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Abstract. Remote sensing of a natural disaster’s damage
offers an exciting backup and/or alternative to traditional
means of on-site damage assessment. Although necessary for
complete assessment of damage areas, ground-based damage
surveys conducted in the aftermath of natural hazard passage
can sometimes be potentially complicated due to on-site dif-
ficulties (e.g., interaction with various authorities and emer-
gency services) and hazards (e.g., downed power lines, gas
lines, etc.), the need for rapid mobilization (particularly for
remote locations), and the increasing cost of rapid physical
transportation of manpower and equipment. Satellite image
analysis, because of its global ubiquity, its ability for re-
peated independent analysis, and, as we demonstrate here, its
ability to verify on-site damage assessment provides an inter-
esting new perspective and investigative aide to researchers.
Using one of the strongest tornado events in US history,
the 3 May 1999 Oklahoma City Tornado, as a case exam-
ple, we digitized the tornado damage path and co-registered
the damage path using pre- and post-Landsat Thematic Map-
per image data to perform a damage assessment. We em-
ployed several geospatial approaches, specifically the Getis
index, Geary’sC, and two lacunarity approaches to catego-
rize damage characteristics according to the original Fujita
tornado damage scale (F-scale). Our results indicate strong
relationships between spatial indices computed within a lo-
cal window and tornado F-scale damage categories identi-
fied through the ground survey. Consequently, linear regres-
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sion models, even incorporating just a single band, appear ef-
fective in identifying F-scale damage categories using satel-
lite imagery. This study demonstrates that satellite-based
geospatial techniques can effectively add spatial perspectives
to natural disaster damages, and in particular for this case
study, tornado damages.

1 Introduction

A critical problem associated with damage assessment of a
natural disaster such as that caused by a tornado is the logis-
tics of quickly coordinating and implementing an extensive
ground-based damage survey. In this paper, we introduce
a remote sensing approach that can be utilized as a backup
or, in some cases such as those involving remote locations,
as an alternative to traditional methods of damage assess-
ment. We propose that detailed analysis of remote sensing
satellite imagery, because of (a) increasing global ubiquity
of satellite imagery, (b) the ability for repeated independent
analyses of the data, and, as we demonstrate here, (c) the
ability of detailed satellite analysis to verify on-site damage
assessment provides an interesting new perspective and aide
to researchers.

Ground or aerial damage assessment, such as undertaken
after major disasters such as the 3 May 1999 Oklahoma City
F5 tornado (Marshall et al., 2005; Spedheger et al., 2002) or
the 2004 tsunami (Inoue et al., 2007), is considered crucial
to disaster management and planning agencies (as well as to
other planning applications) since all hazard mitigation and
preparedness programs need to begin with an understanding
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of the risk and its potential impacts through an estimation of
the number of people and structures that would be affected
by a disaster event. On-site measures of damage have been
employed in relation to several severe natural phenomena
(e.g., Smith and Robblee, 1994; Reese et al., 2007; Inoue
et al., 2007). In the case of a tornado, the Fujita Scale (F-
scale), introduced by Fujita (1971, 1973, 1981), has been the
long-time standard damage measurement scale (Doswell and
Burgess, 1988) for determining tornado damage based on vi-
sual interpretation of wind damage.

The Fujita tornado damage scale categorized tornado-
related damage from F0 to F5 based on the increasing sever-
ity of destruction, as primarily evidenced by damage to a
“well-constructed” wood-framed house (Fujita, 1971, 1973).
There are many challenges in determining the intensity of
tornados based on visual interpretation of damage alone. It
is understood that the damage caused by severe storms that
hit built-up areas is as much a matter of the quality and
size/style of construction as it is a function of storm intensity
(Doswell, 2003). However, in the case of a tornado, the F-
scale has been the standard and accepted measure for evalu-
ating tornado intensity through damage assessment (Bunting
and Smith, 1990; Marshall, 2002; Doswell, 2003; Edwards,
et. al., 2002). A tornado is normally referred to (and is in this
article) by the most intense damage occurring along its track
(in this case of the 3 May 1999 Oklahoma City tornado, it is
classified as “F5”, the greatest amount of damage capable of
being assessed).

The enhanced F-scale (or EF-scale) has been recently de-
veloped by researchers at Texas Tech University (McDonald
and Mehta, 2006) to combine both wind intensity and the
types of structures or vegetation being damaged as the tradi-
tional Fujita scale. In this study, we selected the use of tradi-
tional F-scale over the EF scale because (a) as Doswell and
Burgess (1988) stressed, the (traditional) F-scale is a purely
damage-related scale, not an intensity or wind speed scale,
while the EF scale now takes these factors into account, (b)
satellite imagery are available for past tornadic events in
which detailed on-site surveys of damage were made (e.g.,
Marshall, 2002; Speheger et al., 2002), and (c) the traditional
F-scale is still being used in many remote parts of the United
States and around the world-locations particularly amenable
to remote sensing of tornado damage (Bech et al., 2007).

As noted above, a major advantage of the use of remote
sensing in the tornado damage assessment is linked to the
accessibility to damaged areas immediately after a disaster
event. Because of the potential for on-site hazards (e.g.,
downed power lines, gas lines, etc.), the need for rapid mobi-
lization (particularly for remote locations), and the increas-
ing cost of physical transportation of manpower and equip-
ment, the remote sensing of tornado damage offers an excit-
ing backup and/or alternative to traditional means of damage
assessment. Although obviously not a panacea – we fully be-
lieve in and accept the need for physical on-site assessment-
remote sensing, because of its global ubiquity, its relative low

costs and its ability for repeated independent analysis, pro-
vides an interesting new perspective and aid to researchers
involved with damage assessments. However, caveats do re-
main: satellite imagery are not yet available for all locations
at all times (because of coverage limitations) and, occasion-
ally, costs or acquisition rights for imagery can be prohibitive
depending on company, agency and/or government associ-
ated with those imagery.

The usefulness of using such imagery in analysis of tor-
nadoes is evident from studies that have shown that, in some
cases, damage caused by a given severe storm event can be
identified in satellite imagery long after the event. For exam-
ple, tornado tracks from tornadoes that occurred in eastern
Paraguay as long ago as 1965 were still visible in Landsat
imagery from the 1970s and 1980s (Dyer, 1988). The spa-
tial mapping of tornado damage is important for a number of
interested groups, including insurance companies, farmers,
city, and state officials and, particularly, meteorologists and
climatologists examining storm morphology and downburst
severity (Bentley et al., 2002).

Satellite analysis and interpretation of several types of nat-
ural disaster events have begun. For example, a recent special
issue of the IEEE Transactions on Geoscience and Remote
Sensing contained research on the use of image analysis of
earthquake damage (e.g., Arciniega et al., 2007; Sertel et al.,
2007; Chaabane et al., 2007), typhoon and hurricane dam-
age (e.g., Barnes et al., 2007) and tsunami damage (e.g, Bo-
volo and Bruzzone, 2007) among other types of natural dis-
asters. Indeed, the state of art in using remote sensing tech-
nologies in damage assessment of many natural disasters has
made great strides in recent years, particularly internation-
ally (e.g., Oosterom et al., 2005; Zlatanova and Li, 2008).
Yet, perhaps surprisingly, relatively little recent work has
been undertaken on tornado damage assessment using satel-
lite technology. Part of that lack of research is that, torna-
does, specifically massive tornadoes such as the 3 May 1999
tornado of Oklahoma City, are limited in their occurrence
around the world generally to the United States (Cerveny et
al., 2007) although destructive tornadoes have occurred, but
rarely, in Bangladesh, China, Great Britain and in western
Europe. This recent lack of study of tornado damage assess-
ment by remote sensing technology has occurred despite a
long history of using remote sensing imagery in the study of
such events.
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In late 1960s, the University of Chicago initiated some
aerial survey to examine airflows of tornadoes at multiple
scales and their impacts on the ground (Fujita and Smith,
1993). They examined voluminous sets of aerial photographs
to correlate wind direction and wind speed to the patterns of
damages (structural or natural, e.g., trees) in areas affected by
the tornado. Yet, even nearly a half century after such analy-
ses, only a few attempts have applied satellite technology to
tornado assessment.

Yuan et al. (2002) demonstrated how tornado damaged ar-
eas could be identified in satellite images. In a similar fash-
ion, Jedlovec et al. (2006) used high-resolution imagery from
the EOS satellites to study the damage tracks of tornadoes in
Missouri and Maryland. However, neither of these papers
attempted explicitly to classify damage intensity in images.
Moreover, the above studies do not deal with tornado clas-
sification categories as evidenced by advanced spatial tech-
niques or statistical models.

Hence, we attempted to develop a remote sensing ap-
proach that can be expected to be more straightforward, ex-
plicit, and bias free or at least less biased than conducting a
damage survey. Remote sensing technology has been used
extensively in various disaster applications as a more cost
and labor effective and time efficient alternative. In the case
of tornado investigation, such analyses can be extremely use-
ful in the detection of tornado paths. For this case study,
we selected one of the strongest (in terms of recorded wind
speeds) tornadoes ever to strike the United States, the 3 May
1999 Oklahoma City tornado (Cerveny et al., 2006). This
tornado was rated F5 on the Fujita intensity damage scale and
formed over Grady County near Amber and tracked north-
east for thirty-seven miles eventually moving into the Ok-
lahoma City metropolitan area. Bridge Creek, Oklahoma
City, Moore, Del City, and Midwest City suffered tremen-
dous damages. Thirty-six direct fatalities and 583 direct in-
juries were recorded.

We employed ground-surveyed high-resolution data using
the Fujita tornado scale after the 3 May 1999 F5 tornado
(Marshall et al., 2005; Spedheger et al., 2002) and examined
the representativeness of different geospatial indices using a
remote sensing change detection approach and GIS technolo-
gies. Specifically we categorized tornado intensity values in
medium resolution imagery according to the Fujita scale and
assessed damages in urban and non-urban areas. We antici-
pated that degree of damages, debris, and damaged area ex-
tents (complex arrangements of damaged structures, trees,
and shrubs) in residential areas characterized by geospatial
approaches using different window sizes could be correlated
to tornado intensity values identified by surveyors on the
ground. We employed several geospatial approaches that are
capable of describing level of heterogeneity and homogene-
ity of spatial objects and features that can be linked to chaotic
arrangements of structural and vegetated area damages and
debris due to a tornado event. The spatial arrangements of
damaged areas compared to organized arrangements of other
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Fig. 1. A gray-scale image of the study area (26 June 1998) dis-
playing channel 3 (0.63–0.69).

residential, commercial, and industrial areas that are not af-
fected by the same tornado could be expected to be signifi-
cantly different.

2 Data preparation and study area

Landsat Enhanced Thematic Mapper (Landsat ETM+) im-
age data (path 28 and row 35) at 28.5 m spatial resolution
with seven channels ranging from blue to thermal infrared
portion of the spectrum was used to perform a damage as-
sessment. The thermal channel was excluded in the study
due to its coarser resolution. The image data was acquired
over central Oklahoma area under cloud-free conditions prior
to the 3 May tornado event on 26 June 1998 (Fig. 1) and
after the 3 May tornado event on 12 May, 1999 (Fig. 2).
The original image was subset to extract the 3 May 1999
tornado damage path (upper left longitude 94◦44′ 47.76′′

and latitude 35◦28′ 24.82′′, lower right longitude 97◦24′

49.97′′ and latitude 35◦12′ 14.98′′). The study area cov-
ers about 9.4005×108 sq m (1097 columns and 1055 rows).
Both images were orthorectified and georeferenced in Uni-
versal Transverse Mercator (UTM) projection with a Clarke
1866 spheroid, NAD27 datum, and zone 14 with root mean
square (RMS) errors less than 0.5. However, any level of lo-
cational errors (RMS errors) in change detection images will
produce considerable errors in consequent analysis. It should
be noted that error-free geometric correction or 100% rectifi-
cation accuracy of any data is practically impossible (Myint
and Wang, 2006). Hence, we co-registered both images to
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Fig. 2. A gray-scale image of the study area (12 May 1999) dis-
playing channel 3 (0.63–0.69µm).

minimize locational errors even though both images were or-
thorectified.

We digitized tornado damage path and co-registered the
damage path image with the image acquired after the 3 May,
1999 destructive tornado (Fig. 4). We assigned tornado in-
tensity values using the tornado classification F-scale values
identified along the destruction path in the maps and dia-
grams for the 3 May, 1999 tornado event prepared by the
National Oceanic and Atmospheric Administration (NOAA)
- National Weather Service (http://www.srh.noaa.gov/oun/
storms/19990503/index.html, Fig. 3).

We then converted the Landsat ETM+ data to apparent
surface reflectance using an atmospheric correction method
known as the Cos(t) model (Chavez, 1996). This model
incorporates all of the elements of the dark object subtrac-
tion model (for haze removal) and a procedure for estimating
the effects of absorption by atmospheric gases and Rayleigh
scattering. Even though data import, image layer stacking,
qualitative analysis, and image subset were performed in ER-
DAS Imagine, conversion from DN values to reflectance was
performed one band at a time using ATMOSC module in
IDRISI software package. The reflectance data were im-
ported back to ERDAS Imagine for layer stacking. The layer
stacked image data was multiplied by 10 000 and kept as
16 bit integer data for easy computation and comparison.

3 Methodology

We employed a set of geospatial approaches with different
window sizes to determine their relations with tornado inten-
sities identified on the ground manually using image differ-
ences of Landsat TM reflectance data acquired on 26 June,
1998 and 12 May, 1999. Specifically, we applied the Getis
index (Getis and Ord, 1992; Ord and Getis, 1995), Geary’sC

(Geary, 1954), and two lacunarity approaches introduced in
Myint and Lam (2005) and Myint et al. (2006) to categorize
the imagery to F-scale damage values. These techniques are
discussed in detail below.

3.1 Change detection

Digital change detection methods were broadly divided into
either pre-classification spectral change detection or post-
classification change detection methods (Nelson, 1983; Pilon
et al., 1988). Regarding post-classification change detection,
two images acquired on different dates are separately classi-
fied, and the changes are identified through the direct com-
parison of the classified information (Howarth and Wick-
ware, 1981).

Spectral change detection or pre-classification techniques
rely on the principle that land cover changes result in per-
sistent changes in the spectral signatures of the affected land
surfaces. These techniques involve the transformation of two
original images to a new single-band or multi-band image
in which the areas of spectral change are highlighted (Yuan
et al., 1998). We employed the band-subtraction change de-
tection technique using the before and after image data. As
described in data preparation we converted brightness values
of both images to reflectance data before difference images
were generated. The subtracted reflectance data were later
stretched to unsigned 8 bit data (Fig. 5). We first exported
all difference images to generic binary images since all the
algorithms employed to generate spatial-transformed images
work with generic binary images.

3.2 Geospatial techniques

We employed the Getis index (Getis and Ord, 1992; Ord
and Getis, 1995), Geary’sC (Geary, 1954), and two lacu-
narity approaches introduced in Myint and Lam (2005) and
Myint et al. (2006) to categorize the imagery to F-scale dam-
age values. The selected geospatial approaches will be here-
after referred to asGi, Gy, L1, andL2. We used the Getis
index to determine an optimal local window size. Hence,
we generatedGi-transformed images of all bands after im-
age differencing (6 difference bands) using different win-
dow sizes (i.e., 5×5, 9×9, 13×13, 17×17, 21×21, 25×25,
29×29, 33×33, 37×37). TheGi-transformed images were
imported back to Imagine format and re-projected for the re-
gression and correlation analysis. This was because generic
binary images do not keep georeferenced information. We
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Fig. 3. Tornado outbreak prepared by the National Oceanic and Atmospheric Administration (NOAA) – National Weather Service.

later extracted geospatial indices that intersect with tor-
nado damage classification values identified by the National
Oceanic and Atmospheric Administration (NOAA) – Na-
tional Weather Service. The regression and correlation anal-
ysis between Getis indices generated by different windows
and tornado F-scale values were performed to determine an
optimal window.

After we obtained the optimal window size that has the
strongest relation with the digitized tornado intensity values,
we generated other geospatial transformed images (i.e.,Gy,
L1, andL2) using the optimal window size for comparison
purpose. Following the same procedure as we did for the
Gi-transformed bands, all other spatial-transformed images
were also imported back to Imagine format and re-projected
for the regression and correlation analysis. We not only used
individual geospatial bands but also used different combi-
nations of geospatial approaches and different bands to ob-
tain potentially effective regression models to predict tornado
damage categories.

3.2.1 Spatial autocorrelation (Geary’sC)

Geary’sC is calculated from the following:

C(d) =

n∑
i

n∑
j

wij (d)(zi − zj )
2

2
n∑
i

n∑
j

wij (d)s2
(1)

wherewij is the weight at distanced so thatwij (d)=1 if point
j is within distanced from point i; otherwise,wij (d)=0; s2

is the variance ofz values and can be computed as:

s2
=

∑
i

(zi − z̄)2/(n − 1) (2)

(see Myint et al., (2007) for detailed computations and
worked example)
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Fig. 4. Digitized 3 May 1999 tornado outbreak and manually as-
signed intensity values along the path.

3.2.2 Getis index

The Getis statistic (Getis and Ord, 1992; Ord and Getis,
1995) is computed as:

Gi(d) =

n∑
i

n∑
j

wij (d)zizj

n∑
i

n∑
j

zizj

, for i 6= j (3)

TheGi is defined by a distance,d, within which areal units
can be regarded as neighbors ofi. The weight wij (d), is
1 if areal unitj is within d and is 0 otherwise. The rela-
tionship among the neighboring points is determined by a
distance threshold,d. The value ofd needs to be defined
before computing theGi. Myint et al. (2007) demonstrated
that the shortest distance threshold characterizes the spatial
arrangement of objects and features effectively and achieved
the highest overall accuracy. Moreover, the overall accuracy
consistently decreased with the increasing distance thresh-
old. Hence, we employed the shortest distance (1 pixel or
28.5 m) in this study.

(see Myint et al., (2007) for detailed computations and
worked example)
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Fig. 5. Image differences of Landsat TM bands acquired on 26 June
1998 and 12 May 1999 displaying channel 3 (0.63–0.69µm).

3.2.3 Lacunarity probability approach (L1)

Voss (1985) proposed a probability approach to estimate the
fractal dimension and lacunarity of image intensity surface.
The spatial arrangement of the points determinesP(m, L).
P(m, L) is the probability that there arem intensity points
within a box size ofL centered about an arbitrary point in an
image. Intensity points are referred to as the number points
filled in a cube box. Hence, we have

N∑
m=1

P(m, L) = 1 (4)

whereN is the number of possible points in the box ofL.
Suppose that the total number of points in the image isM. If
one overlays the image with boxes of sideL, then the number
of boxes withm points inside the box is(M/m)P (m, L).
Hence

M(L) =

N∑
m=1

mP(m, L) (5)

and

M2(L) =

N∑
m=1

m2P(m, L) (6)

Lacunarity can be computed from the same probability dis-
tributionP(m,L). Hence, lacunarity3(L) is defined as

3(L) =
M2(L) − (M(L))2

(M(L))2
(7)

(see Myint and Lam (2005) for detailed computations and
worked example)
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Fig. 6. Geary’sC indices of image difference band 3 using 21×21
window.

3.2.4 Lacunarity differential box counting approach (L2)

According to the gliding box algorithm proposed by Allain
and Cloitre (1991),n(M, r) can be defined as the number
of gliding boxes with radiusr and massM. The probability
functionQ(M, r) is obtained by dividingn(M, r) by the to-
tal number of boxes, so that lacunarity at scaler is defined
as,

3(r) =

∑
M

M2Q(M, r)[∑
M

MQ(M, r)

]2
. (8)

A cubic of sizer×r×r (r=2, 3, 4...) is placed over the upper
left corner of an image window of sizeW×W . For each
r×r gliding box, the minimum and maximum pixel values
in the gliding box are allowed to fall in box numberu andv

respectively. Then the relative height of the column is,

nr(i, j) = v − u − 1 (9)

wherei andj are image coordinates. Although this calcula-
tion gives an accurate height of the column, if the minimum
and maximum pixel values fall in the same box, the column
becomes negative one; not a problem if using a positive one.
We believe this is adequate since the computed value repre-
sents the relative height, so when ther×r gliding box moves
throughout theW×W image window, the following is possi-
ble,

Mr =

∑
i,j

nr(i, j) (10)
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Fig. 7. Getis indices of image difference band 3 using 21×21 win-
dow. 
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Fig. 8. Lacunarity probability indices of image difference band 3
using 21×21 window.

The massM in equation (1) is then replaced byMr to obtain
lacunarity3(r) in theW×W window (Dong, 2000).

(see Myint et al., 2006 for detailed computations and
worked example)

The algorithm assigns the computed geospatial value to
the center of the window as it moves throughout the image.
Since we lose (n-1)/2 pixels on the top, bottom, left, and right

www.nat-hazards-earth-syst-sci.net/8/707/2008/ Nat. Hazards Earth Syst. Sci., 8, 707–719, 2008
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Table 1. Summary statistics for the regression models using tornado intensity values and Getis values of band 3 image difference band using
different window sizes (i.e., 5×5, 9×9, 13×13, 17×17, 21×21, 25×25, 29×29, 33×33, 37×37).

Parameters Window Size

5×5 9×9 13×13 17×17 21×21 25×25 29×29 33×33 37×37

Correlation –0.09 –0.09 –0.40 –0.49 –0.53 –0.51 –0.45 –0.4 2-0.40
Coef. of Det. 0.83% 0.89% 16.10% 24.06% 27.78% 25.84% 20.26% 17.71% 16.06%
S.E. Estimate 1.17 1.16 1.07 1.02 0.99 1.01 1.04 1.06 1.07
Std. of X 1914.74 1276.65 986.52 814.57 616.71 503.17 408.32 380.30 360.07
Std. of Y 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17
Intercept 3.60 4.95 5.88 6.18 6.53 6.62 6.59 6.46 6.36
Coefficient 0.000246 0.000087 0.000476 0.000704 0.01000 0.001182 0.001289 0.001294 0.001302

Table 2. Summary statistics for the regression models using tornado intensity values and Geary’sC values of all the image difference bands
using a 21×21 window.

Geary’C Bands (21×21)

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6

Correlation 0.07 0.22 0.24 0.20 0.33 0.37
Coef. of Det. 0.50% 4.72% 5.66% 3.95% 11.19% 13.53%
S.E. Estimate 1.17 1.14 1.14 1.15 1.10 1.09
Std. of X 1282.56 1143.80 1220.08 1113.24 1268.54 1264.61
Std. of Y 1.17 1.17 1.17 1.17 1.17 1.17
Intercept 4.28 3.27 3.13 3.22 2.49 2.18
Coefficient 0.070658 0.000222 0.000228 0.000210 0.000308 0.000340
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Fig. 9. Lacunarity differential box counting indices of image differ-
ence band 3 using 21×21 window.

sides of the image (where n=window size), we performed a
mirror extension of (n-1)/2 pixels around the image before
computing spatial indices (Myint, 2006). This procedure ap-
plies to all selected geospatial approaches. We performed
the regression and correlation analysis between geospatial-
transformed values obtained in different window sizes and
tornado intensity values. Figures 6, 7, 8, and 9 show spatial-
transformed images of the selected geospatial approaches
(i.e., Gy, Gi, L1, andL2) using the band 3 difference im-
age. A flow chart that demonstrates a step-by-step procedure
to conduct this research study is presented in Fig. 10.

4 Results and discussion

We used theGi approach to test different local window sizes
(i.e., 5×5, 9×9, 13×13, 17×17, 21×21, 25×25, 29×29,
33×33, 37×37) using the band 3 difference image to deter-
mine the optimal window. It is evident from Table 1 that the
21×21 window produced the highest correlation and coef-
ficient determination, and the lowest standard error of esti-
mate (–0.53, 27.78%, 0.99). The second highest correlation
(–0.51) was produced by the 25×25 window. Since larger
window covers more land cover classes and non-damaged
areas, the correlation can be expected to be low for a window
that covers an extensively large area including non-damaged

Nat. Hazards Earth Syst. Sci., 8, 707–719, 2008 www.nat-hazards-earth-syst-sci.net/8/707/2008/
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Table 3. Summary statistics for the regression models using tornado intensity values and Getis values of all the image difference bands using
a 21×21 window.

Getis Index Bands (21×21)

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6

Correlation –0.23 –0.41 –0.53 0.05 –0.49 –0.29
Coef. of Det. 5.43% 17.08% 27.78% 0.23% 24.12% 8.59%
S.E. Estimate 1.14 1.07 0.99 1.17 1.02 1.12
Std. of X 886.39 954.48 616.71 1095.85 605.42 407.39
Std. of Y 1.17 1.17 1.17 1.17 1.17 1.17
Intercept 5.35 5.77 6.53 4.52 6.34 6.03
Coefficient 0.000308 0.000506 0.001000 0.000510 0.000949 0.000841

Table 4. Summary statistics for the regression models using tornado intensity values and lacunarity probability (L1) values of all the image
difference bands using a 21×21 window.

L1 Bands (21×21)

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6

Correlation 0.26 0.22 0.40 0.03 0.32 0.46
Coef. of Det. 6.60% 4.63% 16.29% 0.09% 10.00% 21.61%
S.E. Estimate 1.13 1.14 1.07 1.17 1.11 1.04
Std. of X 64.68 1044.46 65.641 77.48 76.39 103.98
Std. of Y 1.17 1.17 1.17 1.17 1.17 1.17
Intercept 3.69 3.83 2.44 4.80 2.82 2.56
Coefficient 0.004647 0.003901 0.007171 0.000456 0.004842 0.005230

areas. As anticipated, smaller window sizes (i.e., 5×5, 9×9)
do not show any correlations and were found to be ineffec-
tive. This is probably due to the fact that smaller windows are
not sufficiently large to cover tornado damaged areas com-
pletely, and geospatial algorithms may not be able to charac-
terize spatial arrangements of damaged structures and debris
including broken branches, stems, and leaves within a small
window (28.5 m×5=142.5 m).

We therefore consider the 21×21 window to be the opti-
mal window size to quantify tornado intensity values. Hence,
we proceeded to perform the regression analysis between all
the spatial-transformed images ofGy, Gi, L1, andL2 us-
ing all bands of difference images using the 21x21 window
size. Summary statistics for the regression models using F-
scale damage values and all the spatial-transformed images
Gy, Gi, L1, andL2 using the 21×21 window size are pre-
sented in Tables 2, 3, 4, and 5 respectively.

With regard to the Geary’s C-transformed images, band 6
of the Geary’s C index gave the highest correlation coeffi-
cient and the lowest standard error of estimate (0.37, 1.09).
Bands 1 and 4 were found to be ineffective since they show
very low or no correlation with tornado damage categories
(0.07, 0.20). Band 5 of Geary’s C was found to be the
second best band to identify tornado classification values.
Band 3 had the highest correlation and the lowest standard

error of estimate (0.53, 0.99) and hence, it was the most
effective band of all the Getis transformed bands. Bands
2 and 4 of Getis indices were comparable to band 3 and
found to be effective (–0.41, 0.49). There was no correlation
found between band 4 and the NOAA F-scale damage as-
sessment. Band 6 of the lacunarity probability approach had
the highest correlation and the lowest standard error of esti-
mate (0.46, 1.04). No correlation was evident between band
4 and NOAA tornado intensity values. Band 3 produced the
second highest correlation and the second lowest standard
error of estimate (0.40, 1.07). From Table 5, it can be ob-
served that band 3 of the lacunarity differential box count-
ing approach produced the highest correlation and the lowest
standard error of estimate (–0.42, 1.06). Band 4 of the lacu-
narity differential box counting approach showed no relation
with tornado F-scale values. Band 5 of the same lacunarity
approach gave the second highest correlation (–0.32). In gen-
eral, bands 3, 5, and 6 of all the geospatial approaches were
found to effectively quantify F-scale damage values. Con-
versely, Band 4 of all approaches showed the weakest rela-
tionship with F-scale damage intensities. This could have
been due to the fact that band 4 (near infrared band) is sen-
sitive to chlorophyll content in vegetation and consequently
has little linkage to damaged areas and the complex spatial
arrangements of man-made structures.
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Table 5. Summary statistics for the regression models using tornado intensity values and lacunarity differential box counting (L2) values of
all the image difference bands using a 21×21 window.

L2 Bands (21×21)

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6

Correlation –0.11 –0.25 –0.42 –0.04 –0.32 –0.27
Coef. of Det. 1.27% 6.23% 17.69% 0.19% 10.43% 7.03%
S.E. Estimate 1.16 1.13 1.17 1.17 1.11 1.13
Std. of X 882.96 1044.46 466.63 2093.40 1256.93 259.58
Std. of Y 1.17 1.17 1.17 1.17 1.17 1.17
Intercept 4.75 4.82 5.07 4.64 4.81 4.99
Coefficient –0.000149 –0.000280 –0.001054 –0.000024 –0.000300 –0.001150

Table 6. Summary statistics of a multiple regression model using tornado intensity values and band 3 of all spatial-transformed images using
a 21×21 window.

Multiple Regression Model 1 Independent
Variables Coefficient ttest (2320)

Apparent R 0.5710 Intercept 4.954748 23.66
Adjusted R 0.5703 Gi-Band3 –0.000682 –13.96
Apparent R2 32.61% Gy-Band3 –0.000012 –0.66
Adjusted R2 32.52% L1-Band3 0.003808 0.11
F (4, 2320) 280.65 L2-Band3 –0.000317 –5.59
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Fig. 10. Research Design.

Since band 3 of all spatial approaches was found to be
the most effective band in relating to F-scale damage cate-
gories, we used band 3 of all spatial techniques to develop
a multiple regression model to quantify F-scale damage cat-
egories. A summary statistics of the model is presented in
Table 6. The multiple regression model is relatively more
effective than the best single band linear regression model
since the coefficient of determination given by the best sin-
gle band model (27.78%) is lower than that of the multiple
regression model (32.61%). We also attempted another mul-
tiple regression using bands 3, 5, and 6 of lacunarity proba-
bility (L1) indices and Getis indices. From Table 7, it can be
observed that this multiple model is more powerful than the
multiple model with band 3 of all spatial approaches since
the apparentR2 (40.69%) of this approach is higher than the
first multiple model. We therefore suggest the multiple re-
gression model incorporating bands 3, 5, and 7 of theL2 and
Gi approaches as the best model to quantify tornado F-scale
damage values.

5 Conclusions

Our purpose has been to introduce a remote sensing approach
to natural disaster damage assessment, and specifically in
this case study, tornado damage assessment. Remote sens-
ing of natural disaster damage offers exciting possibilities
as a backup or, in some cases, an alternative to traditional
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Table 7. Summary statistics of a multiple regression model using tornado intensity values and bands 3, 5, and 6 of lacunarity probability and
Getis indices using a 21×21 window.

Multiple Regression Model 2 Independent
Variables Coefficient ttest (2318)

Apparent R 0.6379 Intercept 4.376841 24.57
Adjusted R 0.6369 L1-Band3 0.002915 8.64
Apparent R2 40.69% L1-Band5 –0.002078 –6.31
Adjusted R2 40.56% L1-Band6 0.003352 13.84
F (4, 2320) 265.02 Gi-Band3 –0.000570 –9.76

Gi-Band5 –0.000559 –7.98
Gi-Band6 0.000544 6.60

on-site surveys because of satellite imagery’s global ubiq-
uity, its ability for repeated independent analysis, and, as we
demonstrated here, its ability to verify on-site damage as-
sessment. Using the massive tornado event of 3 May 1999
as a case example, we digitized the tornado damage path and
co-registered the damage path using pre- and post-Landsat
Thematic Mapper image data of the event at 28.5 m spatial
resolution with seven channels ranging from blue to ther-
mal infrared portion of the spectrum was used to perform
a damage assessment. Our approach examined the corre-
lation between F-scale measures and homogeneity of spec-
tral reflectance. We employed several geospatial approaches,
specifically employed the Getis index, Geary’sC, and two
lacunarity approaches, to categorize the imagery to ground-
survey F-scale tornado destruction values.

We have determined that there are strong relationships be-
tween spatial indices computed within a local window and
F-scale damage categories identified through the ground sur-
vey. Consequently, linear regression models, even incorpo-
rating just a single band, prove to be effective in establish-
ing F-scale damage categories using satellite imagery. The
optimal window size identified in the study was 21×21. A
window size smaller than 9×9 (256.5 m) was not useful for
classifying to tornado F-scale damage values. As expected
earlier, multiple regression models outperformed the single
band regression models.

It should be noted that F-scale damage class estimates
were assigned by the on-site surveyors, and we considered
these values as reference values or ground-truth values. In
other words, our study is based on the assumption that the
ground survey was completely accurate. On the other hand,
these values were assigned to the digitized map at some ap-
proximate locations along the tornado damage track in com-
parison to the tornado intensity map prepared by the Na-
tional Oceanic and Atmospheric Administration (NOAA) –
National Weather Service. Although potential error exists in
comparing on-site point data ground estimates into a digital
dataset, we believe that both single-band models and multi-
ple regression models developed in this study are effective.
Since we used apparent surface reflectance of the Landsat

data, the regression models developed in the study can be em-
ployed to identify F-scale damage categories for any future
tornado event using the same satellite data as a quick assess-
ment before conducting the ground survey, a guide to charac-
terize damage intensities more efficiently on the ground, or
a supplementary approach for identifying tornado categories
more accurately. A similar approach with the use of any sim-
ple statistical filter or advanced geospatial approach can be
used effectively to assess damage intensities for any other
tornado event and any other natural disaster (e.g., damages
due to a tsunami event, a cyclone, or a hurricane).

Although satellite imagery analysis as a form of damage
assessment offers exciting new possibilities, particularly for
remote locations where on-site surveying can be problem-
atic, some potential problems do exist. For example, satel-
lite imagery is not yet available for all locations at all times
(because of coverage limitations) and, occasionally, costs or
acquisition rights for imagery can be prohibitive depending
on company, agency and/or government associated with that
imagery. In addition, some uncertainties and limitations may
exist in the digital form of verification damage values used to
compare our results. Those limitations notwithstanding, this
study demonstrates that geospatial techniques with the use
of difference images can be employed effectively to classify
natural disaster damage categories, in this case that associ-
ated with tornadoes.

Acknowledgement.This research has been supported by the
National Science Foundation (grant # BCS-0649413).

Edited by: K. Chang
Reviewed by: two anonymous referees

www.nat-hazards-earth-syst-sci.net/8/707/2008/ Nat. Hazards Earth Syst. Sci., 8, 707–719, 2008



718 S. W. Myint et al.: Categorizing natural disaster damage assessment

References

Arciniegas, G. A., Biker, W., Kerle, N., and Tolpekin, V. A.:
Coherence- and amplitude-based analysis of seismogenic damge
in Bam, Iran, using ASAR data, IEEE Transactions on Geo-
science and Remote Sensing, 45, 1571–1581, 2007.

Bach, J., Pascual, R., Rigo, T., Pineda, N., López, J. M., Aŕus, J.
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