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Abstract. The topographic characteristics and spatial cli-
matic diversity are significant in the South of continental Por-
tugal where the rainfall regime is typically Mediterranean.
Direct sequential cosimulation is proposed for mapping an
extreme precipitation index in southern Portugal using eleva-
tion as auxiliary information. The analysed index (R5D) can
be considered a flood indicator because it provides a measure
of medium-term precipitation total. The methodology ac-
counts for local data variability and incorporates space-time
models that allow capturing long-term trends of extreme pre-
cipitation, and local changes in the relationship between ele-
vation and extreme precipitation through time. Annual grid-
ded datasets of the flood indicator are produced from 1940
to 1999 on 800 m×800 m grids by using the space-time rela-
tionship between elevation and the index. Uncertainty eval-
uations of the proposed scenarios are also produced for each
year. The results indicate that the relationship between el-
evation and extreme precipitation varies locally and has de-
creased through time over the study region. In wetter years
the flood indicator exhibits the highest values in mountainous
regions of the South, while in drier years the spatial pattern
of extreme precipitation has much less variability over the
study region. The uncertainty of extreme precipitation esti-
mates also varies in time and space, and in earlier decades is
strongly dependent on the density of the monitoring stations
network. The produced maps will be useful in regional and
local studies related to climate change, desertification, land
and water resources management, hydrological modelling,
and flood mitigation planning.
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1 Introduction

Information on the spatial variability of extreme precipita-
tion is important for river basins management, flood hazards
protection, studies related to climate change, erosion mod-
elling and other applications for hydrological impact mod-
elling. It is long recognized that topography and other geo-
graphical factors are responsible for considerable spatial het-
erogeneity of the precipitation distribution at the sub-regional
scale (e.g., Martı́nez-Cob, 1996; Daly, 2006). A comprehen-
sive review on the complex relationship between precipita-
tion, airflow and physiographic features of mountainous re-
gions is presented by Johansson and Chen (2003), and Smith
and Barstad (2004). Accordingly, it is commonly accepted
that interpolation techniques that make use of the relation-
ship between existing station data and explanatory physio-
graphic variables (e.g., elevation or distance to the coast-
line) have the potential to better represent the actual climate
spatial patterns, especially in mountainous areas and in re-
gions with complex atmospheric influences (Prudhomme and
Reed, 1998; Daly, 2006).

Over the past two decades, efforts have been undertaken
by many authors to incorporate elevation and other phys-
iographic features into the spatial interpolation of rainfall
fields. Some examples are multivariate geostatistics such
as kriging with external drift or cokriging (Martı́nez-Cob,
1996; Goovaerts, 2000; Diodato, 2005; Lloyd, 2005), tech-
niques combining distance weighting methods and regres-
sion (Faulkner and Prudhomme, 1998; Prudhomme and
Reed, 1999; Perry and Hollis, 2005), splines (Hutchinson,
1995, Boer et al., 2001), and local regressions (Daly et al.,
1994; Brunsdon et al., 2001). Most studies do not model
simultaneously the rainfall space-time patterns, but rather
focus on the generation of surfaces of long-term averaged
precipitation (e.g., Martı́nez-Cob, 1996; Diodato, 2005), or
independently derived surfaces for yearly and monthly data
(e.g., Lloyd, 2005; Perry and Hollis, 2005).
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Fig. 1. Elevation of the study region in the South of Portugal and
stations’ locations.

The number of studies on the interpolation of extreme pre-
cipitation indicators is limited. The works of Faulkner and
Prudhomme (1998) and Prudhomme and Reed (1998, 1999)
focused on an index of extreme rainfall, named RMED – me-
dian of the annual maximum rainfall, while Hundecha and
Bárdossy (2005) and Perry and Hollis (2005) describe the
mapping of several extreme precipitation indices. Faulkner
and Prudhomme (1998), Prudhomme and Reed (1999), and
Perry and Hollis (2005) used techniques that combine dis-
tance weighting methods and regression to produce gridded
datasets of extreme precipitation indices, whereas Hundecha
and B́ardossy (2005) used kriging with external drift to inter-
polate daily precipitation observations on a 5 km×5 km grid
and calculated the extreme precipitation indices, afterwards,
on derived grids of 5, 10, 25 and 50 km2. Interpolation
usually leads to a smoothing of the distribution inferred by
the observations and thus to a loss of variance. For exam-
ple, it is well known that kriging is locally accurate in the
minimum error variance sense, but does not provide repre-
sentations of spatial variability given the “smoothing” effect
of kriging (Goovaerts, 1997). The smoothing effect in pre-
cipitation data is undesirable considering the modelling of
floods or other extreme hydrological processes (Haberlandt,
2007). To overcome this limitation, geostatistical stochas-
tic simulation has become a widely accepted procedure to
reproduce the spatial distribution and uncertainty of highly
variable phenomena in geosciences (e.g., Franco et al., 2006;
Bourennane et al., 2007). Geostatistical simulation methods
describe local data variability based on many, equally proba-
ble, realizations of the phenomenon, consistent with the data
and its statistical characteristics.

The accuracy and uncertainty of gridded data sets is dif-
ficult to assess because the field that is being estimated is
unknown between data points. Spatial interpolation errors
are interdependent functions of the station-network distribu-
tion, the efficacy of the interpolation procedure, and the real
(but unknown) spatial distribution of the underlying climatic

Fig. 2. Distribution of the number of available stations by year.

field (Willmott and Matsuura, 2006). Unlike traditional in-
terpolation methods (e.g., cokriging), geostatistical simula-
tion procedures aim at reproducing the spatial uncertainty of
the attribute under study. The series of simulated maps can
be post-processed and the spatial uncertainty summarized
(Goovaerts, 1997). For example, the uncertainty at an un-
sampled location can be evaluated through spread measures,
such as the variance, derived from the corresponding local
histogram.

As other southern European regions, the rainfall regime
in southern Portugal is Mediterranean, and so highly vari-
able in both the spatial and temporal dimensions. One par-
ticularly relevant feature of the rainfall regime in this area
is the occurrence of short but very intensive rainfall events
that may lead to significant damages, by causing flash floods
that affect small drainage basins (Ramos and Reis, 2002).
Fragoso and Gomes (2008) concluded that the most southern
region (Algarve) is the one where episodes of heavy rainfall
are most frequent and which exhibits the strongest torrential
character.

In this work, the R5D index was chosen to characterize the
extreme precipitation regime. This indicator is defined as the
highest consecutive 5-day precipitation total (in millimetres)
per year, and so provides a measure of medium-term precipi-
tation total. For the interpolation and uncertainty assessment
of extreme precipitation in the southern region of continen-
tal Portugal, we explore the application of direct sequential
cosimulation, which allows incorporating covariates such as
elevation.

The choice of cosimulation follows the premises that ele-
vation and precipitation may interact differently in space and
during drier and wetter periods (Goovaerts, 2000). Further-
more, there are evidences of a trend towards a drier climate
in southern Europe as a result of increased evapotranspira-
tion and a relatively slow decrease of rainfall amounts and
precipitation frequency (Cubasch et al., 1996; Kostopoulou
and Jones, 2005; Vicente-Serrano and Cuadrat-Prats, 2007).
Moreover, a negative trend in March precipitation has been
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Fig. 3. Spatial and temporal components of the experimental semivariogram of the 1960s decade data of R5D with the exponential model
fitted.

detected in southern Portugal (Corte-Real et al., 1998). Ac-
cordingly, the methodology not only accounts for local data
variability by using stochastic simulation procedures, but
also incorporates space-time models that allow capturing
long-term trends of extreme precipitation, and local corre-
lations between elevation and precipitation through time.

The current work has three objectives: (i) to assess the
space-time relationship between elevation and extreme pre-
cipitation in southern Portugal; (ii) to use this relationship to
produce annual gridded datasets of a flood indicator (R5D)
from 1940 to 1999; and (iii) to provide an uncertainty evalu-
ation of the produced scenarios.

The R5D index was computed using high quality daily pre-
cipitation observations measured at 105 monitoring stations
with data within the period 1940/1999. The direct sequen-
tial cosimulation was performed for generating one map per
year, using 800 m×800 m grids and elevation as exhaustive
secondary information.

The methodology is briefly introduced in Sect. 2, and the
study region and data are described in Sect. 3. The main
results are presented and discussed in Sect. 4, including the
relationship between elevation and the flood indicator, the
space-time patterns of the index in 1940/1999, and the un-
certainty evaluation of the produced maps. Finally, Sect. 5
states the major conclusions.

2 Methods

This section briefly introduces the kriging techniques and de-
scribes the reasoning of the geostatistical stochastic simula-
tion algorithms implemented. Interested readers should refer
to geostatistical textbooks (e.g., Isaaks and Srivastava, 1989;
Goovaerts, 1997) for detailed descriptions of univariate and
multivariate geostatistical methods. For a thorough descrip-
tion of the direct sequential simulation, and cosimulation, al-
gorithms the reader is referred to Soares (2001).

Geostatistical estimators, known as kriging, provide sta-
tistically unbiased estimates of surface values from a set of
observations at recorded locations, using the estimated spa-
tial (and temporal) covariance model of the observed data.

Consider the two dimensional problem of estimating a pri-
mary variablez at an unsampled locationu0. Let {z(uα),
α=1, . . . ,n} be the set of primary data measured atn loca-
tions uα. Most of geostatistics is based on the assumption
that the set of unknown values is a set of spatially dependent
random variables, hence each measurementz(uα) is a partic-
ular realization of the random variableZ(uα). Kriging uses a
linear combination of neighbouring observations to estimate
the unknown value at the unsampled locationu0. This prob-
lem can be expressed in terms of random variables as:

Ẑ (u0) =

n∑
α=1

λαZ (uα). (1)

The optimal kriging weightsλα are determined by solving
the kriging equations that result from minimizing the estima-
tion variance while ensuring unbiased estimation ofZ(u0)

by Ẑ (u0).
Kriging methods require a stationarity assumption, ex-

pressed in two parts. First, the mean of the process is as-
sumed constant and invariant with spatial location (first order
stationarity). Second, the variance of the difference between
two values is assumed to depend only on the distanceh be-
tween the two points, and not on their locationu (second
order stationarity). Stationarity assumptions on kriging are
traditionally accounted for by using local search neighbour-
hoods so that the dependence on stationarity becomes local
(Goovaerts, 1997).

When developing the kriging equations the model of spa-
tial covariances, or variogram (inverse function of the spatial
covariances), is assumed known. This is a key function of
geostatistics and characterizes the variability of the spatial
(and temporal) patterns of physical phenomena. Typically, a
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Fig. 4. Plot of elevation against R5D values calculated within
1940/99.

mathematical variogram model is selected from a small set
of authorised ones (e.g. exponential or spherical) and is fitted
to experimental semivariogram values calculated from data
for given angular and distance classes.

The experimental semivariogram̂γ (h) is computed as half
the average squared difference between data pairs belonging
to a certain angular and distance class:

γ̂ (h)=
1

2N(h)

N(h)∑
α=1

[z(uα) − z(uα + h)]2 (2)

whereN(h) is the number of pairs of data locations a vec-
tor h apart.

In bounded models (e.g., spherical and exponential), var-
iogram functions increase with distance until they reach a
maximum, namedsill, at an approximate distance known as
therange. The range is the distanceh at which the spatial (or
temporal) correlation vanishes, i.e. observations separated by
a distance larger than the range are spatially (or temporally)
independent observations.

2.1 Simple kriging

The simple kriging estimate ofz(u0) is:

ẑSK(u0)−m=

n(u)∑
α=1

λSK
α (u0) [z(uα)−m] (3)

wherem is the stationary mean ofZ(u), andλSK
α (u0) is

the weight assigned to datumz(uα) within a search neigh-
bourhood that comprisesn(u) samples.

Fig. 5. Regional correlation between elevation and R5D values by
year.

2.2 Collocated cokriging

Consider now the situation where the set of primary data
{z(uα), α=1, . . . , n} is complemented by secondary data
available at all estimation grid nodes and denoted byy(u).
The collocated cokriging estimate is (Goovaerts, 2000):

ẑCoK (u0) =

n(u)∑
α=1

λCoK
α (u0) z (uα) + λCoK (u0) [y (u0) −mY + mZ] (4)

wheremZ andmY are the global means of the primary and
secondary variables,Z(u) andY (u), respectively. Note that
only the secondary datum collocated at the locationu0 being
estimated is retained for estimation.

2.3 Direct sequential cosimulation

Soares (2001) describes the sequence of thedirect sequen-
tial simulation(DSS) algorithm of a continuous variable as
follows:

1. Randomly select the spatial location of a nodez(u0) in
a regular grid of nodes to be simulated;

2. Estimate local mean and variance identified with simple
kriging estimator (Eq. 3) and kriging variance. Sample
from the global histogram a valuezs(ui) centred in the
estimated local mean and variance.

3. Return to step 1) until all nodes have been visited by the
random path.

Soares (2001) also extended the DSS algorithm for the
joint simulation of different variables, thus nameddirect se-
quential cosimulation(coDSS) algorithm. Instead of simu-
lating all variables simultaneously, it simulates each variable
in turn conditioned to the previous simulated variable.

The coDSS algorithm uses collocated simple cokriging to
estimate local means and variances, incorporating the sec-
ondary information and the relationship between secondary
and primary variables. In this study, the collocated cokriging
was applied with a Markov-type approximation (Goovaerts,
1997) for cross-continuity model. Hence, only the primary
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Fig. 6. Local correlation models between elevation and R5D values
for each decade.

variable variogram model and a correlation model between
primary and secondary data were required.

To reproduce the spatial distribution and uncertainty of the
flood indicator, 100 equiprobable simulated realizations were
generated through the coDSS algorithm on 800 m×800 m
grids, one for each year, using different space-time continu-
ity and correlation models for each decade. These models are
briefly described in the following section and further detailed
in Sect. 4. Elevation was used as secondary information.

2.4 Space-time continuity models

Simulated images were generated by the coDSS algorithm
using for each decade a different space-time variogram
model of the primary variable (R5D index), and a differ-
ent correlation model between primary and exhaustive sec-
ondary data (elevation). This strategy allows accounting for

Fig. 7. Equiprobable simulated realizations of R5D for 1945 and
1949.

possible long-term trends or fluctuations in extreme rainfall,
and for changes in the relationship between elevation and ex-
treme precipitation through time. Alternative physiographic
variables, such as slope or distance from the coastline, could
have been used as secondary information.

The relationship between elevation and extreme precipi-
tation, described by correlation models, was also assessed
locally to allow accounting for changes in correlation across
the study area. First, for each decade, local correlations were
calculated using a search neighbourhood centred at each sta-
tion’s location (further details from this stage are described
in Sect. 4.2). To reproduce the spatial distribution of the re-
lationship between elevation and extreme precipitation, the
second stage used the DSS algorithm to interpolate the local
correlations. In this stage, 50 equiprobable simulated real-
izations were generated through the DSS algorithm for each
decade on 800 m×800 m grids. The correlation models used
later with the coDSS algorithm were determined by comput-
ing the mean of the distribution of the 50 simulated values at
each grid node, by decade.

3 Study region and data

The study domain refers to the South of continental Portu-
gal (Fig. 1) and includes the Algarve region, in the far South,
and most of the Alentejo region (limited in the North by the
Tejo River). The study region has different physiographic
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Fig. 8. Scenarios of extreme precipitation (R5D index).

characteristics. In the far South, the relief is dominated by
the two main Algarve’s mountains: Monchique on the West,
and Caldeir̃ao on the East. In contrast, the Alentejo region is
characterized mainly by vast flat to rolling country, the pene-
plain, where the average altitude is approximately 200 m.
The S̃ao Mamede mountain ridge, the highest in the Alen-
tejo region with an altitude of 1000 m, lies in the extreme
North-East.

Daily rainfall series from 105 stations distributed irregu-
larly over the study region were collected (Fig. 1). Most
of them were extracted from the National System of Wa-
ter Resources Information (SNIRH – Sistema Nacional de
Informaç̃ao de Recursos H́ıdricos) database (http://snirh.
inag.pt), and three of them were compiled from the Euro-
pean Climate Assessment dataset (http://eca.knmi.nl). Each
station series data was previously quality controlled and stud-
ied for homogeneity (e.g. Wijngaard et al., 2003; Costa and

Table 1. Parameters of the exponential variogram models for the
R5D index, by decade.

Decade Spatial range (m) Temporal range Sill
(years)

1940/49 85 000 4.5 2923.364
1950/59 100 000 1 2075.247
1960/69 70 000 4 1263.25
1970/79 70 000 5 1543.205
1980/89 150 000 4.5 2075.301
1990/99 165 000 1.3 2803.646

Soares, 2006; Costa et al., 2008). The length of the series
is highly variable. The extreme precipitation index (R5D)
was calculated for each station using all quality data avail-
able within the 1940/99 period (Fig. 2). The selected stations
have less than 16% of the days missing in each year and most
stations’ data do not have any missing records. The R5D in-
dex is defined as the highest consecutive 5-day precipitation
total (in millimetres) per year, and can be considered a flood
indicator (Frich et al., 2002).

Elevation data were taken from a digital elevation model
(DEM) with a grid resolution of 20 m×20 m and resampled
to an 800 m×800 m grid mesh. The topographic variable de-
rived is defined as the elevation of the nearest grid point to the
meteorological station location, sometimes named smoothed
elevation.

4 Results and discussion

4.1 Space-time continuity of extreme precipitation

Variograms were calculated according to Eq. 2. The vari-
ogram models are chosen and their parameters are estimated
taking into account the experimental data values of vari-
ograms. The objective is to capture the spatial pattern of
physical phenomenon in the variogram model rather than
getting a best fit of a second moment (Goovaerts, 1997). In
this study, we chose exponential models that capture the ma-
jor spatial features of the attribute under study within each
decade. The selected models were subjectively fitted to the
experimental semivariogram values, not only by giving more
importance to the smaller lags and the ones computed from
more data pairs, but also by taking into account physical
knowledge of the area and phenomenon. Considering the re-
sults of a thorough analysis on directional variograms, only
the omnidirectional semivariograms for the spatial dimen-
sion were retained. Consequently, the spatial variability is
assumed to be identical in all directions (i.e. isotropic) within
each decade.

The parameters for each exponential variogram of the R5D
index, used in the coDSS algorithm, are summarized in Ta-
ble 1. In what concerns the temporal component, there are
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Table 2. Distribution of weather stations (with records within each
decade) by elevation classes, and radii of the search neighbourhoods
used to calculate the local correlations.

Decade Elevation (m) Radius (m)

<140 140–280 281–420 421–560 561–700

1940/49 9 13 2 2 1 65 000
1950/59 16 17 3 2 1 50 000
1960/69 16 20 2 2 1 50 000
1970/79 17 18 2 2 1 40 000
1980/89 31 43 17 1 2 35 000
1990/99 31 44 16 1 2 35 000

no relevant tendencies. However, the range of the models’
spatial component shows a strong increase in the spatial con-
tinuity of the flood indicator on the last two decades. For
illustration purposes, the exponential model fitted to the ex-
perimental semivariogram of the 1960s decade is shown in
Fig. 3.

4.2 Relationship between extreme precipitation and eleva-
tion

An exploratory evaluation of the relationship between the ex-
treme precipitation index and elevation was made by aver-
aging the R5D index at each station, and by computing af-
terwards the Pearson’s correlation coefficient between those
values and elevation, not only measured by the actual sta-
tions altitude, but also by the stations grid point elevation
(smoothed elevation). This regional analysis shows that the
correlation is slightly stronger for the smoothed elevation
(0.49) than the actual one (0.43). Other studies on this sub-
ject concluded likewise (e.g., Diodato, 2005).

A plot of elevation against R5D index values is given in
Fig. 4. The coefficient of determination,r2, is small (0.10)
and so there is little evidence of a (global) linear relationship
between elevation and precipitation, as expected (e.g., Lloyd,
2005). Moreover, the correlation for elevation against R5D
index values is not constant through time (Fig. 5), but rather
shows a negative trend during the study period, although not
statistically significant. The number of stations used in the
computation of these correlations ranges from 19 (in 1940)
to 93 (in 1991 and 1992), and is always less than 40 before
1980. Because of the sparse coverage of meteorological sta-
tions in some areas, especially until the 1980s decade (Ta-
ble 2), the local relationship between elevation and extreme
precipitation was assessed by decade.

The coDSS algorithm uses a different correlation model
between the R5D index and elevation within each decade. In
order to determine these models, first, the relationship be-
tween elevation and precipitation was assessed locally by
computing, for each decade, Pearson’s correlation coeffi-
cients using stations’ data falling within a circle centred at
each station’s location. As in earlier decades meteorological
stations are scarce, larger radii were used (Table 2). Sec-

Fig. 9. Uncertainty of the scenarios of extreme precipitation (R5D
index).

ond, the DSS algorithm was applied to interpolate the lo-
cal correlations by decade. This procedure used a single
space-time spherical variogram model of the local correla-
tions, where the spatial dimension was modelled as isotropic,
the estimated range of the spatial dimension was 110 000 m,
the range of the temporal dimension was 6 decades, and the
estimated sill was 0.053. Finally, the correlation models were
determined by computing the mean of the distribution of 50
simulated values at each grid node, by decade (Fig. 6).

The estimated correlation between elevation and the R5D
index ranges from very weak (−0.21) to moderately strong
(0.72) across the region and through decades. In the 1940s
decade, correlations range from−0.18 to 0.65 across the
study region. The correlation model of this decade shows an
unrealistic pattern of correlations on the West of the region,
North of Algarve, caused by the scarce number of available
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Fig. 10. Probability of the uncertainty of the R5D index scenarios,
measured by the coefficient of variation, to be greater than or equal
to 25%.

stations. Accordingly, the variability associated with esti-
mated correlations over this area is also high. Nevertheless,
they correspond to moderate values of approximately 0.50,
and so the contribution of elevation to the estimation of the
flood indicator will also be moderate. The correlation model
of the 1950s decade exhibits a more realistic pattern, with
correlations ranging from−0.17 to 0.67. The model of the
1960s decade also shows a realistic pattern of correlations,
although the West and North-East areas present high vari-
ability. Similarly, the 1970s decade model is realistic but
with very high variability within the North-East region. Be-
cause of the higher density of stations, the correlation models
of the 1980s and 1990s decades exhibit much less variability
than the previous ones.

These results suggest that using elevation as a secondary
variable in estimation will increase the accuracy of estimates
in some locations, i.e. those mountainous areas where cor-
relations are large (e.g. on the West of Algarve and on the
North-East of the study region). In contrast, univariate in-
terpolators (e.g., DSS) are likely to provide estimates as ac-
curate as those provided by coDSS, with less computational
effort, in places where correlations are small.

4.3 Extreme precipitation scenarios

Using the coDSS algorithm, a set of 100 equiprobable sim-
ulated realizations of the R5D index was computed at each
simulated grid node, by year. For illustration purposes, two
equiprobable realizations, for 1945 and 1949, are shown in
Fig. 7. The space-time inference was performed by means
of computing the mean of those distributions. Uncertainty
was assessed by means of computing the standard-deviation
(STD) and the coefficient of variation (CV) of the distribu-
tion of the 100 simulated values at each simulated grid node,
by year. For illustration purposes, the flood indicator maps of
six years are shown in Fig. 8, while Fig. 9 presents their un-
certainty evaluation measured by the coefficient of variation
(CV).

Although the correlation model for the 1940s decade
seemed unrealistic, a visual inspection of all produced sce-
narios for those years reveals a rather realistic spatial pat-
tern of extreme precipitation. On the other hand, the lack
of precipitation data on the north-eastern area makes the esti-
mates more uncertain. For that reason, the extreme precipita-
tion values were possibly less accurately estimated over that
area in several years. In fact, as expected, one of the regions
where the distribution of extreme precipitation shows greater
variability, thus more uncertainty, is in the northern part of
the maps, corresponding to regions less densely sampled in
most years. This is especially evident in the maps of the
standard-deviation. Moreover, the scenarios for the last two
decades of the twentieth century show less uncertainty than
the previous ones because the availability of stations over the
study region is considerably greater (Fig. 2).

Fig. 10 shows estimated local probabilities of the coeffi-
cient of variation of the scenarios produced for R5D to be
greater than or equal to 25%. These probabilities were eval-
uated as the proportion of the sixty estimated values of CV
(computed at each grid cell throughout the years) that exceed
that threshold.

Only a few stations are located at medium (>400 m) and
high elevations (Table 2), thus greater uncertainty would be
expected at those regions. However, the uncertainty in the
mountainous regions of the South is often small (Fig. 10),
because of the use of elevation as secondary exhaustive in-
formation in the spatial interpolation procedure of R5D.

Other common spatial patterns can be observed. In wetter
years, the flood indicator exhibits the highest values in moun-
tainous regions of Algarve, especially over the Monchique
mountains, due to the greater influence of altitude there than
in the rest of the study domain. For this reason, high values
also appear over North-East areas in several years. In drier
years, the spatial pattern of extreme precipitation is much
smoother as estimates have less variability over the study do-
main. As expected from the space-time continuity analysis
(Sect. 4.1), the spatial patterns of extreme precipitation are
becoming more homogenous over time. This is especially
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noticeable in the maps of the last two decades of the twenti-
eth century.

The precipitation regimes are of a different nature in north-
ern and southern regions of Portugal: in the north, the precip-
itation regime has an orographic origin, whereas in the south
it is mainly associated with vertical motions induced by cy-
clogenic activity (Trigo and DaCamara, 2000). In southern
Portugal, summer precipitation, almost close to zero during
this season, is sometimes associated with local convective
activity. These storms can occur with a large degree of in-
dependence from the weather circulation type that character-
izes the Iberian circulation for that specific day (Trigo and
DaCamara, 2000). Changes in the North Atlantic Oscillation
(NAO) are likely to be responsible for much of the observed
change in the frequency of above 90th percentile winter pre-
cipitation between the 1960s and 1990s over Europe (Scaife
et al., 2008). Moreover, the NAO–rainfall relationships tend
to be stronger during the wet seasons of the last decades
of the twentieth century in southern Portugal (Goodess and
Jones, 2002; Trigo et al., 2004). Accordingly, changes in
the NAO are likely to be responsible for the increase of the
spatial continuity of R5D in southern Portugal, which is es-
pecially pronounced during the last two decades of the twen-
tieth century.

To illustrate the usefulness of the annual gridded datasets
produced for the R5D index, probability maps of extreme
precipitation were computed as follows. First, the regional
histogram and its basic statistics were calculated using the
R5D values from maps corresponding to the climate normal
1961/1990. For example, the median was equal to 105 mm,
the third quartile was 125 mm, and the 95th percentile was
160 mm. Second, the probability is approximated by the rel-
ative frequency computed at each grid node for 1940/1999.
Frequencies correspond to the number of times that R5D
values are equal or over a fixed threshold. For example,
the probability map corresponding to the 105 mm threshold
(Fig. 11) shows that the mountainous regions of Algarve and
North-East, and also the West coast have high probability of
extreme rainfall events. On the other hand, the probability
map for 125 mm (Fig. 11) shows that the heaviest medium-
term rainfall events occur at the Algarve region, especially
over the Monchique mountains, as expected. Probability
maps such as these might be useful to identify regions at risk
of erosion caused by extreme precipitation events.

5 Conclusions

The study was performed in the South of continental Portugal
where the topographic characteristics and spatial climatic di-
versity are significant, although the region’s relief is not very
complex if compared to other European study regions (e.g.,
Prudhomme and Reed, 1999; Perry and Hollis, 2005). The
correlation maps of elevation and R5D values indicate that,
as the relationship varies locally, the benefits in using eleva-

Fig. 11. Probability maps of extreme precipitation (R5D index).

tion data to inform estimation will also vary locally. There-
fore, using elevation data in the estimation process is likely
to be beneficial, especially in mountainous areas. The esti-
mates accuracy also varies in time, and in earlier decades is
strongly dependent on the density of the stations network.

Nevertheless, the flood indicator values at locations be-
tween meteorological stations have been estimated to a good
degree of accuracy in most years, producing detailed and rep-
resentative maps of extreme precipitation space-time patterns
over the South of Portugal for the 1940/1999 period. There-
fore, the produced gridded datasets provide a consistent set
of data that allows further investigations on the spatial and
temporal variability and trends in the South Portugal climate,
over 60 years. In fact, the usefulness of the datasets was il-
lustrated by probability maps of extreme precipitation.

The methodology considered here has clear theoretical ad-
vantages over alternative ones, although no single method
is optimal for all regions and time periods (e.g., Isaaks and
Srivastava, 1989; Lloyd, 2005). Among the sequential al-
gorithms of stochastic simulation, one advantage of direct
sequential simulation and cosimulation is the use of original
variables instead of transformed ones: Gaussian (sequential
Gaussian simulation) or indicator (sequential indicator sim-
ulation). The direct sequential cosimulation proved to be a
valuable technique to deepen the knowledge on the space-
time patterns of extreme precipitation over the study domain,
because it allowed incorporating elevation information into
prediction and also used all quality data available for every
station. Furthermore, this approach accounted for local data
variability and made possible uncertainty evaluations of the
proposed scenarios.
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Costa, A. C., Negreiros, J., and Soares, A.: Identification of inho-
mogeneities in precipitation time series using stochastic simula-
tion, in: geoENV VI – Geostatistics for Environmental Applica-
tions, edited by: Soares, A., Pereira, M. J., and Dimitrakopoulos,
R., Springer, 15, 275–282, 2008.

Cubasch, U., von Storch, H., Waszkewitz, J., and Zorita, E.: Es-
timates of climate change in Southern Europe derived from dy-
namical climate model output, Clim. Res., 7, 129–149, 1996.

Daly, C., Neilson, R. P., and Phillips, D. L.: A statistical-
topographic model for mapping climatological precipitation over
mountainous terrain, J. Appl. Meteorol., 33, 140–157, 1994.

Daly, C.: Guidelines for assessing the suitability of spatial climate
data sets, Int. J. Climatol., 26(6), 707–721, 2006.

Diodato, N.: The influence of topographic co-variables on the spa-
tial variability of precipitation over small regions of complex ter-
rain, Int. J. Climatol., 25(3), 351–363, 2005.

Faulkner, D. S. and Prudhomme, C.: Mapping an index of extreme
rainfall across the UK, Hydrol. Earth Syst. Sc., 2, 183–194, 1998.

Fragoso, M. and Gomes, P. T.: Classification of daily abundant
rainfall patterns and associated large-scale atmospheric circula-
tion types in Southern Portugal, Int. J. Climatol., 28(4), 537–544,
doi:10.1002/joc.1564, 2008.

Franco, C., Soares, A., and Delgado, J.: Geostatistical modelling
of heavy metal contamination in the topsoil of Guadiamar river
margins (S Spain) using a stochastic simulation technique, Geo-
derma, 136, 852–864, 2006.

Frich, P., Alexander, L. V., Della-Marta, P., Gleason, B., Haylock,
M., Klein Tank, A. M. G., and Peterson, T.: Observed coherent
changes in climatic extremes during the second half of the twen-
tieth century, Climate Res., 19(3), 193–212, 2002.

Goodess, C. M. and Jones, P. D.: Links between circulation and
changes in the characteristics of Iberian rainfall, Int. J. Climatol.,
22(13), 1593–1615, 2002.

Goovaerts, P.: Geostatistics for Natural Resources Evaluation. Ap-
plied Geostatistics Series, Oxford University Press, New York,
Oxford, 1997.

Goovaerts, P.: Geostatistical approaches for incorporating elevation
into the spatial interpolation of rainfall, J. Hydrol., 228, 113–129,
2000.

Haberlandt, U.: Geostatistical interpolation of hourly precipitation
from rain gauges and radar for a large-scale extreme rainfall
event, J. Hydrol., 332, 144–157, 2007.

Hundecha, Y. and B́ardossy, A.: Trends in daily precipitation and
temperature extremes across western Germany in the second half
of the 20th century, Int. J. Climatol., 25(9), 1189–1202, 2005.

Hutchinson, M. F.: Interpolating mean rainfall using thin plate
smoothing splines, Int. J. Geogr. Inf. Syst., 9, 385–403, 1995.

Isaaks, E. H. and Srivastava, R. M.: An Introduction to Applied
Geostatistics, Oxford University Press, New York, Oxford, 1989.

Johansson, B. and Chen, D.: The influence of wind and topography
on precipitation distribution in Sweden: statistical analysis and
modelling, Int. J. Climatol., 23(12), 1523–1535, 2003.

Kostopoulou, E. and Jones, P. D.: Assessment of climate extremes
in the Eastern Mediterranean, Meteorol. Atmos. Phys., 89, 69–
85, 2005.

Lloyd, C. D.: Assessing the effect of integrating elevation data into
the estimation of monthly precipitation in Great Britain, J. Hy-
drol., 308, 128–150, 2005.

Mart́ınez-Cob, A.: Multivariate geostatistical analysis of evapotran-
spiration and precipitation in mountainous terrain, J. Hydrol.,
174, 19–35, 1996.

Perry, M. and Hollis, D.: The generation of monthly gridded
datasets for a range of climatic variables over the UK, Int. J. Cli-
matol., 25(8), 1041–1054, 2005.

Prudhomme, C. and Reed, D. W.: Relationships between extreme
daily precipitation and topography in a mountainous region: A
case study in Scotland, Int. J. Climatol., 18(13), 1439–1453,
1998.

Prudhomme, C. and Reed, D. W.: Mapping extreme rainfall in a
mountainous region using geostatistical techniques: a case study
in Scotland, Int. J. Climatol., 19(12), 1337–1356, 1999.

Ramos, C. and Reis, E.: Floods in southern Portugal: their physical
and human causes, impacts and human response, Mitigation and
Adaptation Strategies for Global Change, 7(3), 267–284, 2002.

Scaife, A. A., Folland, C. K., Alexander, L. V., Moberg, A., Knight,
J. R.: European climate extremes and the North Atlantic Oscilla-
tion, J. Climate, 21, 72–83, 2008.

Smith, R. B. and Barstad, I.: A linear theory of orographic precipi-
tation, J. Atmos. Sci., 61(12), 1377–1391, 2004.

Soares, A.: Direct Sequential Simulation and Cosimulation, Math.
Geol., 33, 911–926, 2001.

Trigo, R. M. and DaCamara, C.: Circulation Weather Types and
their impact on the precipitation regime in Portugal, Int. J. Cli-
matol., 20(13), 1559–1581, 2000.

Trigo, R. M., Pozo-V́azquez, D., Osborn, T. J., Castro-Dı́ez, Y.,

Nat. Hazards Earth Syst. Sci., 8, 763–773, 2008 www.nat-hazards-earth-syst-sci.net/8/763/2008/



A. C. Costa et al.: Space-time mapping of extreme precipitation 773

Gámiz-Fortis, S., and Esteban-Parra, M. J.: North Atlantic Oscil-
lation influence on precipitation, river flow and water resources
in the Iberian Peninsula, Int. J. Climatol., 24(8), 925–944, 2004.

Vicente-Serrano, S. M. and Cuadrat-Prats, J. M.: Trends in drought
intensity and variability in the middle Ebro valley (NE of the
Iberian peninsula) during the second half of the twentieth cen-
tury, Theor. Appl. Climatol., 88, 247–258, 2007.

Wijngaard, J. B., Klein Tank, A. M. G., and K̈onnen, G. P.: Homo-
geneity of 20th century European daily temperature and precipi-
tation series, Int. J. Climatol., 23, 679–692, 2003.

Willmott, C. J. and Matsuura, K.: On the use of dimensioned mea-
sures of error to evaluate the performance of spatial interpolators,
Int. J. Geogr. Inf. Sci., 20(1), 89–102, 2006.

www.nat-hazards-earth-syst-sci.net/8/763/2008/ Nat. Hazards Earth Syst. Sci., 8, 763–773, 2008


