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Abstract. The stability of a slope is studied by applying
the principle of the minimum lithostatic deviation (MLD) to
the limit-equilibrium method, that was introduced in a pre-
vious paper (Tinti and Manucci, 2006; hereafter quoted as
TM2006). The principle states that the factor of safetyF of
a slope is the value that minimises the lithostatic deviation,
that is defined as the ratio of the average inter-slice force to
the average weight of the slice. In this paper we continue the
work of TM2006 and propose a new computational method
to solve the problem. The basic equations of equilibrium for
a 2-D vertical cross section of the mass are deduced and then
discretised, which results in cutting the cross section into ver-
tical slices. The unknowns of the problem are functions (or
vectors in the discrete system) associated with the internal
forces acting on the slice, namely the horizontal forceE and
the vertical forceX, with the internal torqueA and with the
pressure on the bottom surface of the slideP . All traditional
limit-equilibrium methods make very constraining assump-
tions on the shape ofX with the goal to find only one so-
lution. In the light of the MLD, the strategy is wrong since
it can be said that they find only one point in the search-
ing space, which could provide a bad approximation to the
MLD. The computational method we propose in the paper
transforms the problem into a set of linear algebraic equa-
tions, that are in the form of a block matrix acting on a block
vector, a form that is quite suitable to introduce constraints
on the shape ofX, but also alternatively on the shape ofE
or on the shape ofA. We test the new formulation by ap-
plying it to the same cases treated in TM2006 whereX was
expanded in a three-term sine series. Further, we make dif-
ferent assumptions by taking a three-term cosine expansion
corrected by the local weight forX, or for E or for A, and
find the corresponding MLDs. In the illustrative applications
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given in this paper, we find that the safety factors associated
with the MLD resulting from our computations may differ
by some percent from the ones computed with the traditional
limit-equilibrium methods.

1 Introduction

Determining the stability of a slope is a problem of great
interest since a long time to assess the hazard and miti-
gate the risk of an area. Different methods of analysis have
been developed, ranging from approximated 1-D or 2-D ap-
proaches to fully 3-D methods solving visco-plastic equa-
tions through finite-element or finite-difference techniques.
Usually more sophisticated methods such as 3-D need a very
detailed knowledge of the soil and subsoil conditions that are
difficult and expensive to acquire, which makes the recourse
to simplified techniques often more convenient and more
practical to use. The classical limit-equilibrium methods be-
long to the category of approximated methods. The meth-
ods were firstly introduced with the Fellenius formula (1927)
and lately developed by Bishop (1955), by Morgenstern and
Price (1965), by Spencer (1967), by Janbu (1968) and oth-
ers. They were the starting point of the slope stability anal-
ysis and were successfully applied and repeatedly refined,
since they are still subject of active research (e.g. Duncan and
Wright, 1980; Chen and Morgenstern, 1983; Leschchinsky
and Huang, 1992; Chen et al., 2001; Zhu et al., 2003; Jiang
and Yamagami, 2004; Karaulov, 2005; Tinti and Manucci,
2006, hereafter quoted as TM2006; Zheng et al. 2007; Pink,
2007).

Typically limit-equilibrium methods consider vertical sec-
tions of the sliding body that are cut into vertical slices. Sta-
bility is expressed by the safety factorF , that is computed by
imposing the equilibrium of each slice (though this is known
to be only a necessary, but not a sufficient condition). A the-
oretical problem for this approach is that in the set formed
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Fig. 1. Sketch of the vertical cross-section of the sliding body cut
into slices. Cartesian coordinatesx andz are taken to increase right-
ward and upward, as usual. The forces, described in the text, act
on each slice. In the discretised version of the analytical problem,
slices are defined as the portions of the body comprised between
the vertical planesxi−1x/2 andxi+1x/2 The seismic load is a
force proportional to the weight of the slice and forms the angleψ

with the horizontal. The loadD is a pressure acting on the body top
surface.

by all balance equations the number of unknowns (i.e. the
safety factor and the component of the forces and torques
acting on the slices) is greater than the number of equations
with the consequence that the solution, and therefore even
the computed safety factor, is not unique. This is usually
overcome by means of ad-hoc assumptions (constraints), that
differ from one author to the other, and the correspondent re-
sulting safety factors may depart by 5–10% from one another.
In a previous paper (TM2006) we have called the attention on
this issue and we have proposed a drastic change of view for
the limit-equilibrium approach. The factor of safety, instead
of an unknown, was proposed to be treated as a known pa-
rameter, sayF ∗, that is left to range within a given interval.
For each value ofF ∗, a solution, sayS(F ∗), to the equilib-
rium equations is computed. The unique solution to the prob-
lem is found by introducing and applying a new criterion,
that was called the “Principle of Minimum Lithostatic Devi-
ation (MLD)”. The lithostatic deviationδ expresses the ra-
tio of the average magnitude of the internal slice-slice forces
and the total weight of the sliding mass (see formula (18)
of TM2006). The MLD principle means that one calculates
the value ofδ for each computed solutionS(F ∗), obtaining
the relationδ(S(F ∗)) or more simplyδ(F ∗), and, eventually
one selects the safety factor F corresponding to the minimum
value ofδ, i.e.F=F ∗(δmin). In the present paper the valid-
ity of the MLD criterion is confirmed, but the computational
technique used to solve the set of the equilibrium equations,
i.e. to obtain the solutionS(F ∗), is revisited and a procedure
based on matrix calculus is introduced that is faster and eas-

ier to manipulate than the method previously used and may
be easily extended to handle limit-equilibrium analyses for
bodies sliding on surfaces (3-D) rather than along profiles
(2-D).

2 Formulation of the problem

The stability of a body in 2-D is studied by taking into ac-
count vertical cross-sections. The section belongs to the
plane(x, z) and both, the body and the slope, are assumed
to be uniform along the horizontal axisy. In the sketch
of Fig. 1 a vertical section is given where the body is con-
fined between the sliding surfacez1(x) and the upper surface
z2(x). In limit-equilibrium analysis the section is subdivided
into vertical slices and the governing system of equations is
obtained by imposing the balance of all forces and torques
acting on these slices.

2.1 The set of equilibrium equations

We use the same formalism we adopted in TM2006 where
the reader may find a detailed derivation of the basic set of
equations. Here we limit to recall the notions essential to
understand the subsequent analysis. Forces are depicted in
Fig. 1:w(x) is the slice weight per unit area,D(x) is an ex-
ternal pressure acting on the upper slide surface,P(x) and
S(x) are respectively the pressure and the shear stress at the
base of the slice,E(x) andX(x) are the horizontal and ver-
tical components of the inter-slice forces, whileA(x) is the
component of the torque along the axisy. They are functions
of the horizontal coordinatex, and each slice is taken to have
an infinitesimal width1x, a finite heightz2(x)−z1(x) and to
be comprised betweenx−1/21x andx+1/21x.

The set of equilibrium equations may be given the follow-
ing expression (see TM2006):

d

dx
E + P tanα − S −D tanβ= − wk cosψ (1)

d

dx
X + P + S tanα −D = (1 + k sinψ)w (2)

d

dx
A−z1

d

dx
E−X −D tanβ (z2−z1)=−wk cosψ (zB−z1) (3)

FS = c̄∗ + P tanφ̄′ (4)

with

c̄∗=c̄′ − u tanφ̄′

Eqations (1) and (2) result from the balance of the horizon-
tal and vertical components of the forces, whereas Eq. (3)
expresses the balance of the torque. The last Eq. (4) is the
essence of the limit-equilibrium theory. This assumes that,
when body conditions are close to instability, the shear stress
S and the shear strengthSmax tend to be equal in all points of
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the basal surface. According to the Mohr-Coulomb law,Smax
is given by:

Smax(x) = c̄′(x)+ (P (x)− u(x)) tanφ̄′(x)

where u(x) is the pore pressure dependent on the piezo-
metric level, andc̄′and φ̄′ are average values of the mate-
rial cohesion and of the friction angle, as better explained in
Sect. 2.2. Consistently with this view, Eq. (4) imposes that
shear strength and stress are proportional via the coefficient
F , the safety factor, and thatF may be used to mark the
boundary between stable (F>1) and unstabe (F<1) regions.

In Eqs. (1)–(3)α (x) andβ (x) are the angle of slope re-
spectively at the base and at the top of the slice. The slice
weightw is defined as:

w(x) = g

z2∫
z1

ρ(x, z)dz

whereρ is the density that depends on the position (x, z) in
heterogeneous bodies.

The torqueA(x) is computed with respect to the centre of
mass of the slidezB(x) which is given by:

zB(x) =

z2∫
z1

ρ (x, z) zdz

w(x)

The loadD(x) on the upper surface, when it is due to water
as in the case of a body that is totally or partially submerged,
can be expressed as follows:

D(x) = ρwg [zw − z2(x)] z2(x) < zw

D(x) = 0 z2(x) ≥ zw

wherezw is the water level andρw the water density.
Equations (1)–(3) account also for the seismic load, which

is assumed to act at the centre of mass of the slice along the
directionψ and to be proportional to the slice weight through
the coefficientk.

The set of Eqs. (1)–(4) is the basic system for the slope
stability problem according to the limit-equilibrium method.
It has to be complemented by the boundary conditions, stat-
ing that all the inter-slice forces and torques vanish at the
beginning and at the end of the sliding body:

E(xbeg) = E(xend) = 0 (5)

X(xbeg) = X(xend) = 0 (6)

A(xbeg) = A(xend) = 0 (7)

Equations (1)–(7) form a set of three first-order ordinary dif-
ferential equations completed by the corresponding bound-
ary conditions and by an additional relationship, Eq. (4).
This set contemplates one unknown parameter,F , and five
unknown functions defined in the finite domain

[
xbeg, xend

]
,

namely the basal stressesP(x) and S(x) and forces and
torques associated with slice interactionE(x), X(x) and
A(x). In this formulation, the sliding surface described by
the functionz1(x) is considered to be known a priori: it
may be circular, as it is assumed in some classical limit-
equilibrium methods, or have a more general shape (see Gra-
ham, 1984).

2.2 The stratified soil

Assuming a homogeneous sliding body is often an oversim-
plification of the problem and may lead to questionable con-
clusions on slope stability, especially if there is evidence of
the existence of weak layers at some depth. Accounting
for a stratified soil in the formulation given in Sect. 2.1 is
straightforward. Let us suppose that the body cross-section is
composed ofM layers with layeri lying between interfaces
i and i+1, and with interfaces described by the functions
zint,i (x) andzint,i+1 (x) (zint,i < zint,i+1). We can further
suppose that the body basez1and topz2 coincide with sur-
faceszint,1 (x) andzint,M+1 (x). Material properties such as
densityρ, cohesionc′ and friction angleφ′ will change from
one layer to the next, but incorporating the depth-dependence
in the stability equations is quite easy. The expression for the
weightw(x) in the previous section is still valid and the in-
tegral will reduce to a summation across all layers of the ma-
terial columnx (that is formed at most byM layers). As for
cohesion and friction angle, it is remarked that only the val-
ues they assume on the sliding surfacez1 (x) are of relevance
in Eq. (4), i.e. the valuesc′ (x, z1 (x)) φ

′ (x, z1 (x)). Practi-
cally, since the set of Eqs. (1)–(4) cannot be solved analyt-
ically, but through numerical methods, it is anticipated here
that covering the computational domain

[
xbeg, xend

]
with a

finite grid with N+1 nodes, implies the partition of the body
cross-section into N vertical slices. Such a discretization im-
plies further that, given the slice corresponding to the interval[
xi, xi+1

]
, in place of local values of cohesion and of friction

angle, average values̄c′ andφ̄′ are to be used, with average
computed over the base of the slide, according to the formu-
las:

c̄′i=

xi+1∫
xi

c′ (x, z1 (x)) dx

xi+1 − xi

φ̄′

i=

xi+1∫
xi

φ′ (x, z1 (x)) dx

xi+1 − xi

For a stratified body, these integrals will reduce to a sum ex-
tended to all layers intersecting the base of thei-th slice of
the numerical partition.
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2.3 The traditional methods

Traditional methods of limit equilibrium treat the safety fac-
tor as an unknown parameter. The solution to the set of
Eqs. (1)–(7) is underdetermined since there are four equa-
tions for five unknown functions ofx and for one unknown
parameter,F . Despite the existence of more than one solu-
tion, the first methods were devised in times when numerical
computing was still a very hard job and introduced drastic
simplification to allow the computation of at least one so-
lution. Fellenius (1927) assumed that inter-slice forces are
null; Bishop (1955) and Janbu (1968) posed vertical forcesX

equal to zero and disregarded the horizontal and the vertical
equilibrium equations, respectively. On the other hand, Mor-
genstern and Price (1965) and Spencer (1967) were the first
who tackled the non-uniqueness problem and overcame it by
imposing a relationship between the vertical and horizontal
components of the inter-slice forces, which is equivalent to
add a new equation to the original set (1)–(7). Spencer’s
method is taken in this article as representative of classical
methods and against it we will compare our results.

3 Determination of the unique solution

The non-uniqueness of the solution has the consequence that
also the safety factorF , that is one of the unknowns of the
problem, cannot be determined univocally. It can be shown
that usually one can find exact solutions to the Eqs. (1)–
(7) with very different values ofF , ranging from below to
above the critical value of 1. And this in principle is a rele-
vant theoretical weakness of this approach, undermining the
meaning itself of the analysis. In practice, the additional hy-
potheses introduced by Morgenstern and Price, by Spencer
and by others, restrict the interval of variability of the safety
factor to more acceptable limits. In TM2006 a totally differ-
ent approach was suggested, converting the limit-equilibrium
method to a minimization problem, whereF is treated as a
free parameter, and not as an unknown. Within a given inter-
val ofF , say[Fmin, Fmax], one searches the solution to the set
of Eqs. (1)–(7) that minimizes the lithostatic deviationδ, and
the value of the parameterF corresponding to the minimum
value ofδ is taken as the final result of the limit-equilibrium
analysis. The lithostatic deviation is defined as:

δ=W−1

 1

(xend− xbeg)

xend∫
xbeg

(E(x)2 +X(x)2)dx


1/2

where:

W =
1

xend− xbeg

xend∫
xbeg

w(x)dx

Notice thatδ is the dimensionless ratio of the average mag-
nitude of the internal forces to the total weightW of the slid-

ing mass. Notice further that the conditionδ=0 trivially im-
plies that bothE(x) andX(x) are identically zero over the
domain

[
xbeg, xend

]
which is a state of equilibrium only for

the special case of a body of uniform thickness lying over a
uniform slope.

4 Finding the solution

4.1 The discretization

The system of Eqs. (1)–(7) can be set in a more adequate
form. In first place, we note that Eq. (4) involves the known
parameterF , the known material properties (c̄′,φ̄′ andu) and
two unknown functionsP(x) andS(x). Hence, with the aid
of Eq. (4) one can expressS(x) in terms ofP(x), and re-
place it in all Eqs. (1)–(3). After some manipulations one
obtains the following system of equations in the unknown
E(x),X(x), A(x) andP(x):

dE

dx
+ PαE=βE

dX

dx
+ PαX=βX (8)

dA

dx
+ PαA −X = βA

including coefficients that are given by:

αE= tanα −
tanφ̄′

F

βE=
c̄∗

F
+D tanβ−k cosψw

αX=1 +
tanα tanφ̄′

F

βX=D −
c̄∗

F
tanα + (1 + k sinψ)w

αA=z1αE
βA=D tanβ (z2−z1)−k cosψ (zB−z1) w + z1βE

(9)

Observe that all such coefficients are known functions of the
problem, since they depend on the geometry of the body, on
its material properties, on the external loads (water layer and
seismic forcing) and on the parameterF . Observe further
that some coefficients, such asαE andαX, are dimensionless,
while others are not:αA is a length,βE andβX are pressures,
while βA is a pressure times a length.

The solution is searched for by numerical means. The
computational domain

[
xbeg, xend

]
is discretised intoN equal

intervals of length1x through the nodal pointsxi , i ∈

[0, N ], which entails that the body is cut intoN vertical
slices, and that all variables result to be accordingly dis-
cretised. Note thatx0=xbeg and thatxN=xend.In such dis-
cretization process, it is convenient to take the pressureP

and all the coefficients given by the relationships (9) at the
mid-points of the intervals, while the inter-slice forcesE(x),
X(x) and the torqueA(x) are taken at the nodal points. As
a consequence, we may introduce the N-component vector
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Table 1. Comparison of stability analysis results obtained with the
traditional Spencer method, the Tinti and Manucci (T&M) method
and with the various applications of the new computational method
presented in this paper. The slope is the same as in TM2006. Case
1: no seismic and no water load. Case 2: water load only. Case
3: seismic load only. The best results (i.e. the MLDs) are found in
the cells with bold characters. All are in the same raw, since are
obtained with the same method.

Method
Case 1 Case2 Case 3

F δ F δ F δ

Spencer 1.468 0.1052 1.579 0.1163 0.984 0.1780
T&M 1.409 0.0772 1.510 0.0845 0.925 0.1193
T&M-new 1.409 0.0776 1.509 0.0847 0.926 0.1199
T&M-Xsin 1.409 0.0776 1.509 0.0847 0.926 0.1199
T&M-Xcos 1.405 0.0762 1.505 0.0835 0.920 0.1147
T&M-Ecos 1.415 0.0836 1.510 0.0891 0.922 0.1305
T&M-Acos 1.412 0.0812 1.522 0.0885 0.937 0.1301

p, with pi=p(xi−1x/2), i ∈ [1, N ], and in an analo-
gous way the vectorbE with bE,i=βE(xi −1x/2), the vec-
tor bX with bX,i=βX(xi − 1x/2) and the vectorbA with
bA,i=βA(xi−1x/2). Similar discretization holds for the co-
efficientαE , but, as will be seen later, instead of a vector it is
more adequate to introduce a diagonalN×N matrixAE with
(AE)i,i=αE(xi −1x/2). Analogously we define the matri-
cesAX andAA . We may also introduce (N+1)-component
vectors for forces and torque, but, since these are null at the
boundaries in force of conditions (5)–(7), we are allowed
to restrict the attention to the internal nodes of the domain.
Hence, the unknown functionE(x) is transformed into the
(N-1)-component vectore with ei=E(xi), i ∈ [1, N − 1],
and the same applies to vectorsX anda, i.e.Xi=X(xi) and
ai=A(xi). In terms of these discretized quantities, it is easy
to transform the first of the differential Eq. (8), namely the
one concerning the equilibrium of the slices along the hori-
zontal axis, into the following system of algebraic equations:

e1 + p1αE,11x = βE,11x

.....

ei − ei−1 + piαE,i1x = βE,i1x

....

eN−1 − eN−2 + PN−1αE,N−11x = βE,N−11x

−eN−1 + pNαE,N1x = βE,N1x

(10)

After introducing the rectangularN×(N -1) matrix 0 given
by:

0 =


1 0 0 0 0

−1 1 0 0 0
0 −1 1 0 0
... ... ... ... ...

0 0 0 −1 1
0 0 0 0 −1


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Fig. 2. Vertical cross-section of the body already analysed in
TM2006. The sliding mass is in light grey. The sliding surface
has a circular profile centred in C. The soil parametersc′, φ′ andρ
are constant, with respective values of 6 kPa, 25◦ and 25 kNm−3.
The sliding body is partially submerged by a 5 m deep water layer.

the system (10) can be written in the following vectorial
form:

0e+ AEp1x = bE1x (11)

Analogously, on discretizing the vertical equilibrium Eq. (2)
and accounting for the corresponding boundary condi-
tion (6), we obtain:

0x + AXp1x = bX1x (12)

In the torque equilibrium Eq. (3), the termX has to be eval-
uated at the interval mid-points, which is obtained by taking
the average value between two adjacent nodes. Bearing this
in mind and the boundary condition (7), the followingN -1
relations can be obtained:

0a + AAp1x − �X1x = bA1x (13)

where use is made of the rectangularN×(N -1) matrix� de-
fined as:

� =
1

2


1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
... ... ... ... ...

0 0 0 1 1
0 0 0 0 1


Putting together the Eqs. (11), (12) and (13), one obtains a
set of 3N linear algebraic equations linking as many as 4N -3
unknowns, namelyN unknown values forp and a total of
3(N -1) unknown values fore, X, anda. The consequence is
that there areN -3 unknowns more than equations and that,
as expected, the discretised version of the problem reflects
the underdetermination of the original formulation.
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Fig. 3. Graphs of the inter-slice forcesE andX, of the torqueA and of the bottom pressureP corresponding to the best solutions of the
various methods applied for Case 1.

4.2 Non uniqueness of the solution

In order to reduce the degree of freedom of the algebraic sys-
tem (11)–(13), some assumptions must be made on the un-
knowns. In this paper we will consider restricting hypothe-
ses on the form of the inter-slice forcesE andX, and of
the torqueA. Consistently with classical limit-equilibrium
methods, our first assumption regards the vertical forcesX.
Let us expand the functionX(x) over a basis of analytical
known functionsfk(x) (for example, a Fourier series expan-
sion), that is truncated to the firstm terms. Correspondingly,
the discretised version of such expansion yields the following
set ofN -1 equations:

X1=

m∑
k=1

vkfk(x1)

X2=

m∑
k=1

vkfk(x2) (14)

XN−1=

m∑
k=1

vkfk(xN−1)

this can be seen as a mapping of theN -1 unknownsX into
them unknownsv, i.e. the coefficients of the truncated ex-
pansion. Formally, after definingfik=fk(xi), the above re-
lations can be synthesised as:

Xi=

m∑
k=1

fikνk (15)

The position (14), or (15) equivalently, increases the num-
ber of equations to 3N+(N–1)=4N–1 and the number of un-
knowns to 4N–3+m, which means that the balance between
unknowns and equations is obtained whenm=2. The inter-
pretation is simple: either we consider a series of only two
terms, or we consider a higher order expansion, but only
two arbitrary terms of the expansion can be considered un-
known coefficients, while the others have to be treated as
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Fig. 4. Vertical cross-section of the three-layer sliding mass. The
soil parameters are given in the text and in caption of Table 2.

free parameters. We can therefore make this distinction ex-
plicit by writing:

Xi=fi1ν1 + fi2ν2 +

m−2∑
k=1

gikqk (16)

where the two unknowns arev1 andv2, and the known pa-
rameters and related functions are denoted respectivelyqk
andgik for sake of clarity.

After introducing the 2-component vectorv and the (m-2)-
component vectorq defined by:

v =

(
v1
v2

)
q =

 q1
...

qm−2


as well as the (N -1)×2 matrix F1 and the (N -1)×(m-2) F2
defined as:

F1=

 f1,1 f1,2
f2,1 f2,2
fN−1,1 fN−1,2


F2=

 g1,1 g1,2 ... g1,m−2
g2,1 g2,2 ... g2,m−2
gN−1,1 gN−1,2 ... gN−1,m−2


Equations (16) can be written in this simple vectorial form:

X − F1v = F2q (17)

4.3 Solving the problem

The final algebraic system of equations can be assembled by
putting together the above Eqs. (11)–(13) and (17), which
leads to:

0e+ AEp1x = bE1x

0X + AXp1x = bX1x

0a + AAp1x − �X1x = bA1x

X − F1v = F2q

(18)

Fig. 5. The Izmit Gulf with its basins in the Maramara sea.
Deǧirmendere is located in the south-eastern coast close to the end
of the Karam̈ursel Basin.

where the unknown vectorse, X, a andv are on the l.h.s. of
the system, while vectors on the r.h.s. are known quantities.
It is then easy to build a block matrix together with the cor-
responding block vectors in the form:

0 0 0 AE 0
0 0 0 AX 0
0 −�1x 0 AA 0
0 I 0 0 −F1




e
X
a

p1x
v

 =


bE1x

bX1x

bA1x

F2q

 (19)

which is a system of 4N -1 linear equations in 4N -1 un-
knowns and very suitable for inversion.

4.4 Hypotheses on the unknown functions and related con-
siderations

The form (19) of the problem is quite flexible and allows one
to easily explore different assumptions on the shape of the
inter-slice forceX(x). In a first instance we assume a trun-
cated three-term sine Fourier expansion forX (i.e. we as-
sumem=3), which is the same expression we already used in
TM2006, where however we computed the solution through
a less general ad-hoc method. More specifically we assume
that

X(x) =

3∑
k=1

λk sin

[
kπ

x − xbeg

xend− xbeg

]
and make the choice thatλ1 is a known parameter, whileλ2
andλ3 are unknown quantities. Notice that the above po-
sition ensures thatX(x) vanishes at the end points of the
domain as required by the condition (6). According to our
notation we can write:

gi,1= sin

(
π
i

N

)
i = 1,2, . · · · , N − 1

fi,1= sin

(
2π

i

N

)
i = 1,2, . · · · , N − 1

fi,2= sin

(
3π

i

N

)
i = 1,2, . · · · , N − 1
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Table 2. Results for stratified soils obtained with all the methods used here. The three-layer stratification is shown in Fig. 4. The ho-
mogeneous case is case 1 of Table 1 (γ ′=25 kN/m3, c′=6 kPa,φ′=25◦). Case 4 is heterogeneous in density (γ ′

1=22 kN/m3, γ ′
2=28 kN/m3,

γ ′
3=30 kN/m3). Case 5 is heterogeneous in cohesion (c′1=6 kPA,c′2=100 kPa,c′3=200 kPA). Case 6 is heterogeneous as regards the friction

angles (φ′
1=10◦, φ′

2=15◦, φ′
3=35◦). Cells with the MLD values have bold characters.

Method
Case 1 Case 4 Case 5 Case 6

F δ F δ F δ F δ

Spencer 1.468 0.1052 1.523 0.1034 2.651 0.1164 2.012 0.1136
T&M 1.409 0.0772 1.463 0.0760 2.588 0.0863 2.066 0.0771
T&M-new 1.409 0.0776 1.463 0.0763 2.585 0.0864 2.060 0.0776
T&M-Xsin 1.409 0.0776 1.463 0.0763 2.585 0.0864 2.060 0.0776
T&M-Xcos 1.405 0.0762 1.460 0.0754 2.585 0.0858 2.070 0.0764
T&M-Ecos 1.415 0.0836 1.471 0.0801 2.590 0.0895 2.100 0.0881
T&M-Acos 1.412 0.0812 1.478 0.0803 2.600 0.0898 2.090 0.0823

and identifyλ1 with q=q1 andλ2 andλ3 with v1 andv2 re-
spectively. Inversion of the system (19) provides a solution
for any given choice of the known parameters, that areF

andq1 in this case. In agreement with the adopted princi-
ple of MLD, the solving procedure consists (i) in solving the
system (19) by letting these parameters to vary within reason-
able intervalsIF andIq that are obviously spanned at discrete
steps, (ii) in computing the lithostatic deviation correspond-
ing to each solution, i.e. in computingδ (F, q1) within the
2-D spaceIF×Iq , which can be called the searching space,
and eventually (iii) in finding the point in such a space where
δ takes its minimum value. The corresponding value ofF is
the searched value of the safety factor. It is worth stressing
here once more the difference between the traditional meth-
ods of limit-equilibrium theory and ours. Those methods find
only one solution of the equilibrium equations and take the
corresponding value ofF as the safety factor of the slope.
But we know that a solution can be found for any point of
the searching space. Therefore, since the intervalIF may be
shown to include the discriminant value of unity, the conse-
quence is that one has no means to judge on the stability of a
slope, unless one invokes an additional criterion, such as the
MLD principle.

In Table 1 we show the results of our computations applied
to the body sketched in Fig. 2, which is the same body the
reader can find in TM2006. These results, that will be des-
ignated by T&M-new, are compared with the one that were
obtained in TM2006 and that are here denoted by TM. As
expected, they practically coincide and the slight differences
are uniquely due to small numerical rounding errors associ-
ated with the fact that in TM2006 we solve the same basic
set of equations by using an ad-hoc semi-analytical method,
while here we invert system (19) by a standard numerical
real-matrix inversion routine.

Since, given a series expansion, one can choose freely the
two terms of the series whose coefficients are unknown, we
explore the effect of a different choice. In the following we

still make recourse to the three-term sine Fourier expansion,
but we take:

gi,1= sin

(
3π

i

N

)
i = 1,2, . · · · , N − 1

and

fi,1= sin

(
π
i

N

)
i = 1,2, . · · · , N − 1

fi,2= sin

(
2π

i

N

)
i = 1,2, . · · · , N − 1

The corresponding solutions will be denoted by T&M-Xsin
in this paper. A further explored hypothesis is to consider a
different set of base functionsg andf . Instead of sine func-
tions, we can take cosine functions multiplied by the local
normalised weight to ensure fulfilment of the boundary con-
dition (6), i.e. we assume:

gi,1=
w(xi)

wmax
cos 2π

i

N
i = 1,2, . · · · , N − 1 (20)

and

fi,1=
w(xi)

wmax
i = 1,2, . · · · , N − 1 (21)

fi,2=
w(xi)

wmax
cosπ

(
i

N

)
i = 1,2, . · · · , N − 1 (22)

Herewmax is defined as the max{w(xi)} i = 1,2, . · · · ,N-1.
The related solutions will be designated by T&M-Xcos.

All the above hypotheses involve assumptions on the inter-
slice vertical forcesX(x) and require the inversion of the
system of Eq. (19). Our formulation enables one to make hy-
potheses concerning also the other unknown functionsE(x)

andA(x). And it is very easy to see that the corresponding
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system of equations can be written in the following “block”
forms:

0 0 0 AE 0
0 0 0 AX 0
0 −�1x 0 AA 0
I 0 0 0 −F1




e
X
a

p1x
v

 =


bE1x

bX1x

bA1x

F2q

 (23)


0 0 0 AE 0
0 0 0 AX 0
0 −�1x 0 AA 0
0 0 0 I −F1




e
X
a

p1x
v

 =


bE1x

bX1x

bA1x

F2q

 (24)

We have made experiments of both types. In particular,
we have selected the three-term expansion given by the co-
sine functions (20)–(22) and inverted the system (23) when
the position regarded the horizontal forcesE(x), while we
have inverted the system (24) when the position regarded the
torqueA(x). The results will be referred as T&M-Ecos in
the first case and as T&M-Acos in the second.

The formulation of the limit-equilibrium problem pro-
posed here leads to the inversion of the “block” system of
equations in one of the three forms (19), (23) and (24). We
stress that this is a relevant improvement on previous meth-
ods: not only on the traditional methods, but also on the
TM2006 formulation, since the present version combines the
advantage of being computationally fast (as most of the other
methods) with a great flexibility, since it allows one to ex-
plore quite easily different assumptions on the shape of the
unknown functions.

It is relevant also to point out that each hypothesis leads
to a different solution for the safety factorF , since this is
obtained by minimising the lithostatic deviationδ within the
searching space. In the general case of anm-term expansion
like the position (16) the searching space will have dimen-
sionm-1, since the involved parameters are them-2 vectorq
andF . The fact that we have a multiplicity of results forF
is not crucial since we may resolve such an apparent ambi-
guity by making recourse once more to the MLD principle.
Indeed we will select as the best solution forF , the one that
is associated with lowest value ofδ. This means that there
is no way to judge the goodness of a hypothesis of type (16)
a priori. Each of these can be seen as a way to explore a
portion of the searching space, and a posteriori we can con-
sider that the best assumption is the one providing the min-
imum δ. Of course, according to this point of view, there
is no certainty that the minimum value forδ we have found
by exploring a given set of hypotheses (one or more), is the
absolute minimum, i.e. there is no certainty that other un-
explored hypotheses could provide smaller lithostatic devi-
ations and correspondingly different solutions for the safety
factor. This issue is inherent to many minimisation problems
and is in principle unavoidable for the limit-equilibrium the-
ory. This observation casts a better light to the limitations of
the traditional limit-equilibrium methods that compute only

Fig. 6. Deǧirmendere coastline before the slide (solid line) and
footprint of the sliding mass body (dashed line) as reconstructed
by Rathje et al. (2004) and by Cetin at al. (2004). Profiles A and B
correspond to the vertical-cross sections analysed in the paper.

one solution for the problem, which can be rephrased by stat-
ing that they restrict their searching space to only one point,
which is a not advisable practice to find a point of minimum.

5 Applications to idealized cases

The cases taken into account for the application of our
method are initially the same as those that were analysed in
TM2006, since this enables us to make proper comparisons.
A slope of about 30◦ with an arc-like sliding surface is rep-
resented in Fig. 2. The body is homogeneous and may be
partially submerged under a layer of water with a possible
piezometric level that is depicted by a dashed piecewise line.
This profile is studied for three different situations: case 1
corresponds to a dry body with null pore pressure and with
no external forces applied; case 2 is the case of a body un-
der the load of a thin water layer applied on the toe side;
in case 3 a seismic load is considered (k=0.368,ψ=42.8◦).
The stability is studied by means of the classical method by
Spencer and by means of the TM method (Tinti and Manucci,
2006), and, in addition, by using the five more different ap-
proaches illustrated in the previous section, i.e. by inverting
the “block” system. The discretization of the computational
domain

[
xbeg, xend

]
is made by using a grid ofN+1=51 nodes

in all the following examples.
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Table 3. Stability results for the Děgirmendere slide body in the
pre-earthquake conditions. Profiles A and B are shown in Figs. 6
and 7. All methods give equivalent results: the body is extremely
stable on both profiles. Cells with bold characters contain the MLD
values.

Method
Profile A Profile B

F 1 F δ

Spencer 5.963 0.0680 7.127 0.0525
T&M 5.966 0.0672 7.115 0.0523
T&M-new 5.961 0.0672 7.127 0.0523
T&M-Xsin 5.961 0.0672 7.127 0.0523
T&M-Xcos 5.961 0.0672 7.127 0.0523
T&M-Ecos 5.956 0.0976 7.125 0.1938
T&M-Acos 5.939 0.3049 7.126 0.7750

All results are summarized in Table 1 where the values of
the minimum lithostatic deviations and of the corresponding
safety factors are given. Technically, the complete solution
includes the further specification of the computed unknown
functionsE(x), X(x), A(x) andP(x). For case 1, these
curves are provided in Fig. 3. The body results to be sta-
ble in case 1 and even more stable in case 2, where the water
load stabilizes the slope, while it is unstable in case 3 due to
the seismic load.

As it may be seen from Table 1, the classical Spencer’s
method gives results quite different from all our approaches,
both in terms of MLD (remarkably higher) and in terms ofF
(higher). Judged through the MLD principle, this method re-
sults to be the worst. On the other hand, the results of all our
methods are quite close to one another. As already remarked,
the methods T&M and T&M-new compute the solution ex-
actly to the same problem, but via different numerical algo-
rithms. Hence, the differences in the corresponding results
are only due to numerical rounding errors. It is further in-
teresting to note that the methods T&M-new and T&M-Xsin
assume the same three-term expansion forX(x), though us-
ing different choices for known and unknown coefficients.
The results are almost identical, which is explained by the
fact that these methods explore the same searching space to
find the MLD, though by means of a different searching grid.
Further, the worst results for our methods are the ones de-
riving from the weighted cosine expansions of the function
E andA (T&M-Ecos, T&M-Acos). Finally, we observe that
the minimum values ofδ are obtained by the method T&M-
Xcos for all three cases, which is suggestive that the weighted
cosine expansion ofX is the best possible assumption among
the ones examined here.

Looking at the graphs of Fig. 3, it is clear that the three si-
nusoidal expansion methods (T&M, T&M-new, T&M-Xsin)
are almost equivalent. The weighted cosine expansion for
the forceX, which is our best solution, departs slightly from
the others in the up-hill part of the slide regards the force

Table 4. Stability results for the Děgirmendere slide body under
conditions presumably acting during the earthquake (k=0.45,ψ=-
22◦) and the consequent tsunami produced by the earthquake itself
(sea level lowers by 1 m). All methods, including the traditional
Spencer’s method, produce similar values for the factor of safety,
and the conclusion is that both profiles are unstable. Cells with bold
characters contain the MLD values.

Method
Profile A Profile B

F δ F δ

Spencer 0.908 0.1728 0.989 0.1714
T&M 0.906 0.1621 0.989 0.1630
T&M-new 0.906 0.1623 0.988 0.1625
T&M-Xsin 0.906 0.1623 0.988 0.1625
T&M-Xcos 0.906 0.1623 0.988 0.1626
T&M-Ecos 0.906 0.1631 0.988 0.1696
T&M-Acos 0.904 0.1861 0.987 0.2592

and torque functions, but it is quite similar as far as the bot-
tom pressureP is concerned. Worth of notice is that for all
the cosine methods (T&M-Xcos, T&M-Ecos, T&M-Acos)
there is an irregularity of the curves in correspondence with
the thinning of the sliding mass at the horizontal distance
of about 75 m (see Fig. 2). This is due to the fact that, in
this expansion, cosines are corrected by a normalised weight
(proportional to the slide thickness), that changes abruptly
around that value of the abscissa. We remark further that the
last two methods (T&M-Ecos, T&M-Acos) give curves very
different from all the others, with the largest discrepancies
observable for the torque profiles.

5.1 Stratification

The stratification of the soil is incorporated in the formula-
tion of the limit-equilibrium problem presented here through
the coefficientsα(x) andβ(x) of the formulas (9) and hence
entered in the final discrete system of Eqs. (19), (23) and (24)
through the matricesAE, AX , andAA and the vectorsbE, bX ,
andbA . Therefore, system (19), (23) and (24) is perfectly
suitable to handle also the stability of layered slopes, which
is often of great interest. We give some examples of appli-
cation by using the stratified body portrayed in Fig. 4. We
examine three cases of stratification we call cases 4, 5 and 6.
Taking the previous case 1 (homogeneous dry body with no
external forces applied) as reference, for each case we vary
only one parameter: in case 4 the density is taken to increase
with depth, in case 5 the cohesion increases with depth and
in case 6 the angle of friction. They all are compared with
the homogeneous case. In case 4 the sliding mass is lighter
than for the reference homogeneous case, and consequently
the slope is slightly more stable. In case 5, the cohesion is
remarkably higher, and hence the mass is by far more stable.
In case 6 the larger angles of friction are again an element
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Fig. 7. Vertical cross sections of the profiles A and B of Fig. 6. The soil parameter c’,φ’, ρ are constant over the sliding mass, with
respective values of 0 kPa, –22◦ and 20 kNm−3. The sliding surfaces are assumed to be circular (dashed line) and the sliding bodies are
partly submerged.

of stabilisation for the body. All results are given in Table 2.
Very interestingly we confirm here that Spencer’s method de-
parts from all the others, that all the sine expansion cases give
similar results, and that the best results are obtained through
the weighted cosine expansion of the vertical inter-slice force
X (T&M-Xcos).

5.2 A real case

In this section we apply the block-matrix method to a
real case, that is the case of a slide that was released in
Deǧirmendere, a coastal village in the Izmit Gulf, Turkey,
as the result of a disastrousM=7.4 earthquake, that af-
fected the north-western part of Turkey on 17 August 1999.
Deǧirmendere is located in the south coast of the Izmit Gulf
between the Karam̈ursel Basin and the Eastern Basin (see
Fig. 5). The slide involved a segment of coast about 300 m
long and 75 m wide, and carried into the sea a multi-storey
hotel and two adjacent buildings. It produced a local tsunami.
In Fig. 6 the coastline before and after the slide is sketched,
together with two profiles A and B intersecting the coast,
along which we take the vertical cross-sections depicted in
Fig. 7 (Tinti et al., 2006). The earthquake produced a tsunami
that was observed in the entire Izmit bay. The tsunami was
not catastrophic, with measured run-up heights comprised
in the range of 1–3 m. The stability analysis that was con-
ducted by Tinti et al. (2006) showed that the earthquake shak-
ing, with peak ground acceleration estimated to be about
0.45 g, was the cause of the slide, and in turn of the asso-
ciated tsunami that added its effect locally (run-up heights
larger than 10 m) to the one produced by the earthquake (see

also Wrigth and Rathje, 2003). It was further speculated that
the lowering of the sea level associated with the earthquake
tsunami could have acted as an additional factor of destabili-
sation for the slide.

The two cross-sections A and B have been analysed with
the new computational approach described before and the re-
sults are synthesised in Tables 3 and 4. Two cases are con-
sidered for both profiles: first, the stability of the slope is
evaluated in the pre-earthquake condition with no seismic
shaking and no effect of the seismic-origin tsunami (Table 3);
secondly, the stability is analysed under the condition of an
active seismic load (k=0.45,ψ =–22◦) and of an ongoing
tsunami causing a destabilising sea level decrease of 1 m (Ta-
ble 4). The material properties of the body were measured by
Cetin et al. (2004) during a post-earthquake survey. Compar-
ing the results of all methods, one sees that the methods pro-
viding the highest values of the lithostatic deviation are con-
firmed to be Spencer, T&M-Ecos and T&M-Acos. However,
one also finds that the computed values of the factor of safety
are quite similar, though the values of theδ depart somewhat
from one another. This means that for this particular appli-
cation using one method or another is nearly equivalent for
practical purposes.

6 Conclusions

The study of stability of a slope is an issue of great rele-
vance. The limit-equilibrium method posed the basis to make
stability analysis, but the classical methods show drawbacks
mostly related with the non-uniqueness of the solution. The
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MLD principle provides a criterion to find the best solution
and the corresponding safety factor for the slope under study.
In this paper we have worked within the frame of the MLD
approach and on discretising the basic system of equilibrium
equations. We have obtained a linear set of algebraic equa-
tions in the block matrix form (19), (23) and (24) that is quite
easy to solve by the standard real-matrix inversion codes.
One of the most relevant result of our analysis is the expres-
sion of the problem through the formulation (19), (23) and
(24). It has a number of great advantages: 1) it may be ap-
plied to a wide range of slopes and of conditions, since it
accounts for dry and wet soils, for external distributed loads
such as those exerted by a water layer or by seismic shak-
ing; 2) it handles bodies with arbitrary geometry, which in-
cludes arbitrary bottom profiles; 3) it accounts also for an
arbitrary body stratification (which means that, since layers
can be separated by arbitrary interfaces and be made as thin
as we wish, it can also be adapted to treat a totally heteroge-
neous body with variables depending on the horizontal and
vertical coordinatesx andz); 4) the formulation is flexible
enough to allow one to make a wide range of assumptions on
the unknown vectors by expanding one of these (eitherX, or
E, or A) over a set ofm base-functions, and consequently
to explore the corresponding (m-1)D searching space. For
illustrative reasons we restricted all our applications tom=3
expansions which lead to 2-D searching space of the type
IF×Iq .

Comparison of our results with traditional methods is lim-
ited to the Spencer’s method that was seen to be one of the
best classical approaches (TM2006). This comparison shows
that Spencer’s method provides always larger values of litho-
static deviation and hence, if the MLD principle is adopted,
worse determinations of the safety factor. For all cases ex-
amined in this paper, expansions of the unknownsE andA
seem to miss the MLD and then are probably not advisable.
When we considered the homogeneous body already studied
in TM2006, we found that the most convenient assumption is
the one we called T&M-Xcos, and the same conclusion was
also reached for the ideal stratified bodies (heterogeneous as
regards either density, or cohesion, or friction angle). When
we considered the real case of the Deǧirmendere slide that
was caused by a tsunamigenic earthquake and itself caused a
local tsunami, we found that one can confirm the same rank-
ing of the methods in terms of MLD, but, in spite of this, all
methods, inclusive Spencer’s, lead to very similar values of
the safety factor. The fact thatF is rather insensitive toδ, can
be also stated in the inverse way that very small variations of
F produce very large changes ofδ. Whether this is due to the
geometrical or physical properties of the body or is the appar-
ent effect of the limitedness of the searching space spanned
in this application is a question that can be answered by mak-
ing further assumptions on the unknowns, e.g. by increasing
the numberm of the coefficients in the proposed expansions,
which is a subject of further research.
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