/(N −

m+1) is the probability that any vectorum(j) is within r of
um(i). Next, the average ofCi

m is constructed,8m(r) =

1/(N − m + 1)
∑N−m+1

i=1 lnCm
i (r). Finally, ApEn is de-

fined asApEn(m, r) = limN→∞

[
8m(r) − 8m+1(r)

]
. For

finite N, it is estimated by the statistics,ApEn(m, r,N) =

8m(r) − 8m+1(r). In words, the statisticsApEn(m, r, N)

is approximately equal to the negative average natural loga-
rithm of the conditional probability that two sequences that
are similar form points remain similar at the next point,
within a tolerancer (Richman and Moorman, 2000). Then,
a low value ofApEn reflects a high degree of regularity.
Even though the implementation and interpretation ofApEn

is useful to distinguish correlated stochastic processes and
composite deterministic/stochastic models (Pincus, 1995), it
has been found there is a bias inApEn because the algorithm
counts each sequence as matching itself (Richman and Moor-
man, 2000). The presence of this bias causesApEn to lack
two important expected properties: (a) ApEn is heavily de-
pendent on the time-series length and is uniformly lower than
expected for short series and, (b) it lacks relative consistency
in the sense that if value ofApEn for a time-series is higher
than that of another, it does not remain so if the test condi-
tions change (Pincus, 1995). Therefore, the development of
an alternative method was desirable to overcome the limita-
tions ofApEn. Based onK2 andApEn methods, Richman
and Moorman (Richman and Moorman, 2000) introduced the
sample entropy (SE), to reduce the bias inApEn. One of the
advantages ofSE is that it does not count self-matches and
it is not based on a template-wise approach (Richman and
Moorman, 2000). SE(m, r,N) is precisely defined as

SE(m, r,N) = − ln
Um+1

Um
(2)

that is, the negative natural logarithm of the conditional prob-
ability (U ) that two sequences similar form points remain
similar at the next point, within tolerancer, without count-
ing the self-matches.SE results would be more robust than
ApEn statistics when applied to short time series from dif-
ferent stochastic processes over a wide range of operating
conditions. For instance, a lower value ofSE indicates a
more regular behavior of a time-series wheareas a high value
is assigned to more irregular, less predictable, time series.
It applies to real world time series and, therefore, has been
widely used in physiology and medicine (Costa et al., 2005).

2.2 Multiscale entropy analysis

Recently,Costa et al.(2002) introduced the multiscale en-
tropy analysis (MSE) to evaluate the relative complexity
of normalized time series across multiple scales. This

Nat. Hazards Earth Syst. Sci., 8, 855–860, 2008 www.nat-hazards-earth-syst-sci.net/8/855/2008/
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Fig. 1. Plot of MSE analysis for 1/fβ-noises with 0 ≤ β ≤ 1, that is, for noises with power-law correlations.

We used the Fourier filtering method to generate time series of 32000 points. In this plot, each point represents

the average of 10 independent realizations. The value of SE is given according to the color panel. Note that as

the spectral exponent increases the entropy value remains high even for large time scales.

0   250 500 750 1000 1250 1500 1750 2000 2250 2500
0  

1

3

5

time (sec)

m
V

/
m

0   250 500 750 1000 1250 1500 1750 2000 2250 2500
1.6

1.7

1.8

time (sec)

m
V

/
m

N−S channel

E−W channel

a)

b)

Fig. 2. Representative electroseismic time series from Acapulco station (June 17, 1995) (a) N-S channel and

(b) E-W channel.

10

Fig. 1. Plot of MSE analysis for 1/f β -noises with 0≤β≤1, that is,
for noises with power-law correlations. We used the Fourier filter-
ing method to generate time series of 32 000 points. In this plot,
each point represents the average of 10 independent realizations.
The value ofSE is given according to the color panel. Note that as
the spectral exponent increases the entropy value remains high even
for large time scales.

procedure was proposed to give an explanation to the fact
that, in the context of biological signals, single-scale en-
tropy methods (SE andApEn) assign higher values to ran-
dom sequences from certain pathologic conditions whereas
an intermediate value is assigned to signals from healthy sys-
tems (Goldberger et al., 2002; Costa et al., 2002). It has
been argued that these results may lead to erroneous conclu-
sions about the level of complexity displayed by these sys-
tems (Costa et al., 2005). The MSE methodology shows
that long-range correlated noises as the output of healthy
systems are more complex than uncorrelated signals from
some pathologic conditions. Briefly we explain the MSE,
given a time seriesXi=x1, ..., xN , a coarse-graining pro-
cedure is proposed (Costa et al., 2005). A scale factor
τ is introduced to perform a moving average given by
Xj=1/τ

∑jτ

i=(j−1)τ+1 xi , with 1≤j≤N/τ . Note that the
length of the coarse-grained time series is given byN/τ ,
that is, for scale 1, one has the original time series. To com-
plete the MSE procedure theSE algorithm is applied to the
time series for each scale. Finally, the entropy value is plot-
ted against the scale factor. Typically, under MSE analysis,
the entropy values for a random noise monotically decreases
whereas for long-range correlated noise (1/f -noise) the en-
tropy remains constant for several scales, indicating that 1/f -
noise is structurally more complex than uncorrrelated signals
(Costa et al., 2005). In order to get a better estimation of
entropy values for Gaussian noises with power law correla-
tions, we performed simulations of noises with power spec-
trum of the form 1/f β with 0≤β≤1. We generated time
series with 32 000 points by means of the Fourier filtering
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Fig. 2. Representative electroseismic time series from Acapulco
station (17 June 1995)(a) N-S channel and(b) E-W channel.

method (Makse et al., 1996). We applied the MSE analysis
to the generated data for several values ofβ in the interval
0≤β≤1 and a range of time scales. In Fig.1, the results for
entropy are presented according to the color panel. Notice
that forβ=0 andβ=1, the main results described inCosta et
al. (2002) are recovered.

2.3 Data

The time series considered in this study were monitored dur-
ing the year 1995 in two electroseismical stations located
at Acapulco (16.85◦ N, 99.9◦ W), and Coyuca (18.35◦ N,
100.7◦ W), both located in the South Pacific coast in Mex-
ico (Raḿırez-Rojas et al., 2004). The electroseismic time
series consist of the electric self-potential fluctuations,1V ,
between two electrodes buried 2 m of depth into the ground
and separated 50 m of distance. Each pair of electrodes was
oriented in two directions: North-South, and East-West di-
rections, as it is indicated in VAN methodology (Varotsos and
Alexoupoulos, 1984a,b; Varotsos and Alexopoulos, 1987).
Two time series were simultaneously recorded at each elec-
troseismic station (N-S and E-W channels). Due to technical
adjustments, two different sampling rates were used in dif-
ferent time intervals along the mentioned period,1t=4 sec-
onds in Coyuca and1t=2 seconds in Acapulco (Yépez et
al., 1995). In Fig. 2 representative time series of potential
differences for Acapulco station are presented. These poten-
tial fluctuations correspond to E-W and N-S channels from
a short period of time during June 1995. When we compare
these two signals, two different kind of fluctuations can be
identified. An important question here is to evaluate the level
of irregularity across multiple scales and its relation with the
presence of long range correlations. In this work, we eval-
uate the changes in the variability of these signals during a
one year period from 1 January to 31 December 1995 in both
stations (Acapulco and Coyuca).
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Fig. 3. MSE analysis of geolectrical time series from Acapulco station. (a) MSE results for E-W channel, three
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results for N-S channel. c and d As in (a) and (b) but for randomized data. Note that in these cases the data
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Fig. 3. MSE analysis of geolectrical time series from Acapulco
station.(a) MSE results for E-W channel, three main regions can be
identified according to the changes ofSE for different scale factors.
Note that Region II is characterized by a high entropy value even
for large time scales.(b) Entropy results for N-S channel.(c), (d)
As in (a) and (b) but for randomized data. Note that in these cases
the data display mostly white noise profile.

3 Results and discussion

For the application of the MSE procedure to the electroseis-
mic time series we considered non overlapped time windows
of 3600 data points corresponding to approximately 2 h of
records. First, the original signal is divided by its standard
deviation andSE is calculated for each time scale according
to the MSE method. We repeated the MSE procedure for
the corresponding shuffled version of each window. In all
the cases presented here, we used the following parameter
values: r=0.15 andm=2. In Fig. 3, the results ofSE for
Acapulco station are presented. The color panel represents
the values ofSE in the interval 0.5 to 2.5. For E-W channel
(Fig. 3a), we observe that for a short period at the beginning
of the year (Region I),SE shows a low value for scale one,
followed by a small increment for large time scales, that is,
a high regularity in the original data is observed. After this
period, the entropy value increases and remains high even
for scaleτ=5, indicating a presence of complex dynamics
probably related to long range correlations (Region II). In-
terestingly, a short period after the EQ 7.4 occurred at 14
September 1995, the entropy value shows a fast decay simi-
lar to white noise (Region III). For N-S channel (Fig.3b), the
entropy is small for scale one and shows a small increment as
the scale factor increases. This behavior is observed almost
for all the year except for a short period at the end where a
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Fig. 4. MSE analysis of geolectrical time series from Coyuca sta-
tion. (a) MSE results for E-W channel, we observe that entropy
value is close to white noise profile except for short periods with a
low entropy. (b) Entropy results for N-S channel.(c) and (d) As
in (a) and (b) but for randomized data. Note that in these cases the
data display mostly white noise profile.

pattern very similar to white noise is present. Previous stud-
ies (Raḿırez-Rojas et al., 2004), by means of power spectral
analysis and fractal dimension methods, indicated the pres-
ence of long range correlations in the same period where a
complex dynamics is observed by means of the MSE. These
studies have reported that from April to September 1995, the
power spectrum of E-W time series is described by two spec-
tral exponents,β1 andβ2 with β2≈1, indicating the presence
of long-range correlations. In Fig.3c and d results for the
correspoding shuffled versions are presented. For E-W data,
we observe that for almost all year a pattern similar to white
noise is present, except because a high value, for scale one, is
identified in the period of complex dynamics. For N-S chan-
nel, the entropy shows a profile similar to white noise.

The results for both channels in Coyuca Station are pre-
sented in Fig.4. We observe that theSE shows a similar
profile to white noise except because the presence of muti-
ple short periods with a low entropy value across multiple
scales (see Fig.4a and b). When these results are compared
to their corresponding surrogate sequences, the original pro-
file for the entropy is preserved but the short periods with low
entropy values are changed to white noise behavior.

To further evaluate the changes ofSE results, we construct
scatter plots of entropy values at scale 1 for E-W channel
(SEW

E (1)) against entropy for N-S channel (SNS
E (1)). The re-

sults are presented in Figs.5a and6a. For Acapulco station,
we observe that the entropy of the original data is clearly
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L. Guzḿan-Vargas et al.: Multiscale entropy analysis of electroseismic time series 859

Fig. 5. Scatter plots ofSE from MSE analysis for Acapulco station.
(a) Entropy from E-W channel vs. N-S channel, for scale 1. The
original data (circles) are colored according to the three main re-
gions defined in Fig.3a (blue (Region I), red (Region II) and green
(Region III)). Note that these three regions are clearly segregated.
(b) and(c) SE for scale 1 vs. scale 10.

separated in three main groups corresponding to the three re-
gions defined above. In particular, Region I is characterized
by a low entropy value for E-W channel and an intermedi-
ate value for N-S. In contrast, Region II is described by a
high entropy value for E-W channel and a low entropy for
N-S. According to Fig.5a, Region III shows a strong corre-
lation in entropy values of E-W and N-S channels, that is, the
high entropy in both channels resembles white noise behav-
ior. Furthermore, as shown in Fig.5a the high entropy values
of shuffled data in both channels confirm a high variability
which resembles white noise. For Coyuca station (Fig.6a),
we observe a clear correlation between entropy values for
scale 1, indicating thatSE values are positively related. We
also observe that results for the shuffled version are very sim-
ilar to the original data. Additionally, we also construct the
corresponding scatter plots to compare the changes in the en-
tropy value for short scales (scale 1) versus large scales (scale
10). These results are described in Figs.5b, c and6b, c. For
E-W channel in Acapulco station, we observe a good dis-
crimination between the three main time regions described
in Fig. 3a whereas for N-S channel two main regions can be
identified (see Fig.5b, c). In the case of Coyuca, both chan-
nels display a similar behavior which is characterized by a
high value at scale 1 and a low value at scale 10 (Fig.6b, c).
For a comparison we also show the data corresponding to the
randomized version of each channel.

4 Conclusions

We have applied the MSE method to geolectrical signals
from two sites in southern Mexico. We have found differ-
ent entropy values for these signals across several scales. In

Fig. 6. Scatter plots ofSE from MSE analysis for Coyuca station.
(a) Entropy from E-W channel vs. N-S channel, for scale 1. We
observe that the entropy values are strongly correlated.(b) and(c)
SE for scale 1 vs. scale 10.

particular, the Acapulco station displays three different pat-
terns of complex dynamics along the year which are clearly
identified in E-W channel. The results for Coyuca station re-
veal that the entropy profile is mostly white noise for both
channels. The results of Acapulco station are qualitatively
compatible with previous reports based in spectral analysis.
Acapulco station was located at approximately 110 km from
theM=7.4 epicenter. Coyuca station was located at 200 km
from the epicenter. The MSE method reveals complex fluc-
tuation dynamics for the nearest station (Acapulco) but the
results for Coyuca are mainly white noise dynamics. In sum-
mary, MSE analysis reveal important information about the
complex behavior of these fluctuations and is another impor-
tant complementary tool in the search of possible geolectric
precursory phenomena of earthquakes.
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Muñoz-Diosdado, A., Pavı́a-Miller, C. G., Angulo-Brown, F., and
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