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Abstract. In order to investigate the deformations of an area
or an object, geodetic observations are repeated at differ-
ent time epochs and then these observations of each period
are adjusted independently. From the coordinate differences
between the epochs the input parameters of a deformation
model are estimated. The decision about the deformation is
given by appropriate models using the parameter estimation
results from each observation period. So, we have to be sure
that we use accurately taken observations (assessing the qual-
ity of observations) and that we also use an appropriate math-
ematical model for both adjustment of period measurements
and for the deformation modelling (Caspary, 2000). All in-
accuracies of the model, especially systematic and gross er-
rors in the observations, as well as incorrectly evaluated a
priori variances will contaminate the results and lead to ap-
parent deformations. Therefore, it is of prime importance to
employ all known methods which can contribute to the de-
velopment of a realistic model. In Albertella et al. (2005), a
new testing procedure from Bayesian point of view in defor-
mation analysis was developed by taking into consideration
prior information about the displacements in case estimated
displacements are small w.r.t. (with respect to) measurement
precision.

Within our study, we want to introduce additional parame-
ter estimation from the Bayesian point of view for a deforma-
tion monitoring network which is constructed for landslide
monitoring in Macka in the province of Trabzon in north
eastern Turkey. We used LSQ parameter estimation results
to set up prior information for this additional parameter es-
timation procedure. The Bayesian inference allows evaluat-
ing the probability of an event by available prior evidences
and collected observations. Bayes theorem underlines that
the observations modify through the likelihood function the
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prior knowledge of the parameters, thus leading to the poste-
rior density function of the parameters themselves.

1 Introduction

The technological progress during the last decades has also
affected geosciences and the observational methods in all
fields of geosciences have changed gradually. Therefore, to-
day measurements for deformation monitoring are conducted
commonly by satellite based techniques. Consequently, it
becomes possible to make deformation monitoring studies in
adequate accuracy in less time for larger areas. However, the
increasing observational accuracy requires adequate mathe-
matical and statistical models. Measurement errors occur no
matter how measurements are taken by terrestrial and satel-
lite techniques and have to be eliminated from the measure-
ments. Determining measurement errors by effective mea-
surement analysis is as important in deformation monitoring
studies as determining the deformation model itself. In the
last decade, attention has shifted towards Bayesian statistics,
which has advantages in complex problems and better re-
flects the way scientists think about evidence. Recently, the
Bayesian statistics has been used efficiently in the areas of
engineering, social sciences and medicine (Koch 1990; Yal-
cinkaya and Tanir, 2003).

Bayes theorem leads to posterior distribution of unknown
parameters given by the data. All inferential problems con-
cerning the parameters can be solved by means of poste-
rior distributions. Based on these distributions we will es-
timate the unknown parameters, establish confidence regions
for them and test hypotheses concerning the parameters. In
this study, it is aimed to apply Bayes-Updating (BU) and
Gibbs-Sampling (GS) algorithms in a geodetic parameter es-
timation problem. In addition, the task is to inform the user
which algorithm is more useful in the aspect of accuracy and
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methodology. We investigated the sensitivity of these algo-
rithms due to the use of different prior information.

To apply the Bayes-Updating we introduce the prior in-
formation for station coordinates. We started up with non-
informative prior and used different epoch observations in
different order to stepwisely update prior information. In
Gibbs-Sampling algorithm we introduce different starting
points w.r.t. point positioning errors. Usually, measure-
ments at different points of a network are of different qual-
ity concerning their statistical variance. We test the qual-
ity of network points estimated coordinates by comparing
the Bayesian estimates derived from a Bayes-Updating (con-
jugate updating) algorithm or a Gibbs-sampling procedure.
The total variation (L1-distance) of the resulting estimates
serves as measure of discrepancy for reasons of robustness.
The information contained in a network point is evaluated
by taking that point as starting point for Gibbs-sampling.
The distances (L1-measure) between Bayesian updating and
Gibbs-sampling indicate how much imprecision the point
adds to the estimation procedure.

We consider the information contained in different data
sets as well as the influence of one single network point. The
differences of estimation taking data sets in exchanging or-
der (concerning prior data set and actual data set) serves as
method to evaluate the information contained in the data set.

2 Bayesian parameter estimation methods

2.1 Bayes updating

The basic instrument of Bayesian procedures consists of the
updating algorithm via Bayes theorem

π(θ |D) ∝ l(θ, D)π(θ) (1)

whereπ(θ) denotes the prior distribution andπ(θ |D) the
posterior distribution of the model parameter.l(θ, D) de-
notes the likelihood function of the data. For the network
data we use a correlated normal vectory with the mean vec-
tor µ and variance-covariance matrix6. In a conjugate prior
approach the prior knowledge about parameters is assessed
in the same form as the likelihood. In case of correlated
normal observations the corresponding prior is aNormal-
Wishartdistribution (Felsenstein, 1996). The common prior
of µ and the precision matrixP=6−1 is split into a normal
part as a normal distribution with a mean ofm and standard
deviation of(bP)−1

µ/P ∼ N(m, (bP)−1) (2)

with b>0 and Wishart part

P=6−1
∼ Wis(a, 3) (3)

The weightsb, a>0 play the same role as the number of
observations in the likelihood.µ is the prior guess for the

mean and3 a prior guess for the covariance matrix. For the
data of the geometric network it is important to specify the
prior covariance according to the geometric structure (Eu-
clidian distances on surfaces). Once the prior hyper param-
eters are specified the posterior can be achieved through the
updating of the hyper parameters only. The posterior density
is

π(µ, P|D)=
f (D|µ, P)π(µ|P)π(P)

m(D)
(4)

wheref denotes the multivariate Normal distribution with
meanµ and precision matrixP. The marginal density is

m(D) =

∫
f (D|µ, P)π(µ|P)π(P)dµdP (5)

For more details see also Rowe 2002. The hyper parame-
ters are computed out of data vectors as following by

m∗
=

bm + nȳ

b + n
(6)

and

3∗
= 3 +

nb

b + n
(m − y)(m − y)T + R (7)

whereR is the empirical covariance

R =

∑
i

yiy
T
i − nyyT (8)

The Eqs. (6), (7) and (8) are considered as updating algo-
rithm for current epoch of a geodetic network with a priori
data set of the same network from a different epoch withm∗

posterior mean for current data epoch,b number of obser-
vations of different epochs which prior information comes
from, m observations’ prior mean of different epochs which
prior information comes from,n number of observations of
current epoch.3 variance-covariance matrix of observations
of different epoch which prior information comes from,3∗

posterior variance-covariance matrix of observations of cur-
rent epoch. The modelling through a conjugate family of pri-
ors is indeed attractive even in case of little informative prior
information. Prior distributions carrying as little information
as possible can be considered as limits of conjugate priors in
the sense

3 → 0 (9)

andb→0. The conjugate property is not restricted to a sin-
gle distribution. Mixtures of Normal-Wisharts are conjugate
as well allowing more flexibility to the model. For weighting
we choose several values ofb in our calculations to analyze
the sensitivity of the estimates upon the prior distributions
(Robert, 2001). Bayesian estimates of the different parame-
ters of the network are calculated as posterior means leading
to weighted mixtures of the means

m∗

j =
bmj + ny

b + n
(10)
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Fig. 1. Location map of study area (Yalcinkaya and Bayrak, 2003).

as the posterior expectations ofµ. Here j indicates one
Normal-Wishart distribution out of the mixture.aj and
bj are altered according toa∗

=a+n and b∗
=b+n. The

Bayesian estimate of the covariance is

E(6/D) =
1

a + n − k − 1
3∗ (11)

wherek is the dimension (k=14, number of network points
in this study). Since the specification of a completely infor-
mative prior turns out to be practically impossible for the co-
variance structure we choose an approach which can be com-
pared to a modified empirical Bayes setup. First we take one
data set as a learning sample equipped with non-informative
prior. By this first step we achieve a reliable prior guess of6

used as3. Namely, we insert the empirical covariance matrix
of the learning sample as prior covariance matrix. In alternat-
ing these starting sets and comparing the results we analyze
the sensitivity of the model concerning the prior covariance
structure. Note that Bayesian estimates coincide with stan-
dard least-squares estimates in case of non-informative pri-
ors.

2.2 Gibbs-sampling

Since all measurements in the network are highly correlated
the distributions (posterior as well as prior) of the parameters
become high dimensional. Therefore an algorithm is needed
to handle the posterior distributions which incorporate the
special covariance structure of the data. The generic Gibbs
algorithm aims at reproducing the posterior density and as-
sociated estimates in an automatic manner. Gibbs sampling
represents a specific application of general MCMC (Markov
Chain Monte Carlo) processes (Robert and Casella, 2004).

The Gibbs sampling algorithm works as follows. The
distribution of the k dimensional stochastic variable

Fig. 2. 3D-view of the study area.

y=(y1, ...., yk) is simulated by the following transition from
steps to s+1. The basic idea of the algorithm is the sim-
ulation of the full conditional distributions where the com-
ponents of the stochastic vector are replaced in turn. Let
y

[0]
1 , ...., y

[0]
k denote a proper starting value for network point

coordinates andy[s]
1 , ...., y

[s]
k the result of thesth step. The

components ofy[s+1]
1 , ...., y

[s+1]
k are generated according the

conditional distributionsD,

Z1∼D(Z/y
[s]
2 , ...., y

[s]
k ) Z2∼D(Z/Z1, y

[s]
3 , ...., y

[s]
k ) (12)

The iteration for the kth component
reads Zk∼D(Z/Z1, ...Zk−1). The vector
(Z1, ...., Zk)=(y

[s+1]
1 , .....y

[s+1]
k ) serves as realization

in the s + 1th step. The conditional distributions are one
dimensional and therefore the algorithm does not change
in structure if k increases. While working with normal
distributions, a data augmentation leads to conditionally
independent variables. That ensures several convergence
properties of the procedure as well.

In our network we introduced non-informative priors.
These priors are based on the Fisher information and are not
normalized. The conditional distributions can be obtained di-
rectly by the Gibbs sampler if we start the procedure within
a certain region. Standard arguments of convergence of the
Gibbs sampler fail in the case of non-informative priors. A
monitoring of the simulation and the corresponding estimates
is needed and we choose with this problem by using data sets
as training samples. Therefore we reach a state of the proce-
dure where a proper prior is given.

If the Bayesian estimate of the parameter is needed only
instead of the complete posterior distribution a version of
Gibbs sampling is carried out for computing the parameter
estimates. Such algorithms are called EM-algorithm (Expec-
tation Maximization) and are originally introduced to calcu-
late maximum likelihood estimates. The stepwise calcula-
tion of a maximum likelihood estimate involves the cyclic
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Fig. 3. Flowchart for BU method.

exchange of the parameters as in the above calculation com-
bined with a maximization step (Felsenstein, 2001). If the
prior distribution is non-informative maximum likelihood
and Bayes estimation coincide for normally distributed data.
The results of Bayesian estimates reduce to the calculation of
the least square estimates if non-informative priors are used
only.

3 Application

3.1 Information about the study area and individual adjust-
ment results for different periods

Earthquakes and landslides are two most effective natural
hazards in Turkey. The Eastern Black Sea region of Turkey
receives a lot of rainfall and experienced very heavy flooding
(Önalp, 1991; Tarhan, 1991; Ocakoglu et al., 2002). This re-
gion undergoes much more landslides compared to other re-
gions of Turkey. Landslides on this region of Turkey damage
agricultural areas, railways and cause the loss of life. Be-
cause of these reasons, scientists put this region as one of
the most priority areas for their research. We selected Kut-
lugün Village in Macka County in the Province of Trabzon
in Eastern Black Sea Region of Turkey as study area (Fig. 1).
Kutlugün landslides damaged the Trabzon-Macka Highway
and the Water Pipe Line supplying drinking water to Trab-
zon city-centre. Besides, lots of residential estates were af-
fected during slow sliding. In order to prevent possible fu-
ture damages of landslides at Kutlugün village, a geodetic
deformation network was established in the year 2000 for
landslide monitoring within the project of “Determination

of landslides by dynamic models” by researchers from the
Department of Geodesy and Photogrammetry Engineering at
Karadeniz Technical University. In this study, repeated GPS
surveys at certain time periods, belonging to a geodetic de-
formation network in Macka in the province of Trabzon in
north eastern Turkey (Fig. 1) are used.

The network consists of 14 points, with four of them (2,
8, 10, and 13) on solid ground. The other points (1, 3, 4,
5, 6, 7, 9, 11, 12, and 14) were placed into moving mate-
rial (Fig. 2). All of them were built with pillars. Geodetic
deformation measurements were made in November 2000,
February 2001 and May 2001 with Ashtech GPS receivers in
a static mode. This data was evaluated by Geogenius-2000
software. The outputs of this software are baselines(l) be-
tween network points and cofactor matrices of each baseline
(Q) which were used also as input data in the studies of Yal-
cinkaya and Bayrak, 2003, 2005. With these outputs from
the GPS software and approximate coordinates for network
points, we can write our observation equations in the Gauss
Markov Model (GMM) to estimate network point positions
by least-squares estimation. The results from least-squares
estimation are used as input data for Bayes-Updating and
Gibbs-Sampling algorithms in this study.

The GMM is a linear mathematical model consisting of
functional and stochastic relations. It relates observations to
parameters. In matrix notation it takes the following form

E(l) = Ax l = Ax + ε (13)

E(εεT ) = 6 = σ 2
0 Q (14)

wherel is then×1 vector of observations,E(.) is expecta-
tion operator,A is then×3u matrix of known coefficients,ε
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is then×1 vector of errors,x is the 3u×1 vector of unknown
parameters,6 is then×n covariance-covariance matrix,Q
is then×n cofactor matrix of observations withu number
of network points andn number of baselines.σ 2

0 is a priori
variance factor. This theoretical model is rewritten to esti-
mate parameters (network station coordinates) from real data
(baselines between network points) in the following form

l + v = Ax̂ P = Q−1 (15)

where P is the n×n weight matrix of observations;v
is the n×1 vector of residuals. The estimation function
x̂=(AT PA)−1(AT Pl) is used to get the estimated values of
network point coordinates (see Table 1).

mp(i)=

√
m2

x(i)+m2
y(i)+m2

z(i) with (i=1, 2, ..., u) number

point positioning error for network points are calculated
by Qxx=(AT PA)−1 as u×u cofactor matrix of estimated
parameters,Kxx=σ 2Qxxu×u variance-covariance matrix
of the estimated parameters andm(xyz)i=

√
(Kxx)ii with

(i=1, 2, ..., u) mean-square errors for estimated coordinates.
By looking at themp(i) values of points, three different
groups in each period are determined as accurate, more ac-
curate and the most accurate. The starting points are se-
lected from these groups. I.e., point 4 can be assigned to
the first group with the smallestmp value, point 3 to the sec-
ond group, and point 13 to the third group with nearly the
biggestmp value at every period. The grey rows in Table 2
are used to express the points which are selected as starting
points according to theirmp(i) values. The starting points are
selected as 1, 3, 4, and 13 (see Table 2). Different point se-
quences which are constructed according to such a grouping
for network points are used for Gibbs Sampling algorithm
later.

3.2 Comparison between different bayes updating and
gibbs sampling algorithms

The parameter estimation with Gibbs-Sampling is applied
with different starting points and with Bayes updating with
different prior information (Roberts and Rosenthal, 1998).
The results obtained with different information (starting
points and prior information) in two different algorithms are
compared. Coordinate parameters estimated from Gibbs-
Sampling (GS) algorithm and Bayes-Updating (BU) are
called as(XGS, Y GS, ZGS) and(XBU, Y BU, ZBU). Figures 3
and 4 show flowcharts of BU and GS methods respectively.

Parameters of the differences are calculated; one is the dif-
ference between Bayes-Updating and Gibbs-Sampling algo-
rithms (BU-GS), one is between Gibbs-Sampling algorithms
and the other is Bayes-Updating algorithms. These differ-
ences are calculated as

Fig. 4. Flowchart for GS method.

(BU GS)n =

√
(XBU(j)−XGS(i))2

n+(Y BU(j)−Y GS(i))2
n+(ZBU(j)−ZGS(i))2

n

(GS)n =

√
(XGS(i)−XGS(k))2

n+(Y GS(i)−Y GS(k))2
n+(ZGS(i)−ZGS(k))2

n

(BU)n =

√
(XBU(j)−XBU(l))2

n+(Y BU(j)−Y BU(l))2
n+(ZBU(j)−ZBU(l))2

n (16)

Here, i and k indicate the starting points in Gibbs-
Sampling algorithm (e.g., 1, 3, 4, or 13);j and l indicate
prior information (e.g., the first, second or third period) and
n indicates the number of points in the network. The re-
sults are drawn (in Figs. 5 and 6) except for GS. Compar-
isons are made by using different types of prior informa-
tion in Bayes updating and taking different starting points
(4, 3, 13) in Gibbs-Sampling algorithm. For a compari-
son between the different algorithms, the smoothness pa-
rameters(VR) are calculated on values of different algo-
rithms. f (1), f (2), ....., f (n) values are taken as (BU GS)

and (BU ) values and (VR) values for all plots are calculated
from VR=

∑n
i=2 |f (i)−f (i − 1)|.

For the first period, the differences on all points are ap-
proximately the same except of point 1 (see Table 3). Be-
cause the VR values are nearly the same as for all situations,
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Fig. 5. Differences between BU and GS Results.
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Table 1. Adjusted station coordinates for each period.

No X(m) Y (m) Z(m)

November 2000 (1. period)

1 3710656.9536 3083935.0997 4157818.3179
2 3710501.7100 3084005.1000 4157907.9599
3 3710542.0823 3084033.1843 4157788.0178
4 3710709.5387 3084028.6271 4157648.6440
5 3710480.9725 3084117.3939 4157741.7704
6 3710274.8591 3084218.3811 4157799.2949
7 3710479.6401 3084171.0299 4157677.5811
8 3710205.6285 3084212.3196 4157845.5019
9 3710389.3907 3084138.4578 4157788.8566
10 3710292.4179 3084153.5430 4157861.5580
11 3710442.6596 3084257.8606 4157623.1696
12 3710342.5861 3084401.6708 4157575.3478
13 3710193.7381 3084419.1729 4157702.3677
14 3710280.1589 3084340.5894 4157711.3664
1 3710656.8976 3083935.1534 4157818.2912

February 2001 (2. period)

2 3710501.7145 3084005.0948 4157907.9607
3 3710542.0876 3084033.1875 4157788.0150
4 3710709.558 3084028.6265 4157648.6582
5 3710480.9714 3084117.3930 4157741.7718
6 3710274.8622 3084218.3707 4157799.2936
7 3710479.6437 3084171.0287 4157677.5780
8 3710205.6330 3084212.3114 4157845.5022
9 3710389.3879 3084138.4516 4157788.8570
10 3710292.4275 3084153.5456 4157861.5672
11 3710442.6560 3084257.8451 4157623.1631
12 3710342.5935 3084401.6693 4157575.3520
13 3710193.7406 3084419.1657 4157702.3702
14 3710280.1649 3084340.5867 4157711.3736
1 3710656.8154 3083935.2621 4157818.2686

May 2001 (3. period)

2 3710501.7336 3084005.0773 4157907.9688
3 3710542.0759 3084033.2138 4157788.9525
4 3710709.5795 3084028.6021 4157648.6741
5 3710480.9483 3084117.4034 4157741.7636
6 3710274.8795 3084218.3582 4157799.3071
7 3710479.6411 3084171.0348 4157677.5734
8 3710205.6520 3084212.2917 4157845.5143
9 3710389.3739 3084138.4486 4157788.8531
10 3710292.4434 3084153.5157 4157861.5777
11 3710442.6683 3084257.8356 4157623.1695
12 3710342.6079 3084401.6544 4157575.3566
13 3710193.7515 3084419.1573 4157702.3914
14 3710280.1660 3084340.5752 4157711.3833

it can be concluded for the first period that there is no differ-
ence of using different starting points in BU algorithm (see
Figs. 5a, 3b).

In case using the first period as a prior in BU for the second
period, the differences on all points are approximately the
same except for point 1. Figure 5c shows that the differences
between GS with starting point 4 and BU become higher for
all points except point 1. On the other hand, there is nearly
no difference between BU and GS with the starting points

respectively 1, 3 and 13 (see Fig. 5c). In case of using the
third period as a prior in updating for the same period, the
situation becomes different from the previous case. That is,
point 1 gives the biggest value for the difference between GS
with the starting point 4 and BU (see Fig. 5d).

Figure 5e denotes that using of the first period as a prior
in BU for third period discloses more or less the same be-
haviours of the second period (see Fig. 5c) concerning the
differences which depend on starting points.

www.nat-hazards-earth-syst-sci.net/8/335/2008/ Nat. Hazards Earth Syst. Sci., 8, 335–347, 2008
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Table 2. (mp cm) point positioning errors for the all network points calculated from individual adjustment results in each period.

Points 1. period (mp cm) 2. period (mp cm) 3. period (mp cm)

1 0.178 0.205 0.237
2 0.171 0.225 0.266
3 0.183 0.247 0.269
4 0.150 0.175 0.207
5 0.172 0.257 0.269
6 0.160 0.243 0.263
7 0.154 0.208 0.246
8 0.265 0.340 0.383
9 0.182 0.249 0.309
10 0.217 0.344 0.286
11 0.196 0.201 0.251
12 0.273 0.283 0.324
13 0.312 0.277 0.371
14 0.179 0.231 0.273

Table 3. VR values for differences between BU and GS Results (cm).

prior period start point prior period start point prior period start point prior period start point

VR values: BU-GS differences (m) for 1. period

2. period 1 2. period 4 2. period 3 2. period 13
0.07653 0.07636 0.07659 0.07659

3. period 1 3. period 4 3. period 3 3. period 13
0.19574 0.19577 0.19576 0.19576

VR values: BU-GS differences (m) for 2. period

1. period 1 1. period 4 1. period 3 1. period 13
0.0780 0.0511 0.0780 0.0770

3. period 1 3. period 4 3. period 3 3. period 13
0.1761 0.2870 0.1777 0.1775

VR values: BU-GS differences (m) for 3. period

1. period 1 1. period 4 1. period 3 1. period 13
0.3064 0.2646 0.3956 0.3713

2. period 1 2. period 4 2. period 3 2. period 13
0.2862 0.2160 0.3113 0.3066

In case of using second period as a prior in BU for the third
period, the biggest difference can be found also on point 1
with the value nearly 9 cm. With the starting point 4, the
differences on all points become higher except point 1 (see
Fig. 5f).

3.3 Comparison between different gibbs sampling algo-
rithms

As indicated in Sect. 3.1., all network points are divided into
groups according to their point positioning errors (mp) val-
ues and this grouping is used for GS Algorithm, to decide

on which point to be started. For the first period, there is no
difference using different starting points. For the second pe-
riod, there is a big difference between the normal case (take
the points in ascending order respectively 1, 2, 3,..,14) and
the case 4 (using point 4 as starting). On the other hand,
there is slight difference among the normal case and 3 and
13 cases. The same inferences can be made for the third pe-
riod. However, the differences are bigger than the second
period. E.g. the difference of the normal case and the case 4
is nearly 2 cm in the second period. This difference is nearly
5 cm in the third period. As a result, it can be said that from
the most to least effective starting points are respectively 4,

Nat. Hazards Earth Syst. Sci., 8, 335–347, 2008 www.nat-hazards-earth-syst-sci.net/8/335/2008/



E. Tanir et al.: Bayesian methods for deformation monitoring 343

3, 13. However, the degree of effectiveness of point 3 and
point 13 are nearly the same.

3.4 Comparison between different bayes updating algo-
rithms

In Bayes Updating algorithm, it is an important question
which prior information is most informative compared to
others. To answer this question in this study, inference should
be made in different periods with different prior information.
For every algorithm, VR are also calculated. Differences be-
tween these algorithms in the aspects of different prior infor-
mation are following:

By using of non-informative information and the second
period as a prior in the first period, the biggest difference
is determined on point 1 with the value 4 cm. The smallest
difference on point 5 with the value 0.03 cm is determined.
For the same period, by using of non-informative informa-
tion and the third period as a prior, the biggest difference is
determined on point 1 with the value 13 cm. The smallest
difference on point 7 is 0.4 cm. Finally, the biggest differ-
ence is determined on point 1 with using the second period
and the third period as priors, see Fig. 6a.

For the second period by using non-informative informa-
tion and the first period as a prior we get the biggest dif-
ference on point 1 with the value 4.72 cm and the smallest
difference on point 5 with the value 0.14 cm. By using non-
informative information and the third period as a prior, the
biggest difference is determined on point 1 with the value
8.73 cm and the smallest difference on point 7 with the value
0.42 cm. For the same period, the first period and the third
period are used as prior, the biggest difference is determined
on point 1 with the value 13.42 cm and the smallest differ-
ence on point 7 with the value 0.24 cm (see Fig. 6b). Almost
the same procedures are done for the third period to evaluate
Bayes Updating algorithm with different prior information.
When we use non-informative information and the first pe-
riod as a prior, we calculate the biggest difference on point 1
with the value 13.41 cm and the smallest difference on point
7 with the value 0.33 cm. In case of using non-informative
information and the second period as a prior, the biggest dif-
ference is determined on point 1 with the value 8.71 cm. The
smallest difference can be found on point 7 with the value
0.50 cm. For the same period, first period and the second
period were used as priors. This prior information let the
biggest difference be on point 1 with the value 4.74 cm and
the smallest difference on point 5 with the value 0.08 cm (see
Table 4 and Fig. 6c).

3.5 Test of hypotheses for differences between different
settings of methods and deformation between the mea-
surement periods

In this section we compare the results obtained by differ-
ent statistical methods described in previous sections. The
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Fig. 6. Differences between BU algorithms.

main question we discuss is whether the method chosen ma-
jor influence on the outcome or not. The different methods
are examined pairwise on equal estimations of parameters.
Therefore we apply a multivariate test for equal mean vectors
of parameter estimations. Again, we examine this hypothe-
sis testing problem from a Bayesian viewpoint. The prior
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Table 4. VR values for differences between different setting of BU algorithms (cm).

BU differences for 1. period

Prior period Prior period Prior period

non- informative 2. period non- informative 3. period 1. period 3. period
0.0935 0.2103 0.1495

BU differences for 2. period

non- informative 1. period non- informative 3. period 1. period 3. period
0.0902 0.1494 0.2094

BU differences for 3. period

non- informative 1. period non-informative 2. period 1. period 2. period
0.2138 0.1551 0.0855

Table 5. p-values for differences between different settings of BU algorithms.

Period Prior information p-value decision about difference

1. period
2. period non-informative 1.0 NO
3. period non-informative 2e-05 YES
3. period 2. period 0.27224 NO

2. period
1. period non-informative 0.73809 NO
3. period non-informative 0.0 YES
3. period 1. period 0.0 YES

3. period
1. period non-informative 0.00023 YES
2. period non-informative 0.47811 NO
2. period 1. period 1.0 NO

distribution used is a Normal-Whishart distributions intro-
duced as conjugate prior for the network structure in Sect. 1.
The prior information is established in the same way as in
the case of parameter estimation. Starting with vague prior
the data of period 1, period 2 or period 3 are used as learning
samples in turn.

Vague priors might be included in the range of conjugate
priors in the sense that the vague prior is found as a limit of
proper conjugate priors. Using vague priors for the param-
eters, we find that the Bayesian testing statistics approaches
classical testing statistics. The basis of the Bayesian decision
BF gives the Bayes-factor as follows

BF =
m(D|H0)

m(D|H1)
(17)

From a Bayesian context, the Bayes factor represents the
testing statistics, that is the ratio of the marginal likelihoods
on the assumption of the null-hypothesis and alternative hy-
pothesis respectively. The marginals follow Eq. (5), note
that in case of the alternative hypothesis the dimension of
the multivariate Normal distribution differs from the case of

null-hypothesis. Methodological details of Bayesian testing
in a multivariate model are explained in Rowe (2002).

Actually, the Bayes factor shows the results of tests. Any-
way, Tables 5, 6 and 7 showp-values representing the result
as well as for classical tests. Classical p-value, defined from
a point null hypothesis, can be generalized in various ways.
The p-value will be understood as a posterior p-value. That
is the probability, given the data, that a future observation is
more extreme (as measured by some test variable) than the
data. Since we assessed vague priors in most cases our p-
value makes little difference to the classical p-value.

In order to decide whether we have significant defor-
mation or not between the measurement periods (e.g., be-
tween period 1- period 2 or between period 2- period 3),
the p-values are calculated on the assumption of the null-
hypothesis which accept there is no deformation between
measurement period and alternative hypothesis which con-
tradict with the null-hypothesis. The correspondingp-values
for deformation analysis and decision about the deformation
are given in Tables 8 and 9.
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Table 6. p-values for difference between different settings of GS algorithms.

Period starting point p-value decision about difference

1. period

1 3 1.00000 NO
1 4 1.00000 NO
1 13 1.00000 NO
3 13 1.00000 NO
4 3 1.00000 NO
4 13 1.00000 NO

2. period

1 3 1.00000 NO
1 4 0.00002 YES
1 13 1.00000 NO
3 13 1.00000 NO
4 3 0.00015 YES
4 13 0.00015 YES

3. period

1 3 1.00000 NO
1 4 0.00000 YES
1 13 1.00000 NO
3 13 1.00000 NO
4 3 0.00000 YES
4 13 0.00000 YES

Table 7. p-values for difference between different settings of BU and GS algorithms.

Period prior information starting point p-value decision about difference

1.period

2. period 1 0.99999 NO
2. period 3 0.99999 NO
2. period 4 0.99999 NO
2. period 13 0.99999 NO
3.period 1 0.00000 YES
3. period 3 0.00000 YES
3. period 4 0.00000 YES
3. period 13 0.00000 YES

2.period

1. period 1 0.28182 NO
1. period 3 0.36919 NO
1. period 4 0.00160 YES
1. period 13 0.37704 NO
3. period 1 0.00000 YES
3. period 3 0.00000 YES
3. period 4 0.00000 YES
3. period 13 0.00000 YES

3.period

1. period 1 0.00000 YES
1. period 3 0.00000 YES
1. period 4 0.00000 YES
1. period 13 0.00000 YES
2. period 1 0.01427 YES
2. period 3 0.00048 YES
2. period 4 0.00000 YES
2. period 13 0.01295 YES
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Table 8. p-values calculated with the results from Bayes-Uptading for deformation analysis.

Method measurement periods subject prior information usedp-values decision for deformation
of the deformation in BU for each period

Bayes-Updating (BU)

1. period–2. period non-informative 0.00072 YES
1. period–2. period 3. period 0.99785 NO
2. period–3. period non-informative 0.00000 YES
2. period–3. period 1. period 0.00016 YES

Table 9. p-values calculated with the results from Gibbs-Sampling for deformation analysis.

Method measurement periods subject starting points used inp-values decision for deformation
of the deformation GS for each period

Gibbs-Sampling (GS)

1. period–2. period 13 0.04420 YES
1. period–2. period 1 0.03645 YES
1. period–2. period 3 0.04328 YES
1. period–2. period 4 0.00603 YES
2. period–3. period 13 0.00000 YES
2. period–3. period 1 0.00000 YES
2. period–3. period 3 0.00000 YES
2. period–3. period 4 0.00000 YES

4 Conclusions

In this paper we introduced two estimation procedures
“Bayes-Updating” and “Gibbs-Sampling” based on Bayes
theory for deformation monitoring networks which allows
accounting for prior information about the coordinate param-
eters. Gibbs-Sampling applies the simulation for the condi-
tional distributions of parameter estimation of deformation
network points. In Bayes-Updating algorithm, we can an-
alyze the sensitivity of the model concerning the prior in-
formation coming from different epoch measurements in de-
formation network. In order to justify that the prior infor-
mation is worth to consider, the significance test is applied
on the Bayes-Updating results which varies according to dif-
ferent prior information. Concerning usage of these two al-
gorithms, Gibbs-Sampling algorithm takes more time com-
pared to Bayes-Updating because simulation algorithm of
Gibbs-Sampling depends on the information about the qual-
ity of starting points itself. In this study we use a network
with 14 points, when the user increase the number of net-
work points, Gibbs-Sampling becomes complicated for such
networks.

Comparing the results of the two parameter estimation
procedures we get differences of network point coordinates
on cm level. When we consider all these parameter estima-
tion results as input data for deformation analysis, it should
be pointed out here that the estimation procedure which is
used in individual epochs has also big importance as defor-
mation analysis procedures itself.

The results of significance test for difference between dif-
ferent setting of GS algorithm show that the estimate is sensi-
tive to the choice of starting point, for example starting point
4 leads to difference in the results, see Table 6. The differ-
ences for BU algorithms indicate that third period as a prior
information leads to differences on the results more than the
other periods, see Table 5 for significance test and Table 4
for variances. From the comparison between BU and GS
algorithms, we conclude that third period as a prior informa-
tion in BU algorithm and starting point 4 in GS algorithm
leads significance of difference on the results. It should be
mentioned here third period as a data in BU leads to signif-
icance of difference w.r.t. any prior information, see Table 7
for significance test and Table 3 for variance. The hypothesis
test for deformation out of BU results exhibits significance
of difference between first period-second period and second
period-third period except in case of using third period as a
prior information, see Table 8. Therefore, we can conclude
from this study that the prior information has impact on the
results of BU algorithm. The same hypothesis test out of GS
results indicates also deformation with evident deformation
effect between second period-third period and less significant
testing results byp-values near to the critical value 0.05, see
Table 9. The season which our 2. period (February) and 3.pe-
riod (May) measurements corresponded to is a danger season
with spring rainfall and snow melting in East Black Sea Re-
gion for landslides. The significance deformation which we
got out of our testing for 2. period and 3.period might be a
result of this.
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Önalp, A.: Landslides of East Black Sea Region – Reasons, Analy-
sis and Controls, 1st National Landslides Symposium of Turkey,
Trabzon, Proceedings Paper, 85–95, (in Turkish), 1991.

Robert, C. and Casella, G.: Monte Carlo statistical methods
Springer, New York, 2004.

Robert, C.: The Bayesian Choice, Springer, New York, 2001.
Roberts, G. and Rosenthal, J.: Markov chain Monte Carlo: Some

practical implications of theoretical results, Canadian J. Statist.,
25, 5–32, 1998.

Rowe, D.B.: Multivariate Bayesian Statistics, Chapman and
Hall/CRC, London, 2002.

Tarhan, F.: A look to landslides of East Black Sea Region, 1st Na-
tional Landslides Symposium of Turkey, Trabzon, Proceedings
Paper, 38–63 (in Turkish), 1991.

Yalcinkaya, M. and Bayrak, T.: Dynamic model for monitor-
ing landslides with emphasis on underground water in Trabzon
province, Northeastern Turkey, Journal of Surveying Engineer-
ing, August 2003, 129(3), 115–124. 2003.

Yalcinkaya M., Tanir, E.: A study on using Bayesian statis-
tics in geodetic deformation analysis, Proceedings 11th Interna-
tional FIG Symposium on Deformation Measurements, Santorini
(Thera) Island, Greece, 25–28 May 2003, 2003.

Yalcinkaya, M. and Bayrak, T.: Comparison of static, kinematic and
dynamic geodetic deformation models for Kutlugün landslide in
northeastern Turkey, Natural Hazards, January 2005, 34(1), 91–
110, 2005.

www.nat-hazards-earth-syst-sci.net/8/335/2008/ Nat. Hazards Earth Syst. Sci., 8, 335–347, 2008


