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Abstract. A project established at the National Institute of
Water and Atmospheric Research (NIWA) in New Zealand
is aimed at developing a prototype of a real-time land-
slide forecasting system. The objective is to predict tem-
poral changes in landslide probability for shallow, rainfall-
triggered landslides, based on quantitative weather forecasts
from numerical weather prediction models. Global weather
forecasts from the United Kingdom Met Office (MO) Nu-
merical Weather Prediction model (NWP) are coupled with
a regional data assimilating NWP model (New Zealand Lim-
ited Area Model, NZLAM) to forecast atmospheric variables
such as precipitation and temperature up to 48 h ahead for
all of New Zealand. The weather forecasts are fed into a hy-
drologic model to predict development of soil moisture and
groundwater levels. The forecasted catchment-scale patterns
in soil moisture and soil saturation are then downscaled us-
ing topographic indices to predict soil moisture status at the
local scale, and an infinite slope stability model is applied
to determine the triggering soil water threshold at a local
scale. The model uses uncertainty of soil parameters to pro-
duce probabilistic forecasts of spatio-temporal landslide oc-
currence 48 h ahead. The system was evaluated for a damag-
ing landslide event in New Zealand. Comparison with land-
slide densities estimated from satellite imagery resulted in hit
rates of 70–90%.

1 Introduction

Shallow landslides triggered by intense rainstorms occur in
most mountainous landscapes and can cause significant dam-
age to human lives and properties (Glade, 1998). New
Zealand, located at the interface between the Pacific and Aus-
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tralian crustal plates, is characterized by a dynamic active
landscape – mountainous and hilly regions with steep slopes
cover large areas of the country; uplifted and dissected sedi-
mentary and volcanic rocks with low strength properties are
widespread. New Zealand’s location in the South-western
Pacific means that sub-tropical cyclones hit the land mass of
New Zealand on a regular basis creating heavy rainfall over
large areas (McConchie, 1992). Settlement history has seen
major shifts in land use and land coverage, beginning with
Maori settlement around one thousand years ago and contin-
uing with European settlement. Large land areas have been
cleared of indigenous forest and converted into crop land
and pasture, exposing weak parent material to the actions
of weather and climate (McConchie, 1992). These factors
contribute to the pronounced landslide susceptibility of New
Zealand landscapes (Glade, 1998; Fig. 1) causing significant
damages to economy and society (McConchie, 1992).

One of the possible ways to reduce the damaging im-
pact of those hazards to life, infrastructure, and livestock
is to increase preparedness through landslide warning sys-
tems (Wilson, 2005). Approaches in landslide warning have
been based either on detailed site-specific investigations and
movement monitoring programmes (Malet et al., 2005) or
on statistical threshold models (Guzetti et al., 2007; Wil-
son, 2005). A few recent studies showed the potentials of
remote sensing data (Tralli et al., 2005) and of hydrological
and slope stability models to be applied within a landslide
forecasting framework (Malet et al., 2005; Qui et al., 2007).
Here we aim to develop regional landslide forecasting pro-
cedures based on process-based models. To simulate and to
predict rainfall-triggered landslides, three fundamental pro-
cesses have to be modelled (Crozier, 1999):

1. The spatial pattern and temporal intensity variation of
rainfall effects where soil can be saturated – hence ac-
curate prediction of rainfall is necessary.
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Fig. 1. Extensive shallow slope failures in New Zealand’s North Is-
land soft rock country triggered from intense rainfall events (image
from Hancox and Wright, 2005). Here shown landslide damage to
pasture areas during the February 2004 storm event in the south-
west of the North Island (Hancox and Wright, 2005; Dymond et
al., 2006). Inset shows the extend of landslide damage as derived
from satellite imagery (Dymond et al., 2006) and the Whangaheu
catchment boundary used as a test site for this study.

2. Soil-hydrologic processes control which parts of the
landscape are most affected by soil moisture increases
and hence, most prone to landsliding. Therefore, under-
standing and simulation of soil hydrology is required.
Uncertainties in models of soil hydrology are also re-
lated to the accuracy of soil and land cover properties.

3. Soil wetness changes geotechnical soil properties –
stresses and strengths are altered and – once stresses get
larger than strength – the soil becomes unstable. Ap-
propriate soil mechanical formulations in slope stability
models are used to model these processes.

This paper reports initial results from a project at the Na-
tional Institute of Water and Atmospheric Research (NIWA)
in New Zealand aiming to develop a prototype of a real-
time landslide forecasting system. The objective is to pre-
dict temporal changes in landslide probability for shallow,
rainfall-triggered landslides, based on atmospheric forecasts
as they are delivered by a numerical weather prediction
(NWP) model. The atmospheric forecasts are fed through
a model chain of hydrologic models and slope stability mod-
els to provide probabilistic forecasts of spatio-temporal land-
slide occurrence for vulnerable regions in New Zealand. This
paper presents the technical implementation of that coupled
forecasting system and some initial results for a regional
rainfall event that triggered a large amount of landslides in
the lower North Island of New Zealand (Fig. 1).

Fig. 2. Model domain of the NZLAM numerical weather prediction
model for New Zealand and example of forecast output: low cloud
(1000–800 hPa) and mean sea-level pressure.

2 Landslide forecasting technology

The aim of the study was to develop and to evaluate a
landslide forecasting system based on physical principles,
using output from an NWP model. The system consists
of several components. A regional NWP model for New
Zealand (NZLAM) predicts status of the atmosphere over
New Zealand up to 48 h ahead. A model of catchment
hydrology simulates soil moisture and groundwater levels
over the forecast period of the weather forecasts. As the
fundamental spatial resolution of the catchment model is
quite large (i.e. small sub-catchments), and soil moisture
varies significantly with topographic position (Beven and
Kirkby, 1979), we used topographic indices to disaggregate
sub-catchment average soil moisture conditions to local soil
moisture conditions (Beven et al., 1995). A slope stability
model calculates effects of soil moisture changes on stresses
and strengths within a hillslope. Considering the uncertain-
ties in the model parameters and forcings, uncertainty es-
timates of stresses and strength are used to estimate fail-
ure probabilities. The individual system components are de-
scribed in the following sections.

2.1 Weather forecast components

Global weather forecasts are produced by the UK Met Office
Unified ModelTM (Davies et al., 2005) providing the lateral
boundary conditions for the regional, high resolution New
Zealand Limited Area Model (NZLAM) to forecast atmo-
spheric variables such as precipitation and temperature out
to 48 h ahead for New Zealand (Fig. 2). Both NZLAM and
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Table 1. Parameters required by the hydrological and stability model components and their data sources. Some of the soil parameters were
readily available from the databases, others had to be derived using lookup tables (lookup) or pedo-transfer-functions (PTF).

Parameter Data source

Catchment and soil hydrology

Subcatchment boundaries River network

(subcatchment resolution)

Surface albedo
Land Cover database
(lookup tables relating to land cover typeEvaporation enhancement

(increased evaporation from interception)
Canopy capacity
Wetness index 30 m DEM
Saturated hydraulic conductivity Soils database (lookup)
Depth of soil Soils database
Wilting point Soils database
Field capacity Soils database
Saturated water content Soils database

Slope Stability (30 m resolution)

Soil dry unit weight Soils database (lookup)
Slope angle 30 m DEM
Soil cohesion Soils database (PTF)
Soil friction angle Soils database (PTF)
Shear plane depth Assumed to be equivalent to

soil depth for shallow landslides

the global model utilise the same dynamical cores. NZLAM
runs in a 6 h “warm-cycling mode”, assimilating local obser-
vations, lateral boundary conditions, and initial conditions
from previous runs within the model domain. NZLAM is
a grid point model (324×324×38), where the distance be-
tween the grid points is 12 km. NZLAM’s model structure
is an implementation of the Unified Model, including three
dimensional variational assimilation (Lorenc et al., 2000) of
observations from land, ship, and upper air stations, drifting
buoys, aircraft, and satellites. The background fields, 6 hour
forecasts, are derived from the previous forecast cycle. This
ensures that the model forecast is as close to reality as pos-
sible. NZLAM runs twice daily at NIWA Wellington and
produces hourly model output.

2.2 Hydrological model

We use the spatially-distributed, physically-based model
TopNet (Bandaragoda et al., 2004) to simulate basin hydrol-
ogy based on weather forecast forcings. Each river basin is
represented by a number of sub-catchments (each sub-basin
is approximately 5 km×5 km in area), and a stream network
that connects each sub-catchment to the basin outlet. TopNet
has two fundamental components: a water balance model
that simulates the dominant hydrological processes in each
sub-catchment (snow accumulation and melt, canopy inter-
ception and throughfall, the sub-catchment water balance),
and a routing model that simulates the flow of water through
the river network (including reservoirs and lakes). The sub-
basin water balance model has its origins in the classical Top-

model formulation (Beven and Kirkby 1979), which is a sim-
plified model of topography-controlled saturated areas and
baseflow from the saturated zone. TopNet extends the origi-
nal Topmodel formulation to model snow accumulation and
melt, and canopy interception and throughfall (Bandaragoda
et al., 2004). Parameterization of the sub-basin water bal-
ance model requires data on topography (elevations, distri-
butions of wetness index and distance to stream), soils (soil
depth, porosity, conductivity), and landcover (canopy capac-
ity, overland flow velocity) (see Bandaragoda et al., 2004 for
a detailed description). These data are derived by the catch-
ment data delivery system as described below.

For accurate modelling and forecasting of soil moisture it
is critical to initialize hydrologic states (including soil mois-
ture) as close as possible to reality. Our model is initialized
once (at the “beginning of time”) with arbitrary values of sub
catchment model states (snow water equivalent, canopy stor-
age, soil moisture, depth to the water table, and river level).
The model is then run with a 48-h forecast from the NWP,
and all model states are saved at hour 12 of the forecast. The
next forecast is then initialized using the saved model states
from hour 12 of the previous forecast. After several weeks
to months of cycling (i.e., several wetting and drying cycles),
the states in TopNet have “warmed up” to correspond to the
current real-world conditions. Alternatively, we can run Top-
Net with climate observations up to the start of the forecast
period to estimate basin states, and then run TopNet with the
NZLAM output for the 48-h forecast period.
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(c) Change in potential affected area over forecast period

(b) Maximum failure probability 
over forecast period

(a) Animation of landslide probability for 
forecast period in high spatial resolution

Forecast output

Forecast products

Landslide probability for each timestep (hourly) in the 
forecast period and on high resolution grid (30 m)Forecast model

Fig. 3. Landslide forecast for the Whangaheu catchment for
the storm event from 15–17 February 2004 forecast products.
(a) Spatio-temporal distribution of forecasted landslide probabil-
ity as animation. (b) Spatial distribution of maximum landslide
probability in forecast period as map.(c) Temporal development
of landslide-affected area (log-scale is used to emphasize the com-
paratively large increase of areas with higher landslide probability).

Simulations from TopNet are made using frequency dis-
tributions that describe subcatchment variability for the soil
zone. Field observations show that areas of soil saturation
tend to occur in convergent hollow areas. It has also been
reported that landslides most commonly originate in areas of
topographic convergence due to higher soil moisture (Mont-
gomery and Dietrich, 1994). Therefore the following tech-
nique was adopted to downscale simulated soil saturation
onto a finer spatial resolution using topographic variability.
Beven et al. (1995) showed that local relative soil saturation
m can be estimated as

m = m + 1/(f z)[ln(a/ tanθ) − λ] (1)

Wheref is a parameter describing transmissivity change
with soil depth andz is local soil depth.λ is the spatial av-
erage of the topographic parameter ln (a/ tanθ ) for the area
(the catchment) over which the average soil saturationm was

estimated. This equation expresses the deviation between
catchment average soil saturationm and local soil saturation
m at any point in terms of the deviation of the local topo-
graphic index from its mean. We calculated the topographic
parameter ln (a/ tanθ ) and fine-scale soil moisture using a
30m digital elevation model.

2.3 Slope stability modelling

The geotechnical calculations applied in this study are based
on the infinite slope form of the Mohr-Coulomb failure law
in which the downslope component of the soil just at failure –
the shear stressτ , is equal to the strength of resistance caused
by cohesionc (which can consist of soil cohesion and root
strengthc=cs+cr), and by frictional resistance due to the
effective normal stressσ on the failure plane.

τ = c + (σ − u) tanφ (2)

The frictional resistance term is determined by the angle of
internal frictionφ, the normal stress on the shear planeσ , and
u – the pore pressure opposing the normal load. Downslope
stressτ=w sinθ and normal stressσ=w cosθ are determined
by the soil weightw and shear geometry, i.e. slope angleθ .
Soil weight at the shear surface is determined by soil depthz

and the depth to the saturated zone (z−h).

w = γb(z − h) + γsh (3)

γ b, γ s andγ w are unit weights of moist soil, saturated soil
and water, respectively. Pore pressureu=γ wh cosθ is deter-
mined by slope angle and the weight of water above the shear
surface ie. the height of the water table in the soil columnh.
This leads to the full equation for the infinite slope model at
failure.

(γb(z − h) + γsh) sinθ = cr + cs+

(γb(z − h) + γsh − γwh) cosθ tanφ (4)

Root cohesion varies widely in space (land cover and land
use pattern) and time (growth periods) and is hard to quan-
titatively estimate by a sampling programme. In this study
we neglected the effects of root cohesion and assumed the
cohesive term of the slope is caused by soil particle cohe-
sion only. The estimate of stability is therefore conservative
– i.e. a slope considered as unstable may be stable in reality
if significant amounts of root cohesion add to shear strength.
However, the vulnerable pasture landscapes in New Zealand
are often characterized by a lack of vegetation. Moreover,
roots need to be anchored in the bedrock to have significant
effect on slope stability. To find the triggering soil saturation
h/z which leads to failure Eq. (1) can be rearranged to

h

z
=

γb

γw

(
1−

sinθ−c
/
zγb

cosθ tanφ

)(
γw

γw+γb − γs−
(γb−γs ) sinθ

cosθ tanφ

)
(5)
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Fig. 4. Cut-out of observed landslide occurrence and predicted fail-
ure probability. Black polygons indicate satellite derived landslides.
Coloured background is predicted failure probability.

Assuming that the complete soil column fails,m (Eq. 1) can
be set toh/z, and the soil saturations derived from the hy-
drological model (Eq. 1) and from the slope stability model
(Eq. 5) determine if the soil is unstable.

2.4 Model parameterisation

A critical part of the landslide forecasting system is to be able
to parameterize the hydrology and slope stability model com-
ponents for any catchment in New Zealand. We used nation-
ally consistent databases for that purpose. Spatial informa-
tion about the catchments of New Zealand’s rivers has been
processed in an earlier project to produce the New Zealand
River Environment Classification (REC) (Snelder and Biggs,
2002). The REC includes a network of approx. 600 000
river reaches and sub-basins for New Zealand, including their
reach and surface catchment geometries and topologies. To-
pographic reach and catchment properties have been derived
by overlaying on a 30 m digital elevation model (DEM).
Land cover, soil, and geological properties for all catchments
in New Zealand have been derived by overlays on the New
Zealand land cover database (LCDB) and the New Zealand
Land Resource Inventory (LRI) – which are nationally con-
sistent databases of land information (Newsome et al., 2000;
Wilde et al., 2000). This database constitutes a large array
of environmental variables for each sub-catchment in New
Zealand (Table 1). Ancillary files for the individual model
components (hydrology and slope stability) and for specific
model domains can be extracted to generate all parameters
necessary for running a forecast model for any region in New
Zealand.

2.5 Uncertainty estimation

The uncertainties in landslide modelling – and especially
high resolution landslide forecasting – is very high. The fol-

Fig. 5. Discrimination diagram displaying the frequency distri-
bution of predicted failure probability (Fig. 4) for areas with ob-
served landslides and no observations of landslides (from Dymond
et al., 2006) indicate that observed landslide locations correlate with
higher predicted landslide probabilities (log-scale inset emphasises
the differences at lower frequencies).

lowing three sources of uncertainties can be identified in the
used approach. (i) Uncertainty in the weather forecasts: the
rain (and other modelled atmospheric variables) will never be
exactly distributed in space and time as predicted due to the
inaccuracies in the weather models, parameters, and initial
conditions (Simmons and Hollingworth, 2002). (ii) Uncer-
tainty in the soil hydrology models: even if we could model
the atmosphere accurately, the modelled pattern of soil sat-
uration will never be exactly distributed as predicted due to
uncertainties in the hydrology models, parameters, and ini-
tial conditions (Schaake et al., 2007). (iii) Uncertainty in the
slope stability model: even if we could forecast the soil hy-
drology accurately, hill slopes will never exactly fail where
predicted due to inaccuracies in the geotechnical models and
soil parameters. Uncertainties in weather and hydrology pre-
dictions can be quantified through ensemble modelling by
perturbing initial conditions and model parameters and using
different model structures as ensemble members (Schaake
et al., 2007). This would lead to ensembles of soil satura-
tion scenarios for the forecast range. Uncertainties in the
slope stability model can be quantified by running ensembles
with different model structures and statistical realizations of
geotechnical parameters.

In this study we only considered uncertainties in the pa-
rameters of the soil mechanical model. Some of the used soil
parameters (e.g. soil depth, field capacity) could be extracted
directly from the databases others had to be created as sur-
rogates from lookup tables. Especially cohesion c and angle
of friction φ had to be estimated from soil texture via pe-
dotransfer functions (PTFs) (Blondeau, 1973) and contain a
high degree of uncertainty. The uncertainty of those variables
can be described using probability density functions (PDFs).
As a simple first order approximation we described uncer-
tainty of those variables as uniform probability distributions
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Fig. 6. Observed (satellite-derived, Dymond et al., 2006) and forecasted landslide density for the storm event from 15–17 February 2004,
Whangaheu catchment, New Zealand - both calculated on a km2 basis.

U with lower and upper bounds as

cs = U(cmin, cmax) (6)

tanφ = U(tmin, tmax) (7)

This leads to uncertainty boundsmmin, mmax in the esti-
mated saturation degreeh/z=m as:

mmin =
γb

γw

(
1 −

sinθ − cmin
/
zγb

cosθ · tmin

)
(8)

mmax =
γb

γw

(
1 −

sinθ − cmax
/
zγb

cosθ · tmax

)
(9)

Similarly, the uncertainties in the shear stress and shear
strength can be derived and the failure probability can then
be calculated by the degree the modelled shear stress ex-
ceeds shear strength for each point in the model domain. It
is planned to extend this uncertainty model to other types of
PDFs and to explicitly quantify uncertainties in weather fore-
casts and simulations of soil hydrology (as described above).

2.6 Delivering forecast information

The described model components are part of a larger model
suite for environmental forecasting, developed at NIWA
(EcoConnect, 2008). The landslide forecasting system has
been applied for two catchments in New Zealand. Rele-
vant information is extracted from the output files to produce
graphical model output twice daily (Fig. 3), including maps
of landslide probability for the modelled catchment for each
timestep (i.e., hourly). These maps can be animated to pro-
duce a dynamic visualization of the spatio-temporal pattern
of landslide probability for the whole basin over the fore-
cast period. Alternatively, the maximum failure probability
for each point for the whole forecast period can be displayed
to get a quick overview of the affected areas. As discussed
above, the uncertainties in the modelled system weather –
soil-hydrology – slope stability are very high – therefore dis-
playing the results at high spatial resolutions might not be
appropriate. A third forecast product can be derived from the
temporal development of potential landslide-affected area for
different probability classes - the product allows the forecast
user to define risk and alert levels to understand the potential
magnitude of the forecasted landslide hazard (Fig. 3).
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Contingency table for 1% density 
obs.  
>1% <=1% ∑ 

>1% 671 232 903 
<=1% 76 1124 1200 

pr
ed

. 

∑ 747 1356 2103 
Hit rate 0.90 
False alarm ratio 0.26 
Bias 1.21 
 

Contingency table for 3% density 
obs.  
>3% <=3% ∑ 

>3% 361 181 542 
<=3% 170 1391 1561 

pr
ed

. 

∑ 531 1572 2103 
Hit rate 0.68 
False alarm ratio 0.33 
Bias 1.01 
 

Contingency table for 2% density 
obs.  
>2% <=2% ∑ 

>2% 523 213 736 
<=2% 111 1256 1367 

pr
ed

. 

∑ 634 1469 2103 
Hit rate 0.83 
False alarm ratio 0.29 
Bias 1.16 
 

Fig. 7. Relationship between predicted landslide density and observed landslide density per km2 (Fig. 6), legend indicates number of cases.
Inserted are the contingency tables (numbers in thousands) derived for different thresholds of landslide density.

3 Discussion and conclusions

We presented a probabilistic modelling system for forecast-
ing shallow, rainfall-triggered landslides as they frequently
occur in pastoral areas. The model has yet to be extensively
calibrated and validated – here we provide an initial test us-
ing data from the extreme event in February 2004 (Schmidt
et al., 2005), which caused more than 60 000 landslides in the
lower North Island of New Zealand (Dymond et al., 2006).
The system was run in hindcast mode for that event for the
Whangaheu catchment. Figure 4 illustrates high resolution
probabilistic forecasts of landslides, along with the actual oc-
currence from post-event satellite-based landslide mapping
(Dymond et al., 2006). Qualitatively, the predicted spatial
landslide distribution is comparable with the spatial distri-
bution from satellite imagery (Fig. 4). Comparison of the
high-resolution model output against the locations of land-
slides derived from satellite imagery in a discrimination di-
agram (Fig. 5; Clark and Slater, 2006) showed that areas
of higher predicted landslide probability coincide with ob-
served landslide area. However, the high-resolution model
output also predicts high failure probabilities where no land-
slides occurred (high false alarm ratio) – as can be seen in

Fig. 4, not all the predicted unstable areas fail. Predicting
the exact location of landslides is extremely challenging - a
more tractable problem is predicting the spatial density of
landslides. The binary landslide observations can easily be
aggregated to larger scales to derive landslide densities (af-
fected area per km2). Similarly, the probabilistic forecasts
of landslides can be spatially aggregated to provide deter-
ministic (single-value) forecasts of landslide density. The
linkage between the high resolution probabilistic forecasts
of landslide occurrence and the lower-resolution determin-
istic forecasts of landslide density is as follows: A single
scenario of binary landslide occurrence can be derived from
the probabilistic forecast by assigning an individual grid cell
the value “1” if a random number from a uniform distribu-
tion, U [0, 1], is less than the forecast probability, and oth-
erwise assigning the grid cell the value “0”. The landslide
density from this scenario can be computed in the same way
as the observed density. Since the probabilistic forecasts de-
fine the fraction of time a landslide is expected to occur un-
der the forecast conditions, the average spatial density from
many randomized simulations will match the spatial average
of the forecast probability. The accuracy of the deterministic
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density forecasts then depends on the statistical reliability of
the probabilistic forecasts, that is, the extent to which the
fraction of observed landslides matches the forecast proba-
bility.

Figure 6 illustrates the spatial pattern of landslide densi-
ties derived using a 1 km2 kernel. As expected, the spatial
aggregation improves the correspondence between forecasts
and observations. Figure 7 shows the joint density of pre-
dicted and observed landslide density in a scatterplot. While
the scatter is quite large (42% explained variance), there is
a general relationship between predictions and observations.
Next we categorized the landslide densities and derived con-
tingency measures. We achieved high hit rates (observed
landslide densities match predicted probabilities) of about
70–90%. False alarm ratios (no landslides observed with pre-
dicted landslide probability) are about 30%, indicating the
over prediction observed in Figs. 4 and 6. It has to be kept
in mind, however, that these results are achieved without any
model calibration.

The following improvements and extensions are planned
to enhance the forecasting system. Given the uncertainty in
the individual model components it is important to extend the
current probabilistic approach to include more uncertainties
in the model chain. One of the most important uncertainties
is the spatial accuracy of the rainfall forecasts. All the in-
volved models can be run in ensemble mode by perturbing
the initial conditions and the model parameters. This will
give multiple forecasts and enable us to quantify more uncer-
tainties in the forecasts. Data assimilation is needed to ensure
high-quality forecasts of atmospheric and hydrologic fluxes
and states (Schaake et al., 2007). Currently we are assimi-
lating atmospheric satellite observations and river discharges
from recorders; we are planning to include the assimilation of
soil moisture observations. We also plan to extend the fore-
cast range by seamlessly merging short-range weather fore-
casts to medium-term (week, month) climate forecasts us-
ing statistical and ensemble techniques. The soil mechanical
model and its parameters are based on existing (weak) data
sources for New Zealand. The assumptions of the infinite
slope model or “Planar Slope Model” are based on a model
of a uniform, translational failure of uniform depth and slope
angle. The critical failure condition is achieved only by in-
creasing pore pressure of the soil water (and consequently
decreasing shear strength of the soil) at the shear surface.
This is a simplification of real-world conditions, where fail-
ure occurs in curved slip surfaces and multiple mechanisms
including fluid failure. However, new techniques emerge to
deal with those issues (Qui et al., 2007).

An important question is related to the communication of
model outputs – including high degrees of uncertainties – to
end-users using appropriate forecast products (Fig. 3). The
validation results (above) showed that aggregated landslide
probability on a coarser resolution was more reliable than the
immediate fine-scale forecast results. The inherent uncer-
tainties in weather simulation, hydrological modelling, and

geotechnical models mean that the landslide forecast results
contain high degrees of uncertainties, in particular if verified
on a local scale, hence, the forecast results need to be up-
scaled to regional levels to be useful for applied purposes.
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