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Abstract. The stability of a slope is studied by applying given in this paper, we find that the safety factors associated
the principle of the minimum lithostatic deviation (MLD) to with the MLD resulting from our computations may differ
the limit-equilibrium method, that was introduced in a pre- by some percent from the ones computed with the traditional
vious paper (Tinti and Manucci, 2006; hereafter quoted adimit-equilibrium methods.

TMZ2006). The principle states that the factor of safEtpf

a slope is the value that minimises the lithostatic deviation,
that is defined as the ratio of the average inter-slice force to
the average weight of the slice. In this paper we continue the
work of TM2006 and propose a new computational methodpetermining the stability of a slope is a problem of great
to solve the problem. The basic equations of equilibrium forjnterest since a long time to assess the hazard and miti-
a 2-D vertical cross section of the mass are deduced and the@hte the risk of an area. Different methods of analysis have
discretised, which results in cutting the cross section into verqeen developed, ranging from approximated 1-D or 2-D ap-
tical slices. The unknowns of the pl’oblem are functions (Orproaches to fu”y 3-D methods So|ving Visco_p|astic equa-
vectors in the discrete system) associated with the internafions through finite-element or finite-difference techniques.
forces acting on the slice, namely the horizontal fafcand  ysually more sophisticated methods such as 3-D need a very
the vertical forceX, with the internal torquet and with the  detailed knowledge of the soil and subsoil conditions that are
pressure on the bottom surface of the slitleAll traditional  gjfficult and expensive to acquire, which makes the recourse
limit-equilibrium methods make very constraining assump-to simplified techniques often more convenient and more
tions on the shape of with the goal to find only one so- practical to use. The classical limit-equilibrium methods be-
lution. In the ||ght of the MLD, the Strategy is Wrong since |Ong to the Category Of approximated methods_ The meth_
it can be said that they find only one point in the search-ods were firstly introduced with the Fellenius formula (1927)
ing space, which could provide a bad approximation to theand lately developed by Bishop (1955), by Morgenstern and
MLD. The computational method we propose in the paperprjce (1965), by Spencer (1967), by Janbu (1968) and oth-
transforms the problem into a set of linear algebraic equagrs, They were the starting point of the slope stability anal-
tions, that are in the form of a block matrix acting on a block ysis and were successfully applied and repeatedly refined,
Vector, a form that is quite suitable to introduce ConstraintSSince they are st||| Subject Of active research (eg Duncan and
on the shape ok, but also alternatively on the shape Bf  \wright, 1980; Chen and Morgenstern, 1983; Leschchinsky
or on the shape ofi. We test the new formulation by ap- and Huang, 1992; Chen et al., 2001; Zhu et al., 2003; Jiang
plying it to the same cases treated in TM2006 whEr@as  and Yamagami, 2004; Karaulov, 2005; Tinti and Manucci,
expanded in a three-term sine series. Further, we make difogog, hereafter quoted as TM2006; Zheng et al. 2007; Pink,
ferent assumptions by taking a three-term cosine expansiogom)_

corrected by the local weight fox, or for E or for A, and Typically limit-equilibrium methods consider vertical sec-
find the corresponding MLDs. In the illustrative applications tions of the sliding body that are cut into vertical slices. Sta-
bility is expressed by the safety factby that is computed by
imposing the equilibrium of each slice (though this is known

Correspondence tc. Tinti to be only a necessary, but not a sufficient condition). A the-
BY (stefano.tinti@unibo.it) oretical problem for this approach is that in the set formed
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672 S. Tinti and A. Manucci: Slope stability analysis through the MLD method

z ier to manipulate than the method previously used and may
be easily extended to handle limit-equilibrium analyses for
bodies sliding on surfaces (3-D) rather than along profiles
(2-D).

Water Level

2 Formulation of the problem

The stability of a body in 2-D is studied by taking into ac-
count vertical cross-sections. The section belongs to the
plane(x, z) and both, the body and the slope, are assumed
to be uniform along the horizontal axis In the sketch
of Fig. 1 a vertical section is given where the body is con-
fined between the sliding surfage(x) and the upper surface
% z2(x). In limit-equilibrium analysis the section is subdivided
into vertical slices and the governing system of equations is
{ Obtained by imposing the balance of all forces and torques

Fig. 1. Sketch of the vertical cross-section of the sliding body cu ! ;
into slices. Cartesian coordinateand: are taken to increase right-  acting on these slices.

ward and upward, as usual. The forces, described in the text, act o .

on each slice. In the discretised version of the analytical problem2-1  The set of equilibrium equations

slices are defined as the portions of the body comprised between ) .
the vertical planes; —Ax/2 andx;+Ax/2 The seismic load is a e use the same formalism we adopted in TM2006 where

force proportional to the weight of the slice and forms the anigle  the reader may find a detailed derivation of the basic set of

with the horizontal. The load is a pressure acting on the body top equations. Here we limit to recall the notions essential to

surface. understand the subsequent analysis. Forces are depicted in
Fig. 1: w(x) is the slice weight per unit are®(x) is an ex-
ternal pressure acting on the upper slide surfabg;) and

by all balance equations the number of unknowns (i.e. theg(x) are respectively the pressure and the shear stress at the

safety factor and the component of the forces and torquegase of the sliceE (x) and X (x) are the horizontal and ver-

acting on the slices) is greater than the number of equationgcg| components of the inter-slice forces, whiéx) is the

with the consequence that the solution, and therefore eveBomponent of the torque along the axisThey are functions

the computed safety factor, is not unique. This is usuallyof the horizontal coordinate, and each slice is taken to have

overcome by means of ad-hoc assumptions (constraints), thaf infinitesimal widthA x, a finite heighto(x)—z1(x) and to

differ from one author to the other, and the correspondent reqe comprised between-1/2Ax andx+1/2Ax.

sulting safety factors may depart by 5-10% from one another. The set of equilibrium equations may be given the follow-

In a previous paper (TM2006) we have called the attention onpg expression (see TM2006):

this issue and we have proposed a drastic change of view for

the limit-equilibrium approach. The factor of safety, instead iE 4 Ptana — S — Dtanf= — wk cosy 1)

of an unknown, was proposed to be treated as a known padx

rameter, say'*, that is left to range within a given interval.

For each value of*, a solution, says(F*), to the equilib- —X+4+ P+ Stana — D = (1+ksiny)w (2)

rium equations is computed. The unique solution to the prob-“*

lem is found by introducing and applying a new criterion, d d
Y g AP Ying A—z1 E—X — Dtang (zo—21) = wk cosy (z5—z1) (3)

that was called the “Principle of Minimum Lithostatic Devi- 4y dx
ation (MLD)". The lithostatic deviatiord expresses the ra- - _,
tio of the average magnitude of the internal slice-slice forcesf'S = ¢* + P tang (4)

and the total weight of the sliding mass (see formula (18) .
of TM2006). The MLD principle means that one calculates V!
the value ofs for each computed solutiofi( F*), obtaining &= — utand’
the relations (S(F*)) or more simplys (F*), and, eventually

one selects the safety factor F corresponding to the minimuniEqgations (1) and (2) result from the balance of the horizon-

value ofé, i.e. F=F*(8min). In the present paper the valid- tal and vertical components of the forces, whereas Eg. (3)

ity of the MLD criterion is confirmed, but the computational expresses the balance of the torque. The last Eq. (4) is the
technigue used to solve the set of the equilibrium equationsessence of the limit-equilibrium theory. This assumes that,

i.e. to obtain the solutio§ (F*), is revisited and a procedure when body conditions are close to instability, the shear stress
based on matrix calculus is introduced that is faster and easS and the shear strengfiax tend to be equal in all points of

th
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the basal surface. According to the Mohr-Coulomb K namely the basal stresséqx) and S(x) and forces and

is given by: torques associated with slice interactiéi{x), X(x) and
. -, A(x). In this formulation, the sliding surface described by
Smax(x) = ¢'(x) + (P(x) — u(x)) tang’(x) the functionz1(x) is considered to be known a priori: it

where u(x) is the pore pressure dependent on the piezo/may be circular, as it is assumed in some classical limit-
metric level, and’and ¢’ are average values of the mate- €quilibrium methods, or have a more general shape (see Gra-
rial cohesion and of the friction angle, as better explained inham, 1984).

Sect. 2.2. Consistently with this view, Eq. (4) imposes that - .

shear strength and stress are proportional via the coefficien%‘2 The stratified soil

F, the safety factor, and that may be used to mark the Assuming a homogeneous sliding body is often an oversim-

bolungary bletwgen stablé;&l) and u?stabel(f 1)fre|g|ons. plification of the problem and may lead to questionable con-
N EGS. (1)=(@B)x (x) andf (x) are the angle OF SIOPE €~ ¢|ysions on slope stability, especially if there is evidence of
spectively at the base and at the top of the slice. The S|IC%he existence of weak layers at some depth. Accounting

weightw is defined as: for a stratified soil in the formulation given in Sect. 2.1 is

22 straightforward. Let us suppose that the body cross-section is
wx) =g / p(x, 2)dz composed oV layers with layeti lying between interfaces
i andi+1, and with interfaces described by the functions

21
Zint,i (x) andzingi+1 (x) (Zint; < Zinti+1). We can further

wherep is the density that depends on the positionz( in suppose that the body basgand topz, coincide with sur-

heterogeneous bodies. faceszint.1 (x) andzint ;741 (x). Material properties such as
The torqueA (x) is computed with respect to the centre of densityp, cohesion’ and friction anglep’ will change from
mass of the slide (x) which is given by: one layer to the next, but incorporating the depth-dependence
2 in the stability equations is quite easy. The expression for the
f p(x,2)zdz weightw(x) in the previous section is still valid and the in-
) =2 tegral will reduce to a summation across all layers of the ma-
w(x) terial columnx (that is formed at most by layers). As for

The loadD(x) on the upper surface, when it is due to water cohesion and friction angle, it is remarked that only the val-
as in the case of a body that is totally or partially submerged U€S they assume on the sliding surfagcex) are of relevance

can be expressed as follows: in Eq. (4), i.e. the values’ (x, z1 (x)) ¢’ (x, z1 (x)). Practi-
cally, since the set of Egs. (1)—(4) cannot be solved analyt-

D(x) = puglzw — z2(x)]  z2(x) < zw ically, but through numerical methods, it is anticipated here
that covering the computational domdifyeg xend] With a

D(x) =0 z22(x) = zw finite grid with N+1 nodes, implies the partition of the body

cross-section into N vertical slices. Such a discretization im-
plies further that, given the slice corresponding to the interval

is assumed to act at the centre of mass of the slice along the'* xi+1]’ in place oflocal vz_ellues of cohesion ar?d of friction

directiony and to be proportional to the slice weight through @n9le, average valugsandg’ are to be used, with average

the coefficient. computed over the base of the slide, according to the formu-
The set of Egs. (1)=(4) is the basic system for the slopd@S:

stability problem according to the limit-equilibrium method. Xit1

It has to be complemented by the boundary conditions, stat-  J ¢ (¥, 21(x))dx

ing that all the inter-slice forces and torques vanish at thec;= il

wherez,, is the water level ang,, the water density.
Equations (1)—(3) account also for the seismic load, which

beginning and at the end of the sliding body: T+l = K

E(xbeg) = E(xend) = 0 5) e 21 () d

X (¥beg) = X (xend = O 6)  fj=— =

A(xbeg) = A(xend) =0 (7) For a stratified body, these integrals will reduce to a sum ex-

Equations (1)—(7) form a set of three first-order ordinary dif- tended to all layers intersecting the base of i slice of
ferential equations completed by the corresponding boundt® numerical partition.

ary conditions and by an additional relationship, Eq. (4).

This set contemplates one unknown paramefierand five

unknown functions defined in the finite domditheg, xend|,
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674 S. Tinti and A. Manucci: Slope stability analysis through the MLD method

2.3 The traditional methods ing mass. Notice further that the conditi®s0 trivially im-
plies that bothE (x) and X (x) are identically zero over the
Traditional methods of limit equilibrium treat the safety fac- domair{Xbeg’ xend] which is a state of equilibrium only for

tor as an unknown parameter. The solution to the set ofthe special case of a body of uniform thickness lying over a
Egs. (1)—(7) is underdetermined since there are four equagniform slope.

tions for five unknown functions of and for one unknown
parameterF’. Despite the existence of more than one solu-
tion, the first methods were devised in times when numericak  Finding the solution

computing was still a very hard job and introduced drastic

simplification to allow the computation of at least one so-4.1 The discretization

lution. Fellenius (1927) assumed that inter-slice forces are

null; Bishop (1955) and Janbu (1968) posed vertical forces The system of Egs. (1)—(7) can be set in a more adequate
equal to zero and disregarded the horizontal and the verticdiorm. In first place, we note that Eq. (4) involves the known
equilibrium equations, respectively. On the other hand, Mor-parameter”, the known material propertieg' (¢’ andu) and
genstern and Price (1965) and Spencer (1967) were the fird®o unknown functions®(x) andS(x). Hence, with the aid
who tackled the non-uniqueness problem and overcame it b@f EQ. (4) one can expres(x) in terms of P(x), and re-
imposing a relationship between the vertical and horizontalplace it in all Egs. (1)—(3). After some manipulations one
components of the inter-slice forces, which is equivalent toobtains the following system of equations in the unknown
add a new equation to the original set (1)—(7). SpencersE (x), X (x), A(x) and P (x):

method is taken in this article as representative of classical

o . dE
methods and against it we will compare our results. I + Pagp=fg
X
T ; : dX
3 Determination of the unique solution - + Pax=PBx (8)

The non-unigueness of the solution has the consequence that
also the safety factoF, that is one of the unknowns of the 44 + Popg— X = Ba
problem, cannot be determined univocally. It can be showndx
that usually one can find exact solutions to the Egs. (1)—including coefficients that are given by:
(7) with very different values of’, ranging from below to '

above the critical value of 1. And this in principle is a rele- tang’

. . o ap=tana — =~
vant theoretical weakness of this approach, undermining the = . Dt ¥ L
meaning itself of the analysis. In practice, the additional hy- Pe=7 + Dtanf—k cosyw

potheses introduced by Morgenstern and Price, by Spence¥x=1+ m 9)

and by others, restrict the interval of variability of the safety Bx=D — % tana + (14 ksiny) w
factor to more acceptable limits. In TM2006 a totally differ- aa=ziag
ent approach was suggested, converting the limit-equilibriumpBa=Dtang (z2—z1) —k cosyr (zp—z1) w + z1BE

method to a minimization problem, whereis treated as a o )
free parameter, and not as an unknown. Within a given interObserve that all such coefficients are known functions of the

val of F, say[ Fmin, Fmaxl, ONe searches the solution to the set Problem. since they depend on the geometry of the body, on
of Egs. (1)—(7) that minimizes the lithostatic deviatihrand |ts_maFer|aI propertles, on the external loads (water layer and
the value of the parameté corresponding to the minimum  S€iSmic forcing) and on the paramet€r Observe further
value ofs is taken as the final result of the limit-equilibrium that some coefficients, suchag anday, are dimensionless,

analysis. The lithostatic deviation is defined as: while others are not4 is alength fz andfx are pressures,
12 while 84 is a pressure times a length.

Xend The solution is searched for by numerical means. The
sew-1| 1 (E(x)% + X(x)2)dx computational domaifiepeg, xend] is discretised intav equal
(*¥end — Xbeg) intervals of lengthAx through the nodal points;, i €
tbeg [0, N], which entails that the body is cut int¥ vertical
where: slices, and that all variables result to be accordingly dis-
Xend cretised. Note thatg=xpeg and thatxy=xenaIn such dis-
W = - w(x)dx cretization process, it is convenient to take the presgure
Xend — Xbeg and all the coefficients given by the relationships (9) at the
“beg mid-points of the intervals, while the inter-slice forcEéx),
Notice thats is the dimensionless ratio of the average mag- X (x) and the torqued(x) are taken at the nodal points. As
nitude of the internal forces to the total weightof the slid- a consequence, we may introduce the N-component vector
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Table 1. Comparison of stability analysis results obtained with the 2
traditional Spencer method, the Tinti and Manucci (T&M) method ™
and with the various applications of the new computational method
presented in this paper. The slope is the same as in TM2006. Case
1: no seismic and no water load. Case 2: water load only. Case
3: seismic load only. The best results (i.e. the MLDs) are found in
the cells with bold characters. All are in the same raw, since are
obtained with the same method.

50

40

Height (m)

30

Method . Cas;al . Cassez . Ca85e3 N Water lovel
Spencer 1.468 0.1052 1579 0.1163 0.984 0.1780

T&M 1.409 0.0772 1510 0.0845 0.925 0.1193

T&M-new 1.409 0.0776 1.509 0.0847 0.926 0.1199 : e

T&M-Xsin  1.409 0.0776 1509 0.0847 0.926 0.1199 0 x 10 2 X,
T&M-Xcos 1.405 0.0762 1.505 0.0835 0.920 0.1147 Distance (m) X
T&M-Ecos 1.415 0.0836 1.510 0.0891 0.922 0.1305

T&M-Acos 1.412 0.0812 1.522 0.0885 0.937 0.1301

Fig. 2. Vertical cross-section of the body already analysed in
TM2006. The sliding mass is in light grey. The sliding surface
has a circular profile centred in C. The soil parametérg’ andp
are constant, with respective values of 6 kP&, 86d 25 kNn 3,
The sliding body is partially submerged by a 5 m deep water layer.

p, with p;=p(x;—Ax/2), i € [1, N], and in an analo-
gous way the vectdfg with bg ;=g (x; — Ax/2), the vec-
tor by with bx ;=Bx(x; — Ax/2) and the vectob, with

ba i=Ba(x;i —Ax/2). Similar discretization holds for the co-
efficienta g, but, as will be seen later, instead of a vector it is
more adequate to introduce a diagoNat N matrix Ag with (11)
(Ag)ii=ap(x; — Ax/2). Analogously we define the matri- . o . o

cesAy andAa. We may also introducel(+1)-component Analogously, on discretizing the verhcgl equilibrium Eq. (2)_
vectors for forces and torque, but, since these are null at th@"d accounting for the corresponding boundary condi-
boundaries in force of conditions (5)—(7), we are allowed o (6), we obtain:

to restrict the attention to the internal nodes of the domain.ry + AypAx = bxAx
Hence, the unknown functiof (x) is transformed into the

(N-1)-component vectoe with e;=E(x;), i € [1, N — 1], In the torque equilibrium Eg. (3), the terf has to be eval-
and the same applies to vectdfsanda, i.e. X;=X (x;) and uated at the interval mid-points, which is obtained by taking
ai=A(x;). In terms of these discretized quantities, it is easythe average value between two adjacent nodes. Bearing this
to transform the first of the differential Eq. (8), namely the in mind and the boundary condition (7), the following1

one concerning the equilibrium of the slices along the hori-relations can be obtained:

zontal axis, into the following system of algebraic equations:

the system (10) can be written in the following vectorial

e+ AgpAx = bgAx

(12)

Fa+ AapAx — XAx = baAx (13)
e1+ prop 1Ax = Bp1Ax where use is made of the rectangulax (N-1) matrix 2 de-
..... fined as:
e — ej—1+ piag iAx = Bg i Ax (10) 10000
11000
en—1—eN—2+ PN_10g N—1AX = BE N—1AX 1lo1100
—en—1+ pNaE NAX = Bp NAX =z
00011
After introducing the rectangulay x (N-1) matrix I' given 00001
by: Putting together the Egs. (11), (12) and (13), one obtains a
1. 000 O set of QV linear algebraic equations linking as many 253
1100 0 unknowns, namelyw unknown values fop and a total of
0-110 0 3(N-1) unknown values foe, X, anda. The consequence is
= that there areV-3 unknowns more than equations and that,
00 0-11 as expected, the discretised version of the problem reflects
0 00 O0-1 the underdetermination of the original formulation.

www.nat-hazards-earth-syst-sci.net/8/671/2008/

Nat. Hazards Earth Syst. Sci., 8% 2008



676 S. Tinti and A. Manucci: Slope stability analysis through the MLD method
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Fig. 3. Graphs of the inter-slice forces and X, of the torqueA and of the bottom pressur corresponding to the best solutions of the
various methods applied for Case 1.

4.2 Non uniqueness of the solution Xy 1= i e fi (k1)

In order to reduce the degree of freedom of the algebraic sys- k=

tem (11)—(13), some assumptions must be made on the unhjs can be seen as a mapping of el unknownsX into
knowns. In this paper we will consider restricting hypothe- the ; unknowns, i.e. the coefficients of the truncated ex-
ses on the form of the inter-slice forcésand X, and of  pansion. Formally, after defining;= fi (x;), the above re-
the torqueA. Consistently with classical limit-equilibrium  |ations can be synthesised as:

methods, our first assumption regards the vertical fodtes

Let us expand the functioX (x) over a basis of analytical uL

known functionsfy (x) (for example, a Fourier series expan- Xi= Z Jikve (15)
sion), that is truncated to the firgt terms. Correspondingly, k=1

the discretised version of such expansion yields the followingThe position (14), or (15) equivalently, increases the num-

set of N-1 equations: ber of equations to8+(N—-1)=4N—-1 and the number of un-
m knowns to 4V—3+m, which means that the balance between
X1= Z v fi (x1) unknowns and equations is obtained wher2. The inter-
k=1 pretation is simple: either we consider a series of only two
m terms, or we consider a higher order expansion, but only
Xo= Z e fi(x2) (14) two arbitrary terms of the expansion can be considered un-
= known coefficients, while the others have to be treated as

Nat. Hazards Earth Syst. Sci., 8, 6883 2008 www.nhat-hazards-earth-syst-sci.net/8/671/2008/
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§ 29 29.2 294 29.6 29.8 30 30.2
304 ! \KQ/erZ Longitude East (°)
20{ B0 0 o .- 5 a0 -0
Bathymetry (m)
Layer 3
10 H . . . . .
Fig. 5. The Izmit Gulf with its basins in the Maramara sea.

Degirmendere is located in the south-eastern coast close to the end
of the Karaniirsel Basin.

X 100

Meters X

0 X 10 20 30 40 50 60 70 80 920
i

Fig. 4. Vertical cross-section of the three-layer sliding mass. Theyhere the unknown vectoes X, a andv are on the L.h.s. of

soil parameters are given in the text and in caption of Table 2. the system, while vectors on the r.h.s. are known quantities.
It is then easy to build a block matrix together with the cor-

free parameters. We can therefore make this distinction exte€sponding block vectors in the form:

plicit by writing:

, I 0 O0A: O ; beAx
m- 0 r 0 Ax O bx Ax

Xi=favi+ fizva + Y gikdk (16) 0 —QAx T Ap O Z = | baax (19)
=1 0 I 0 0 -F pvx Faq

where the two unknowns ang andwv,, and the known pa- o _ . _
rameters and related functions are denoted respectiyely Which is a system of -1 linear equations in ¥-1 un-
andg;, for sake of clarity. knowns and very suitable for inversion.

After introducing the 2-component vectoand the f:-2)-

component vectay defined by: 4.4 Hypotheses on the unknown functions and related con-

siderations
v1 an . . .
v= (vz) q= The fo_rm (29) of thg problem is quite flexible and allows one
qm-2 to easily explore different assumptions on the shape of the
as well as the §-1)x2 matrix F1 and the NV-1)x (m-2) F» inter-slice forceX(x_). Ina first instancg we assume a trun-
defined as: cated three-term sine Fourier expansion foi(i.e. we as-
sumem=3), which is the same expression we already used in
fir fi2 TM2006, where however we computed the solution through
Fi=| f21  f22 a less general ad-hoc method. More specifically we assume
In-11 fN-1.2 that
g11 812 - &Lm-2 3 _ X — Xbe
Fo=| 821 822 - 8g2m-2 X(x) = ;)‘k sin [k” )Kxbgeg]

8N-1,1 §N-1,2 --- EN—-1,m—2

and make the choice thaj is a known parameter, while
and A3 are unknown quantities. Notice that the above po-
X —Fiv=Fxq (17)  sition ensures thak (x) vanishes at the end points of the
domain as required by the condition (6). According to our
notation we can write:

Equations (16) can be written in this simple vectorial form:

4.3 Solving the problem

The_final algebraic system of equations can be assemble_d byi 1=sin (n’_) i=12 ... N—1
putting together the above Egs. (11)—(13) and (17), which™~
leads to: ;
Te+ AgpAx = bgAx f,-,lzsin<2nﬁ> i=12..--,N-1
I'X + AxpAx = bxAx (18) .
)r(afFT\jF;AFXZ; HASKS DRSS fi2=sin <3n’—> i=12... ,N-1

www.nat-hazards-earth-syst-sci.net/8/671/2008/ Nat. Hazards Earth Syst. Sci., 838 2D08



678 S. Tinti and A. Manucci: Slope stability analysis through the MLD method

Table 2. Results for stratified soils obtained with all the methods used here. The three-layer stratification is shown in Fig. 4. The ho-
mogeneous case is case 1 of Table/=@5 kN/m?, ¢'=6 kPa,¢’'=25"). Case 4 is heterogeneous in densijyy22 KN/n, Y5=28 KN/n,

¥5=30 kN/nP). Case 5 is heterogeneous in cohesidF6 kPA, c,=100 kPac3=200 kPA). Case 6 is heterogeneous as regards the friction
angles $1=10°, ¢5,=15, ¢3=35). Cells with the MLD values have bold characters.

Method Case 1l Case 4 Case 5 Case 6
etho F P F P F b F P

Spencer 1.468 0.1052 1.523 0.1034 2.651 0.1164 2.012 0.1136
T&M 1.409 0.0772 1.463 0.0760 2.588 0.0863 2.066 0.0771

T&M-new 1409 0.0776 1.463 0.0763 2.585 0.0864 2.060 0.0776
T&M-Xsin  1.409 0.0776 1.463 0.0763 2.585 0.0864 2.060 0.0776
T&M-Xcos 1.405 0.0762 1.460 0.0754 2585 0.0858 2.070 0.0764
T&M-Ecos 1.415 0.0836 1.471 0.0801 2.590 0.0895 2.100 0.0881
T&M-Acos 1.412 0.0812 1.478 0.0803 2.600 0.0898 2.090 0.0823

and identifyr; with g=¢; andi, andi3 with v1 andv; re- still make recourse to the three-term sine Fourier expansion,
spectively. Inversion of the system (19) provides a solutionbut we take:

for any given choice of the known parameters, that &re )

andg; in this case. In agreement with the adopted princi- gi.1=sin <37TL) i=12...-,N—1

ple of MLD, the solving procedure consists (i) in solving the

system (19) by letting these parameters to vary within reason-

able intervaldr andl, that are obviously spanned at discrete

steps, (ii) in computing the lithostatic deviation correspond- , i .

ing to each solution, i.e. in computiny(F, ¢1) within the i,1=sIn (’T—> i=12...-,N-1
2-D spacelr x 1, which can be called the searching space,

and eventually (iii) in finding the point in such a space where i

§ takes its minimum value. The corresponding valugdg  fi,2=Ssin <27T—> i=12.--,N-1

the searched value of the safety factor. It is worth stressing

here once morv_a_th_e difference between the traditional m_eth-,—he corresponding solutions will be denoted by T&M-Xsin
ods of I|m|t-eql_J|I|br|um theory_an_d ours. Th_ose methods find i, this paper. A further explored hypothesis is to consider a
only one solution of the equilibrium equations and take theyitferent set of base functionsand f. Instead of sine func-
corresponding value of" as the safety factor of the slope. ons, we can take cosine functions multiplied by the local

But we know that a solution can be found for any point of hormalised weight to ensure fulfilment of the boundary con-
the searching space. Therefore, since the intéivahay be gjtion (6), i.e. we assume:

shown to include the discriminant value of unity, the conse-
quence is that one has no means to judge on the stability ofa — w(x;) .
slope, unless one invokes an additional criterion, such as th&"1~ 7, cosxy i=L2...N-1 (20)
MLD principle. q

In Table 1 we show the results of our computations appliedan
to the body sketched in Fig. 2, which is the same body the wx) | 5 5
reader can find in TM2006. These results, that will be des-/i-1= e L2 N-1 (21)
ignated by T&M-new, are compared with the one that were

obtained in TM2006 and that are here denoted by TM. As w(x;) i .

expected, they practically coincide and the slight diﬁ‘erencesfisZ:m cosz (ﬁ) i=12..--,N-1 (22)
are uniquely due to small numerical rounding errors associ-

ated with the fact that in TM2006 we solve the same basiCHere . is defined as the maxw(x;)} i = 1,2, .-, N-1.

set of equations by using an ad-hoc semi-analytical methodthe related solutions will be designated by T&M-Xcos.
while here we invert system (19) by a standard numerical Al the above hypotheses involve assumptions on the inter-
real-matrix inversion routine. slice vertical forcesX (x) and require the inversion of the
Since, given a series expansion, one can choose freely thgystem of Eq. (19). Our formulation enables one to make hy-
two terms of the series whose coefficients are unknown, wepotheses concerning also the other unknown functipng
explore the effect of a different choice. In the following we andA(x). And it is very easy to see that the corresponding
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system of equations can be written in the following “block” T ] 7
forms: 100m | / m
r 0 O0Ae O M beAx ™ /
0 I 0 Ax O _ | bxAx K Q
0 —QAx I Aa 0 Z | baAx (23) ,b‘ / S
| 0 0 0 —-F pvx Foq / / ) y4 p 4
. ) p
r 0 0 A O X beAx e
0 r 0 Ax O a |- bx Ax (24)
0 —QAx T Aa 0 pAx | baAx 7 o
o o o1 -RJ|P F2q ) ;LQ —

We have made experiments of both types. In particular,
we have selected the three-term expansion given by the co-
sine functions (20)—(22) and inverted the system (23) When"j;
the position regarded the horizontal forcEgx), while we '

have inverted the system (24) when the position regarded the Profile A Profile B
torque A(x). The results will be referred as T&M-Ecos in
the first case and as T&M-Acos in the second. 40° 43.254' N

The formulation of the limit-equilibrium problem pro- 29°47.000'E !

posed here leads to the inversion of the “block” system of

equations in one of the three forms (19), (23) and (24). WeFig. 6. Degirmendere coastline before the slide (solid line) and

stress that this is a relevant improvement on previous methfootprint of the sliding mass body (dashed line) as reconstructed

ods: not only on' the _traditional methods, _bUI also'on theby Rathje et al. (2004) and by Cetin at al. (2004). Profiles A and B
TM2006 formulation, since the present version combines the,orrespond to the vertical-cross sections analysed in the paper.

advantage of being computationally fast (as most of the other
methods) with a great flexibility, since it allows one to ex-

plore quite easily different assumptions on the shape of the,o soyution for the problem, which can be rephrased by stat-
unknown functions. ing that they restrict their searching space to only one point,

It is relevant also to point out that each hypothesis leads,ich js a not advisable practice to find a point of minimum.
to a different solution for the safety factdt, since this is

obtained by minimising the lithostatic deviatiérwithin the

searching space. In the general case ohaerm expansion

like the position (16) the searching space will have dimen-5 Applications to idealized cases

sionm-1, since the involved parameters are th vectorg

and F. The fact that we have a multiplicity of results f6r ~ The cases taken into account for the application of our
is not crucial since we may resolve such an apparent ambimethod are initially the same as those that were analysed in
guity by making recourse once more to the MLD principle. TM2006, since this enables us to make proper comparisons.
Indeed we will select as the best solution forthe one that A slope of about 3Dwith an arc-like sliding surface is rep-

is associated with lowest value & This means that there resented in Fig. 2. The body is homogeneous and may be
is no way to judge the goodness of a hypothesis of type (16partially submerged under a layer of water with a possible
a priori. Each of these can be seen as a way to explore piezometric level that is depicted by a dashed piecewise line.
portion of the searching space, and a posteriori we can conthis profile is studied for three different situations: case 1
sider that the best assumption is the one providing the min€orresponds to a dry body with null pore pressure and with
imum §. Of course, according to this point of view, there no external forces applied; case 2 is the case of a body un-
is no certainty that the minimum value férwe have found der the load of a thin water layer applied on the toe side;
by exploring a given set of hypotheses (one or more), is theén case 3 a seismic load is consideréd{.368,y=42.8).
absolute minimum, i.e. there is no certainty that other un-The stability is studied by means of the classical method by
explored hypotheses could provide smaller lithostatic devi-Spencer and by means of the TM method (Tinti and Manucci,
ations and correspondingly different solutions for the safety2006), and, in addition, by using the five more different ap-
factor. This issue is inherent to many minimisation problemsproaches illustrated in the previous section, i.e. by inverting
and is in principle unavoidable for the limit-equilibrium the- the “block” system. The discretization of the computational
ory. This observation casts a better light to the limitations ofdomain[xbeg xend] is made by using a grid @f +1=51 nodes

the traditional limit-equilibrium methods that compute only in all the following examples.
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Table 3. Stability results for the Dgirmendere slide body in the Table 4. Stability results for the Dgirmendere slide body under
pre-earthquake conditions. Profiles A and B are shown in Figs. 6conditions presumably acting during the earthquaked (45, ¢ =-

and 7. All methods give equivalent results: the body is extremely22°) and the consequent tsunami produced by the earthquake itself
stable on both profiles. Cells with bold characters contain the MLD (sea level lowers by 1 m). All methods, including the traditional

values. Spencer’'s method, produce similar values for the factor of safety,
and the conclusion is that both profiles are unstable. Cells with bold
Profile A Profile B characters contain the MLD values.
Method = A F 5
Spencer 5963 0.0680 7.127 0.0525 Method me"?A - me"; B
T&M 5.966 0.0672 7.115 0.0523
T&M-new  5.961 0.0672 7.127 0.0523 Spencer 0.908 0.1728 0.989 0.1714
T&M-Xsin 5961 0.0672 7.127 0.0523 T&M 0.906 0.1621 0.989 0.1630
T&M-Xcos 5.961 0.0672 7.127 0.0523 T&M-new  0.906 0.1623 0.988 0.1625
T&M-Ecos 5.956 0.0976 7.125 0.1938 T&M-Xsin  0.906 0.1623 0.988 0.1625
T&M-Acos 5.939 0.3049 7.126 0.7750 T&M-Xcos 0.906 0.1623 0.988 0.1626

T&M-Ecos 0.906 0.1631 0.988 0.1696
T&M-Acos 0.904 0.1861 0.987 0.2592

All results are summarized in Table 1 where the values of
the minimum lithostatic deviations and of the corresponding
safety factors are given. Technically, the complete solutionand torque functions, but it is quite similar as far as the bot-
includes the further specification of the computed unknowntom pressureP is concerned. Worth of notice is that for all
functions E(x), X(x), A(x) and P(x). For case 1, these the cosine methods (T&M-Xcos, T&M-Ecos, T&M-Acos)
curves are provided in Fig. 3. The body results to be stathere is an irregularity of the curves in correspondence with
ble in case 1 and even more stable in case 2, where the waténe thinning of the sliding mass at the horizontal distance
load stabilizes the slope, while it is unstable in case 3 due t@f about 75m (see Fig. 2). This is due to the fact that, in
the seismic load. this expansion, cosines are corrected by a normalised weight
As it may be seen from Table 1, the classical Spencer'gproportional to the slide thickness), that changes abruptly
method gives results quite different from all our approachesaround that value of the abscissa. We remark further that the
both in terms of MLD (remarkably higher) and in termsfof  last two methods (T&M-Ecos, T&M-Acos) give curves very
(higher). Judged through the MLD principle, this method re- different from all the others, with the largest discrepancies
sults to be the worst. On the other hand, the results of all ouobservable for the torque profiles.
methods are quite close to one another. As already remarked,
the methods T&M and T&M-new compute the solution ex- 5.1  Stratification
actly to the same problem, but via different numerical algo-
rithms. Hence, the differences in the corresponding resultShe stratification of the soil is incorporated in the formula-
are only due to numerical rounding errors. It is further in- tion of the limit-equilibrium problem presented here through
teresting to note that the methods T&M-new and T&M-Xsin the coefficients(x) and8(x) of the formulas (9) and hence
assume the same three-term expansiorkfor), though us-  entered in the final discrete system of Eqgs. (19), (23) and (24)
ing different choices for known and unknown coefficients. through the matrice&g, Ax, andAa and the vectorbg, bx,
The results are almost identical, which is explained by theandba. Therefore, system (19), (23) and (24) is perfectly
fact that these methods explore the same searching space $aitable to handle also the stability of layered slopes, which
find the MLD, though by means of a different searching grid. is often of great interest. We give some examples of appli-
Further, the worst results for our methods are the ones deeation by using the stratified body portrayed in Fig. 4. We
riving from the weighted cosine expansions of the function examine three cases of stratification we call cases 4, 5 and 6.
E andA (T&M-Ecos, T&M-Acos). Finally, we observe that Taking the previous case 1 (homogeneous dry body with no
the minimum values of are obtained by the method T&M- external forces applied) as reference, for each case we vary
Xcos for all three cases, which is suggestive that the weighte@nly one parameter: in case 4 the density is taken to increase
cosine expansion of is the best possible assumption among with depth, in case 5 the cohesion increases with depth and
the ones examined here. in case 6 the angle of friction. They all are compared with
Looking at the graphs of Fig. 3, itis clear that the three si-the homogeneous case. In case 4 the sliding mass is lighter
nusoidal expansion methods (T&M, T&M-new, T&M-Xsin) than for the reference homogeneous case, and consequently
are almost equivalent. The weighted cosine expansion fothe slope is slightly more stable. In case 5, the cohesion is
the forceX, which is our best solution, departs slightly from remarkably higher, and hence the mass is by far more stable.
the others in the up-hill part of the slide regards the forceln case 6 the larger angles of friction are again an element
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Fig. 7. Vertical cross sections of the profiles A and B of Fig. 6. The soil paramete#’c’p are constant over the sliding mass, with
respective values of 0 kPa, “2and 20 kNnT3. The sliding surfaces are assumed to be circular (dashed line) and the sliding bodies are
partly submerged.

of stabilisation for the body. All results are given in Table 2. also Wrigth and Rathje, 2003). It was further speculated that
Very interestingly we confirm here that Spencer’'s method dethe lowering of the sea level associated with the earthquake
parts from all the others, that all the sine expansion cases givessunami could have acted as an additional factor of destabili-
similar results, and that the best results are obtained throughation for the slide.

the weighted cosine expansion of the vertical inter-slice force The two cross-sections A and B have been analysed with

X (T&M-Xcos). the new computational approach described before and the re-
sults are synthesised in Tables 3 and 4. Two cases are con-
5.2 Areal case sidered for both profiles: first, the stability of the slope is

evaluated in the pre-earthquake condition with no seismic
In this section we apply the block-matrix method to a shaking and no effect of the seismic-origin tsunami (Table 3);
real case, that is the case of a slide that was released isecondly, the stability is analysed under the condition of an
Degirmendere, a coastal village in the Izmit Gulf, Turkey, active seismic loadkE0.45, ¢ =—22) and of an ongoing
as the result of a disastroud=7.4 earthquake, that af- tsunamicausing a destabilising sea level decrease of 1 m (Ta-
fected the north-western part of Turkey on 17 August 1999.ble 4). The material properties of the body were measured by
Degirmendere is located in the south coast of the Izmit Gulf Cetin et al. (2004) during a post-earthquake survey. Compar-
between the Karainrsel Basin and the Eastern Basin (seeing the results of all methods, one sees that the methods pro-
Fig. 5). The slide involved a segment of coast about 300 mviding the highest values of the lithostatic deviation are con-
long and 75 m wide, and carried into the sea a multi-storeyfirmed to be Spencer, T&M-Ecos and T&M-Acos. However,
hotel and two adjacent buildings. It produced a local tsunamione also finds that the computed values of the factor of safety
In Fig. 6 the coastline before and after the slide is sketchedare quite similar, though the values of thdepart somewhat
together with two profiles A and B intersecting the coast, from one another. This means that for this particular appli-
along which we take the vertical cross-sections depicted ircation using one method or another is nearly equivalent for
Fig. 7 (Tinti et al., 2006). The earthquake produced a tsunampractical purposes.
that was observed in the entire Izmit bay. The tsunami was
not catastrophic, with measured run-up heights comprised
in the range of 1-3m. The stability analysis that was con-6 Conclusions
ducted by Tinti et al. (2006) showed that the earthquake shak-
ing, with peak ground acceleration estimated to be aboufThe study of stability of a slope is an issue of great rele-
0.45g, was the cause of the slide, and in turn of the assovance. The limit-equilibrium method posed the basis to make
ciated tsunami that added its effect locally (run-up heightsstability analysis, but the classical methods show drawbacks
larger than 10 m) to the one produced by the earthquake (semostly related with the non-uniqueness of the solution. The
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