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Abstract. Long-period (LP) events observed on volcanoes
provide important information for volcano monitoring and
for studying the physical processes in magmatic and hy-
drothermal systems. Of all the methods used to analyse this
kind of seismicity, autoregressive (AR) modelling is particu-
larly valuable, as it produces precise estimations of the fre-
quencies and quality factors of the spectral peaks that are
generated by resonance effects at seismic sources and, via
deconvolution of the observed record, it allows the excitation
function of the resonator to be determined. However, with
AR modelling methods it is difficult to determine the order
of the AR filter that will yield the best model of the signal.
This note presents an algorithm to overcome this problem,
together with some examples of applications. The approach
described uses the kurtosis (fourth order cumulant) of the de-
convolved signal to provide an objective criterion for select-
ing the filter order. This approach allows the partial automa-
tion of the AR analysis and thus provides interesting possi-
bilities for improving volcano monitoring methods.

1 Introduction

The seismic signals recorded on volcanoes contain invalu-
able information about the state and evolution of magmatic
and hydrothermal systems and about the complex physical
processes involved in volcanic activity. Observations and
analyses of volcano seismic activity provide many basic tools
for volcano monitoring and eruption prediction (Chouet,
1996a). This seismic activity is characterized by a large vari-
ety of source processes and seismic signal features (Mc Nutt,
1996). Volcano-seismic events are usually classified into the
following main types:
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– Volcano-tectonic (VT) events display clear P- and S-
wave arrivals and relatively high frequency spectral
contents. They are related to brittle fractures in the
solid volcanic structure caused by magmatic intrusion
or gravity instabilities.

– Long-period (LP) events, also named “low-frequency”
events, are characterized by more or less emergent first
arrivals, a lack of clear S waves, and spectral energies
that are usually concentrated at frequencies of less than
5 Hz and, in many cases, in sharp spectral peaks.

– Volcanic tremors consist of long-duration oscillations,
whose energies are also concentrated at low frequencies
and, in many cases, in sharp spectral peaks.

The sources of LP events and volcanic tremors are related
to the presence of fluids (magma, water, vapour, gas or multi-
phase mixtures) that fill cavities in the structure (magmatic
conduit or chamber, dikes, sills, etc.). When a cavity is ex-
cited by pressure perturbations, the elastic waves generated
are trapped because of the impedance contrast between the
solid rock and the fluid. These waves are probably interface
waves that are partially reflected at the ends of the finite-size
cavity. Thus, the sharp spectral peaks of LP events and vol-
canic tremors may be caused by two different phenomena.
In some cases they may result from a repetitive process that
produces regularly spaced spectral peaks by the Dirac comb
effect (Schlindwein et al., 1995; Jousset et al., 2003; Stur-
ton and Neuberg, 2006; Lesage et al., 2006). In other cases
they may be associated with the normal modes of a resonator
(Chouet, 1996b; Kumagai and Chouet, 2000). In addition to
these three types of event, seismic signals can also be pro-
duced by other processes, such as rockfalls, collapses, pyro-
clastic flows, explosions and deep mass transfers (Mc Nutt,
1986; Chouet et al., 1999; Ohminato et al., 1998).

In order to study the features of these kinds of seismic
event, volcano-seismologists have developed or adapted a set
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of specific methods that includes spectral and autoregressive
analysis, amplitude measurement, dynamical and stochastic
approaches and noise analysis (Seidl et al., 1990; Nakano
et al., 1998; Lesage et al., 2002; Endo and Murray, 1991;
Carniel et al., 2003; Jaquet and Carniel, 2001; Vila et al.,
2006; Brenguier et al., 2008). Autoregressive (AR) mod-
elling is one of the most interesting methods for extracting
information from LP event records (Nakano et al., 1998,
Lesage et al., 2002). It is particularly well-suited to ana-
lyzing signals generated by resonance processes, as it mod-
els them as the output of an AR filter, also called an Infinite
Impulse Response (IIR) filter, which can be considered a res-
onator. This type of method (Levinson, Yule-Walker, Max-
imum Entropy, Sompi) produces precise estimations of the
frequencies of the main spectral peaks, together with their
corresponding quality factors. The latter parameter can give
important information about the type of fluid filling the res-
onating cavity (Kumagai and Chouet, 2000). Moreover, tem-
poral changes in the frequencies and quality factors of spec-
tral peaks may reflect physical modifications in a magmatic
or hydrothermal system (Kumagai et al., 2002). The detec-
tion of these variations may be a useful tool for volcano mon-
itoring. Once AR modelling has been carried out for a given
LP event, the record can be filtered using the corresponding
inverse filter, in order to produce an estimation of the ex-
citation function of the resonator; a function that is related
to the physical processes occurring at the source (Nakano
et al., 1998; Lesage et al., 2002). This function can be in-
verted to obtain detailed information about the mechanism
involved (Nakano et al., 2003). A major difficulty in apply-
ing AR methods is to select the order of the filter. The num-
ber of poles must be at least twice the number of spectral
peaks, plus some poles to take into account the noise; how-
ever, there are no reliable general criteria for determining the
optimal order (Adnet, 1990). One way of overcoming this
difficulty is to calculate all the filters in a reasonable range
of order, and then plot the poles of all the filters in the com-
plex frequency plane (Kumagai and Chouet, 2000). Points
representing real and stable poles merge in dense clusters,
while scattered points in the plane are due to noise and non-
resonating phenomena. In this procedure, the main clusters
of points are manually selected and the mean values of their
frequencies and quality factors are calculated, together with
their standard deviations. However, in order to increase the
use of this promising method and include it in volcano mon-
itoring systems, algorithms for the easy estimation of AR fil-
ter order must be developed and the method must be at least
partially automated.

The present paper describes a method for determining the
optimal order of the AR filter based on High Order Statistics
(Donoho, 1981; Lacoume et al., 1997). The resulting algo-
rithm can be used to automatically calculate the frequencies
and quality factors of the resonating modes and to decon-
volve the LP records from their oscillating parts, in order to
facilitate estimation of the excitation function. A brief review

of the principle of AR analysis is followed by a description
of the algorithm, the application of which is illustrated with
reference to two volcanic LP events.

2 Method

When using AR modelling, the choice of the number of poles
and zeros of the filter is crucial. Although estimates of the
frequency of the dominant spectral peaks are not highly de-
pendent on this choice, the corresponding quality factors can
be strongly modified by varying the filter order. Hence, it
is necessary to pay special attention to the determination of
these orders by carrying out numerical tests, or by using the
averaging procedure described in the introduction. As a re-
sult, AR modelling is time-consuming and difficult to apply
to large sets of events. The present article proposes an al-
gorithm for selecting the optimal order, thereby allowing the
partial automation of the analysis.

If the sharp spectral peaks of LP events are interpreted as
being due to the resonance of a fluid-filled cavity, the cor-
responding oscillations can be represented as decaying com-
plex exponential functions. These functions are solutions of
second-order linear differential equations. Due to the equiv-
alence between linear differential equations and linear dif-
ference equations, autoregressive methods are well suited to
the analysis of this kind of signal. In this approach, a signal
is considered as the output of an AR or an ARMA (autore-
gressive moving-average) filter excited by Dirac impulses or
white noise.

The output of an ARMA filter can be written as:

xn =

p∑
k=1

akxn−k −

q∑
k=1

bkyn−k (1)

wherexn and yn are samples of the outputx and inputy
time series, respectively,p andq are the orders of the AR
and MA parts of the filter, respectively, andak andbk are the
coefficients of the AR and MA parts of the filter, respectively.
If Eq. (1) is multiplied by the complex conjugatedx∗

n−m and
the expectation is taken, then the result is:

E(xnx
∗
n−m)=

p∑
k=1

akE(xn−kx
∗
n−m)−

q∑
k=1

bkE(yn−kx
∗
n−m). (2)

Thus:

rxx[m] =

p∑
k=1

akrxx[m − k] −

q∑
k=1

bkryx[m − k] (3)

whererxx[m] is themth sample of the autocorrelation ofx

and ryx[m] is the mth sample of the cross-correlation be-
tweeny andx. By varyingm, Eq. 3 can be written as a matrix
expression. When the orderq of the MA filter is zero, coef-
ficientsak are easily calculated by solving the matrix form
of Eq. 3 with the Levinson algorithm. Whenq is not null,
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Fig. 1. Analysis of the LP event on Kelut volcano.(a) Velocity seismogram (arbitrary unit); the vertical lines indicate the section analyzed;
(b) Signal obtained after deconvolution (arbitrary unit);(c) Normalized spectra of the original signal (continuous line) and of the deconvolved
signal (dashed line);(d) Representation in the complex frequency plane (f, g) of the poles of all the tentative filters, estimated by varying
the numbers of poles and zeros. Some iso-value lines ofQ are also plotted.

the coefficientsbk of the MA filter cannot be calculated from
Eq. 3. In this case, the matrix relation yields the modified
Yule-Walker equation, which does not take into account the
first q samples of the autocorrelation of the signal. This re-
duces the influence of noise, as the auto-correlation of white
noise is a Dirac impulse located at zero lag. The coefficients
of the AR filter are obtained by solving the modified Yule-

Walker equation (Marple, 1987) and the coefficients of the
MA filter can be estimated using the Durbin method (Kay,
1981; Mars et al., 2004). Alternatively, in the Sompi method,
the AR coefficients are obtained by an eigen decomposition
of the autocorrelation matrix (Fukao and Suda, 1989; Hori et
al., 1989; Kumazawa et al., 1990).
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Fig. 2. Kurtosis of the deconvolved signal of the LP event on Kelut
volcano as a function of the numbers of poles and zeros. The white
star indicates the position of the maximum value.

The filters obtained from the autocorrelation are minimum
phase. Their coefficients are directly related to the character-
istics of the resonator. Physical resonators can be considered
minimum phase AR filters that are linear, stationary, causal
and causally invertible. AR modelling is thus suitable for an-
alyzing signals generated by physical resonators. Once the
filter coefficients have been estimated, the z-transform of the
corresponding impulse response can be written:

H(z)=

q∑
k=0

bkz
k

1+

p∑
k=1

akzk

=K

q∏
k=1

(z−zk)

p∏
k=1

(z−pk)

=
B(z)

A(z)
(4)

wherez is a complex number, usually written asz=e−2iπf 1t ,
where1t is the sampling interval, andf is the frequency.
The termszk andpk are, respectively, the zeroes and poles
of the ARMA filter H(z). B(z) and 1/A(z) represent the
MA and AR parts ofH(z), respectively. The ordersp andq

are also the numbers of poles and zeros of the filter, respec-
tively. Every sharp spectral peak is associated with a pair of
conjugated poles. The corresponding frequencyf and qual-
ity factor Q can be calculated from the values of the poles
or from the associated coefficientsak (Lesage et al., 2002).
Finally, each pair of poles can be represented by a point in
the complex frequency plane (f, g), whereg is the growth
rate, defined asg= −

f
2Q

. When the signal is filtered by the
inverse of the AR filter, its oscillatory content is eliminated
and the corresponding excitation function – the input of the
filter – can be obtained (Lesage et al., 2002). This operation
corresponds to signal deconvolution by the inverse AR filter.

The method proposed to estimate the optimal orders of
the filter is based on the use of High Order Statistics (HOS),
specifically the fourth order cumulant, known as “kurtosis”.
The kurtosis of a random variablex is defined as:

κx(4)=Kur(x)=
E[x4

]

E[x2]2
− 3 (5)

whereE[x] is the expectation ofx. An important property
of a Gaussian signal is that it is completely described by or-
der 2 statistics. Thus all its cumulants of order greater than
2, including the kurtosis, are null. The signal produced by
filtering a white noise is closer to a Gaussian signal than the
non-filtered signal. Therefore, the kurtosis of the output of
a filter is always smaller than that of the input (Lacoume et
al., 1997). Conversely, the kurtosis of a signal deconvolved
by the corresponding inverse AR filter is greater than that
of the original signal. Hence, the algorithm is based on the
maximization of the kurtosis of the deconvolved signal. The
procedure is as follows:

1. Select the signal window to analyze (generally the coda
of the event) and multiply it by a Ripley taper in order
to reduce the edge effect that perturbs the kurtosis cal-
culation.

2. Define the minimum and maximum values of the orders
p andq of the filters to evaluate.

3. Calculate all the filters with their numbers of poles and
zeros varying within the previously defined ranges.

4. Successively deconvolve the signal by all the corre-
sponding inverse filters and calculate the kurtosis of the
resulting signals.

5. Look for the maximal value of the kurtosis obtained and
select the corresponding filter.

3 Examples

Application of this algorithm is illustrated with respect to
two LP events. The first event was recorded on Kelut vol-
cano, Java, Indonesia, on 27 December 1989, a few weeks
before the 10 February 1990 eruption (Lesage and Surono,
1995). The short-period station was 500 m from the crater.
Figure 1a displays the event, which had a duration of about
4 s. Its spectrum (Fig. 1c) indicates an almost monochro-
matic signal, which is confirmed by the AR modelling. In
this analysis, the numbers of polesp and of zerosq vary in
the ranges [4–16] and [0–6], respectively. All the poles of all
the filters obtained by varyingp andq are shown in the com-
plex frequency plane (f, g) in Fig. 1d. Scattered points are
due to noise, and the cluster of points at frequencies slightly
lower than 6 Hz and located between iso-value linesQ=15
andQ=30 is associated with the dominant spectral peak. Fig-
ure 2 shows the kurtosis of all the deconvolved signals as a
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Fig. 3. Same as Fig. 1 for the LP event on Misti volcano.

function of p andq. A region of high value (>50) of kur-
tosis is observed for 7≤p≤10 and 2≤q≤4, with a maximum
of 60 for p=10 andq=3. The kurtosis of the non-filtered
signal is 7.3. Thus, the AR filter that yields the best mod-
elling and deconvolution of this record is of relatively low
order. This is consistent with the monochromatic nature of
the spectrum. The main pole is characterized by a frequency
f =5.85 Hz and a quality factorQ=20.7, which is in agree-
ment with the results of the “manual” estimation carried out
by Lesage et al. (2002). Figure 1b and c show the decon-

volved signal and its spectrum. The oscillatory feature of the
original signal has disappeared, as has the dominant peak at
5.8 Hz. The resulting signal is probably closely related to
the excitation function of the LP event. The duration of this
signal (∼1 s) is much shorter than the duration of the event.
Assuming that the resonator at the source can be represented
by a fluid-filled crack (Chouet, 1986, 1992), the low value of
the quality factor suggests that the fluid may be bubbly water
(Kumagai and Chouet, 2000), which is consistent with the
presence of a large hydrothermal system, including a lake, in
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Fig. 4. Same as Fig. 2 for the LP event on Misti volcano.

the crater (Lesage and Surono, 1995; Vandemeulebrouck et
al., 2000).

The second example is an LP event recorded on
7 April 1998 by a short-period station at the summit of Misti
volcano, Peru (Ḿetaxian, personal communication). In this
case, the analysis window is from 10 to 70 s (Fig. 3a), and
the numbers of poles and zeros vary in the ranges [4–20] and
[0–6], respectively. The spectrum is dominated by a peak at
4.4 Hz but other sharp peaks are present. The plot of kurtosis
as a function of the number of polesp and zerosq (Fig. 4) is
more complex than in the Kelut LP event. However, a clear
maximum with a kurtosis of 88 is observed forp=18 and
q=4, while the kurtosis of the original signal is 8.2. The de-
convolved signal obtained using the corresponding filter has
a very short duration, compared with the observed seismo-
gram (Fig. 3b). It includes a relatively low frequency oscilla-
tion at its onset, which corresponds to the wide spectral peak
at 1–2 Hz (Fig. 3c). The large number of poles of the op-
timal filter determined using the kurtosis is consistent with
the number of clusters of poles in the complex frequency
plane (Fig. 3d). For the main spectral peak, the estimated fre-
quency value isf =4.39 Hz and the estimated quality factor
is Q=276, which is in agreement with the results of Lesage
et al. (2002). Again, assuming that the source of the event
is a fluid-filled crack, the high value ofQ indicates that the
fluid may be a dusty gas (Kumagai and Chouet, 2000).

4 Discussion and conclusion

AR modelling is particularly appropriate for studying LP
events and volcanic tremors when the source can be repre-
sented by an oscillator. In such cases it is a very useful
method for extracting information about the physical state

of the volcanic system and the processes occurring within
it. However, LP activity often occurs in swarms that in-
clude large numbers of events. The systematic analysis of
large sets of events requires efficient algorithms that allow
partial automation of the analysis procedure. The kurtosis-
based method described in the present article may meet this
need. Furthermore, kurtosis provides an objective way of se-
lecting the filter order. Although this method generally pro-
duces reasonable solutions, some difficulties remain. Firstly,
the result may depend on the choice of the analysis window,
which must include the decaying part of the seismogram and
should exclude the part that contains the excitation function.
Secondly, when the parametersp andq vary, the kurtosis of
the deconvolved signal may show several maxima. It is thus
useful to plot this function in order to check for possible sec-
ondary maxima and to verify that the defined range of vari-
ation ofp andq is adequate. A semi-automatic and interac-
tive program is useful both for selecting the analysis window
and for checking the kurtosis. For this purpose, the method
has been incorporated into the “Seismovolcanalysis” soft-
ware package – an open-source MATLAB program that in-
cludes several user-friendly interfaces for analysing volcanic
seismic signals. This software is freely available upon re-
quest to the author (go to:http://www.lgit.univ-savoie.fr/
EquipeVolcan/Seismovolcanalysis.pdf).

The algorithm used here is derived from the Yule-Walker
method in which the firstq samples (whereq is the num-
ber of zeros) of the autocorrelation of the signal are dis-
carded. This is useful to reduce the effect of the noise, as
the white noise autocorrelation is a centred Dirac impulse
(Marple, 1987). However, the coefficients of the MA part
of the ARMA filter are not explicitly evaluated. Some pro-
cedures, such as the Durbin method, are designed to esti-
mate the MA coefficients and can be used to deconvolve the
MA part of the signal (Richard and Lesage, 2001). How-
ever, they are not easy to use, as numerical instabilities may
appear in this process and because the computation time is
much longer. Furthermore, the physical significance of the
MA part of the filter is generally not clear.

When the filter includes only one pair of poles, as in the
case of monochromatic signals, the deconvolved signal is
proportional to the excitation function, although its ampli-
tude is not recovered. When the filter includes several poles,
the proportionality is conserved only if the individual os-
cillators associated with each pole are placed in series. In
the physically more common case of oscillators connected in
parallel, the sum of the transfer functions is equivalent to an
ARMA filter and it is more difficult to recover the excitation
function (Lesage et al., 2002). Nevertheless, the deconvo-
lution of the AR part alone gives an estimation of the dura-
tion and spectral content of the excitation, and autoregressive
analysis and deconvolution provide an interesting insight into
volcanic processes.
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