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Abstract. Appropriate precautions in the case of flood occur-
rence often require long lead times (several days) in hydro-
logical forecasting. This in turn implies large uncertainties
that are mainly inherited from the meteorological precipita-
tion forecast. Here we present a case study of the extreme
flood event of August 2005 in the Swiss part of the Rhine
catchment (total area 34 550 km2). This event caused tremen-
dous damage and was associated with precipitation amounts
and flood peaks with return periods beyond 10 to 100 years.
To deal with the underlying intrinsic predictability limita-
tions, a probabilistic forecasting system is tested, which is
based on a hydrological-meteorological ensemble prediction
system. The meteorological component of the system is the
operational limited-area COSMO-LEPS that downscales the
ECMWF ensemble prediction system to a horizontal reso-
lution of 10 km, while the hydrological component is based
on the semi-distributed hydrological model PREVAH with
a spatial resolution of 500 m. We document the setup of the
coupled system and assess its performance for the flood event
under consideration.

We show that the probabilistic meteorological-
hydrological ensemble prediction chain is quite effective and
provides additional guidance for extreme event forecasting,
in comparison to a purely deterministic forecasting system.
For the case studied, it is also shown that most of the
benefits of the probabilistic approach may be realized with a
comparatively small ensemble size of 10 members.

Correspondence to:S. Jaun
(simon.jaun@env.ethz.ch)

1 Introduction

During the period from 19 to 23 August 2005, Switzerland
and neighbouring countries were hit by a heavy precipita-
tion event. Because of a predisposed hydrological situation,
the soils were already saturated and could not absorb the
additional intense rainfall of up to 300 mm within 48 h (cf.
Fig. 1). As a consequence, the water levels in rivers and
lakes rose dramatically, causing flooding in many regions.
In areas with steep terrain, landslides and mudflows occured
and many people had to be evacuated. Several fatalities re-
sulted and the total financial losses reached approximately
3 billion Swiss Francs (MeteoSchweiz, 2006; Bezzola and
Hegg, 2007).

In order to plan appropriate measures to mitigate the ef-
fects of such extreme precipitation events, hydrological fore-
casts with long lead times (>24 h) are needed. For the
horizontal scales considered, such forecasts are only pos-
sible with the use of coupled hydrometeorological models,
driven by quantitative precipitation forecasts (QPF). Long
lead times are accompanied by larger uncertainties, espe-
cially for meteorological forecasts. As it would be impru-
dent to simply ignore these uncertainties (Pappenberger and
Beven, 2006), probabilistic forecasts can be applied. Prob-
abilistic forecasts in terms of ensemble forecasts are estab-
lished for operational meteorological forecasts and are now
more frequently used for hydrological problems (e.g.Pap-
penberger et al., 2005; Roulin and Vannitsem, 2005; Siccardi
et al., 2005; Rousset et al., 2007; Komma et al., 2007; Ver-
bunt et al., 2007).

In general, the output uncertainty of a hydrological model
is affected by several components. The main sources of
uncertainty consist of the initialization uncertainty (i.e. the
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Fig. 1. Estimates of observed precipitation [mm] for 21–22 August
derived from radar and rain gauge data (Figure: C. Frei, published
in MeteoSchweiz(2006)).
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Fig. 2. Catchment overview, showing the defined catchments with
respective identifier (C1, ..., C23) upstream of the Rheinfelden
gauge (cf. Table1).

initial state of the model), the model uncertainty (uncertainty
from parameters and the conceptualization) and the input un-
certainty (uncertainty from the meteorological data used to
drive the model) (Vrugt et al., 2005). In this work, the main
focus will be on the input uncertainty, as forecasted meteo-
rological data is regarded as the most uncertain component
(Todini, 2004).

Meteorological ensemble prediction systems (EPSs) are
operationally available at the global scale from, e.g. the US
National Center for Environmental Predictions (NCEP,Toth
and Kalnay, 1997), the European Centre for Medium Range
Weather Forecasts (ECMWF,Molteni et al., 1996) and the
Meteorological Center of Canada (MSC,Houtekamer et al.,
1996). The spread of the ensemble members represents
mainly the initialization uncertainty of the meteorological
model, which is considered as the main source of uncertainty
for large scale atmospheric patterns in forecasts up to 3–5
days (Buizza, 2003). As these large scale numerical mod-

Table 1. Catchment identifiers with names of the respective rivers
and gauges as well as the size of the catchments.

identifier river gauge size [km2]

C1 Hinterrhein Furstenau 1575
C2 Vorderrhein Ilanz 776
C3 Rhine Domat-Ems 3229
C4 Landquart Felsenbach 616
C5 Ill Gisingen (A) 1281
C6 Rhine Diepoldsau 6119
C7 Rhine Neuhausen 11 887
C8 Thur Andelfingen 1696
C9 Rhine Rekingen 14 718
C10 Aare Ringgenberg 1129
C11 Aare Thun 2490
C12 Aare Hagneck 5128
C13 Aare Brugg-Agerten 8217
C14 Emme Wiler 939
C15 Aare Brugg 11 750
C16 Linth Weesen 1061
C17 Limmat Zurich 2176
C18 Limmat Baden 2396
C19 Reuss Seedorf 832
C20 Reuss Luzern 2251
C21 Reuss Mellingen 3382
C22 Aare Untersiggenthal 17 625
C23 Rhine Rheinfelden 34 550

els are not accurate at modeling local weather, because local
sub-grid scale features and dynamics are not resolved, dy-
namical downscaling methods are applied by use of a limited
area model (e.g. COSMO-LEPS, nested into the ECMWF
ensemble, described in the following section). In terms of
computational time, a dynamical downscaling is expensive
and thus it is not feasible to downscale the full global ensem-
ble for everyday operational applications. Therefore the en-
sembles are normally reduced and only a subset of its mem-
bers is used.

In an earlier study, the effect of this reduction of ensemble
size on spread was investigated for a coupled meteorological-
hydrological ensemble system (Verbunt et al., 2007). Here,
we investigate the reprensentativeness of the reduced ensem-
ble by means of quantitative statistics and discuss problems
associated with its interpretation. This complementary ap-
proach was chosen in order to analyse all the information
contained in the ensemble, as spread alone indicates only the
expected uncertainty of the forecast, and not its actual skill.
This is an important question with regard to the usability of
a probability forecast during an extreme event.

This paper investigates the benefit of using a coupled
meteorological-hydrological ensemble approach for extreme
flood forecasting, using the August 2005 event as a case
study. In addition to selected gauges, the full extent of the
study area is considered, which consists of the upper Rhine
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basin down to the gauge Rheinfelden, encompassing an over-
all area of 34 550 km2. To account for inhomogeneities in
topography, atmospheric processes and runoff regimes, the
domain is further divided into 23 subcatchments (cf. Fig.2),
based on the setup described inVerbunt et al.(2006).

2 Methods

2.1 Deterministic forecasting system

The deterministic hydrological forecasts were driven by the
operational weather forecast model aLMo (recently renamed
to COSMO-7). This model is the MeteoSwiss implemen-
tation of the COSMO model (Consortium for Small-scale
Modeling, Steppeler et al., 2003), using a horizontal grid-
spacing of 0.0625 degrees (7 km) and 45 model levels. Six
meteorological surface variables (temperature, precipitation,
humidity, wind, sunshine duration derived from cloud cover,
global radiation) are downscaled to 500 m grid-spacing (bi-
linear interpolation, temperature adjusted according to ele-
vation by adopting a constant lapse rate of 0.65◦C/100 m), to
meet the grid size requirements of the hydrological model.

The semi-distributed hydrological model PREVAH (Vivi-
roli et al., 2007) is then applied with hourly time steps, re-
sulting in a deterministic 72 h hydrological forecast (sub-
sequently referred to as HALMO). PREVAH (Preciptation
Runoff EVApotranspiration Hydrotope) uses hydrologic re-
sponse units (HRUs,Flügel, 1997) and the runoff genera-
tion module is based on the conception of the HBV-model
(Bergstr̈om and Forsman, 1973; Lindström et al., 1997),
adapted to a spatially distributed application. Further infor-
mation on the model physics, structure, interpolation meth-
ods and parameterisations can be found inGurtz et al.(1999),
Gurtz et al.(2003) andZappa(2002). The initial conditions
of the hydrological model are obtained from a continuous
reference simulation driven by meteorological observations
(HREF).

2.2 Ensemble prediction system

The meteorological ensembles originate from the operational
global atmospheric EPS of ECMWF with 51 members. The
global atmospheric model is run with a horizontal resolution
of T255 (equivalent to about 80×80 km2) using 40 vertical
model levels. The generation of the ensemble is based on
singular vectors to create optimally perturbed initial states
(Buizza and Palmer, 1995). This information is downscaled
by the limited-area EPS COSMO-LEPS (Marsigli et al.,
2005; Montani et al., 2003). Due to computational con-
straints, the operational COSMO-LEPS refines a subsample
of 10 representative ensemble members, selected by a clus-
ter analysis (Molteni et al., 2001). Prior to the clustering
analysis, the preceding EPS simulation from the previous
day is combined with the actual forecast. Hence the clus-
tering is applied to a recombined ensemble consisting of 102

members. This procedure, using ’old’ forecast information,
generally results in a widening of spread of the reduced en-
semble. The clustering identifies similar circulation patterns
based on the analysis of wind, geopotential and humidity on
three pressure levels (500 hPa, 700 hPa, 850 hPa) for two lead
times (96 h, 120 h).

From the resulting 10 clusters, the respective represen-
tative cluster members (RM) are selected and dynamically
downscaled over a domain covering central and southern Eu-
rope. These ensemble members are run on a rotated spherical
grid with a horizontal grid-spacing of 0.09◦

×0.09◦, equiv-
alent to about 10×10 km2, and 32 model levels (LEPS10).
They are run up to 132 h with a three-hourly output interval.

The resulting high-resolution meteorological ensemble
forces a hydrological ensemble prediction system (HEPS10).
The treatment of the meteorological variables is analogous
to the treatment of the aLMo variables. The cluster sizes
can optionally be used to weight the RMs of HEPS10
(HEPS10w). No additional perturbations were realised at the
level of the hydrological model, e.g. for consideration of ini-
tialization uncertainties.

For the period of the case study considered and in distinc-
tion to the operational COSMO-LEPS, the full 51-member
EPS was downscaled by using the LEPS methodology, nest-
ing the COSMO model on each EPS member. The resulting
full ensemble (HEPS51) will be used to assess the potential
loss in forecast skill associated with the reduction of the en-
semble size through cluster techniques.

2.3 Set-up of simulations

For the quantitative analysis we focus upon a 60-h time win-
dow (cf. Fig.3) covering the event period (21 August 2005,
12:00 UTC – 23 August 2005, 24:00 UTC). Forecast perfor-
mance will be assessed for three different overlapping fore-
cast periods, with forecasts initialized at 00:00 UTC on 19,
20 and 21 August (corresponding to maximum lead times of
120 h, 96 h, 72 h, respectively). For each of these forecast
periods consideration is given to the HALMO, HEPS10 and
HEPS51 forecasts.

The meteorological EPS forecasts are initialized at
12:00 UTC and span 132 h. The first 12 h are not considered
for the hydrological coupling, resulting in a forecast range of
120 h. This cutoff considers the temporal availability of the
operational forecasts.

As the forecast of HALMO only spans 72 h, it was ex-
tended to the 120 h forecast range of HEPS10 and HEPS51
by using persistence for all meteorological variables, except
precipitation, which was set to zero. This is justified for the
HALMO simulation starting on 20 August, as the forecast
range contains most of the precipitation leading to the event,
but bears some simplification for the HALMO simulation
starting on 19 August.
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Fig. 3. Defined event period (red, 21 August 2005 12:00 UTC – 23
August 2005 24:00 UTC) with overlapping simulation ranges. The
bars indicate the forecast periods of the ensembles (HEPS, 120 h)
and the deterministic run (HALMO, 72 h). The dashed lines indi-
cate the extension of the deterministic simulations to 120 h (see text
for details).

2.4 Validation methodology

Event discharges were estimated for the defined event period
of 60 h, in order to assess the representation of runoff vol-
umes by the model chain.

Exceedance probabilities were calculated for the afore-
mentioned 60-h time window (cf. Fig.3) for an event size
corresponding to a 10 year recurrence period. For each of
the 23 catchments considered, the corresponding discharge
thresholds were taken from estimates of the Swiss Federal
Office for the Environment (published on the internet, see
http://www.bafu.admin.ch/hydrologie). This analysis targets
the occurrence of flood peaks, but does not assess the timing
of the forecast.

To perform a probabilistic verification of the time series
within the time window considered, we use the Brier skill
score (BSS) described inWilks (2006). This score is widely
used for the evaluation of probabilistic forecasts in meteoro-
logical sciences (e.g.Nurmi, 2003). In deterministic hydro-
logical applications, the Nash-Sutcliffe coefficient (E,Nash
and Sutcliffe, 1970) is widely used for evaluation purposes
(Legates and McCabe, 1999; Ahrens, 2003). By briefly in-
troducing both scores (BSS and E), it will be demonstrated
that the BSS can be regarded as a probabilistic analogue of
E.

The usual formulation of E is given by

E = 1 −

∑n
t=1 (ot − yt )

2∑n
t=1 (ot − ō)2

= 1 −
MSE

MSEref
. (1)

Hereyt andot denote the forecasted and observed time se-
ries, respectively, and̄o the mean of the observations over the
forecast period. The right-hand side of Eq. (1) shows that E
may be interpreted as the skill score associated with the mean
squared error (MSE). As any skill score, it measures the im-
provement of a forecast relative to a reference forecast (here

taken as a forecast of the correct mean dischargeō). This
is consistent with the interpretation of E as the coefficient of
determination (representing the fraction of variability inot

that is contained inyt ).
The BSS is based on the Brier score (BS) where

BS =
1

n

n∑
t=1

(pyt − pot )
2. (2)

It represents the mean squared error of the probability fore-
cast, wherepyt denotes the forecasted probability for the oc-
currence of the event, andpot describes the observation at
the corresponding time stept (with n denoting the number of
time steps). If the event is observed (not observed) at time
t , we havepot=1 (pot=0). The BS is bounded by zero and
one. While a perfect forecast would result in BS=0, less ac-
curate forecasts receive higher sores. A comparison of the
BS against the mean squared error (MSE) shows the anal-
ogy between the two measures. The two scores only differ in
that the squared differences are taken from the effective value
of the forecasted variable in the case of the MSE, while for
the BS they are taken from the forecast probabilities and the
subsequent binary observations (Wilks, 2006). The BSS is
finally obtained by relating the BS of the forecast to the BS
of a reference forecast according to

BSS= 1 −
BS

BSref
. (3)

The BSS can take values in the range−∞≤BSS≤1.
Whereas BSS>0 indicates an improvement over the refer-
ence forecast, a forecast with BSS≤0 lacks skill with respect
to the reference forecast.

In meteorological applications, the reference forecast is
usually taken as the climatological event frequency. Here in-
stead we use the observed event frequency as reference, i.e.

BSref =
1

n

n∑
t=1

(p̄o − pot )
2, (4)

wherep̄o denotes the frequency of observed occurrence of
the event in then time steps considered. Comparing Eq. (3)
and Eq. (4) with Eq. (1), an analogy between BSS and E
(consistent with the above argumentation regarding BS and
MSE) emerges and E can be interpreted in the same way as
BSS for probabilistic forecasts. E can take values in the range
−∞≤E≤1, with E>0 indicating an improvement over fore-
casting the observed event mean, while E≤0 shows no ad-
ditional skill. As a consequence, BSS as defined above, can
be regarded as the probabilistic representation of E. We use
the observed event frequency during the respective forecast
period for three main reasons: (a) to resolve the temporal
evolution of the runoff peak also for catchments not reaching
extreme runoff values (catchment and event specific thresh-
olds), (b) to circumvent the sometimes uncertain statistics of
recurrence period calculations for extreme events and (c) to
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Fig. 4. Hydrological hindcasts, starting on 20 August for gauge(a) Hagneck (C12, 5170 km2) and(b) Mellingen (C21, 3420 km2) in the
Aare and the Reuss watersheds. HEPS10w (red) is shown with corresponding IQR and median, the same for HEPS51 (blue). The varying
thickness of the red lines corresponds to the weight of the respective RM. Additionally, the deterministic run HALMO (black), measured
runoff (dark blue) and the reference simulation HREF (green) are shown. Spatially interpolated observed precipitation (catchment mean) is
plotted from the top.

gain the possibility to directly compare the validation of fore-
casted runoff to the validation of forecasted areal precipita-
tion.

The same score as for runoff (BSS) is also calculated for
observed spatially interpolated precipitation used to drive
HREF and the respective quantitative precipitation forecasts
(from aLMo, LEPS10 and LEPS51), aggregated over the
catchment areas. The time window for precipitation analy-
sis (60 h, cf. Fig.3) was shifted backwards by 6 h, consider-
ing the retarding effect of the hydrological system, therefore
slightly reducing the maximum forecast lead times.

In this paper we chose the median of HREF (for precip-
itation the median of the observation) during the event pe-
riod as the threshold for event occurrence, and thus define the
’observed’ event frequency as 0.5. We substitute the runoff
observations with HREF to eliminate the additional uncer-
tainties introduced by the hydrological model. This allows
us to concentrate on the ensemble properties of the forecasts.

The worst possible forecast (in terms of BSS) would be one
that misses all occurring events, while forecasting events at
all time steps with no event occurrence in the reference run.
With the given reference event occurrence probability of 0.5,
this would result in a BSS=−3.

3 Results and discussion

3.1 Analysis in selected catchments

Figure4 allows us to discuss important features of a prob-
abilistic hydrologic forecast. Hydrological hindcasts forced
by the presented meteorological systems are shown, starting
on 20 August for selected gauges. The forecasts correspond
to the 96 h maximum forecast lead time, as defined in Fig.3.

The deterministic simulation HALMO shown in Fig.4a
performs quite well, but does not allow for any quantification
of the uncertainty in operational mode. For extreme events,

www.nat-hazards-earth-syst-sci.net/8/281/2008/ Nat. Hazards Earth Syst. Sci., 8, 281–291, 2008
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Fig. 5. Simulated runoff exceeding HQ10 during the defined event
period for three different lead times (120 h, 96 h, 72 h). Red framed
boxes mark stations where the measured runoff reached HQ10. The
darker the grey tones, the bigger the fraction of the respective en-
sembles reaching the threshold (black and white for the determinis-
tic HALMO run).

forecast systems cannot be evaluated a priori due to a lack
of statistical data regarding similar situations. The need for
this is evident, as shown in Fig.4b, where HALMO strongly
overpredicts the event, reaching values of the most extreme
HEPS10w ensemble member. This demonstrates the abil-
ity of the ensemble to classify a corresponding deterministic
forecast in terms of occurrence probability, i.e. whether the
deterministic forecast is likely or not. Therefore the spread of
the ensemble can be interpreted as the uncertainty of the de-
terministic simulation, given that the deterministic and prob-
abilistic runs are based on the same model chain. In a strict
probabilistic view, the deterministic simulation would actu-
ally be only an additional ensemble member, which could po-
tentially be given more weight taking into account its higher
resolution.

In Fig.4a the median of the full ensemble almost perfectly
captures the observed runoff peak. The use of the ensemble
median or mean is sometimes proposed in order to reduce the
complexity of an ensemble interpretation, and thereby con-
verting the ensemble into a deterministic simulation. This
is discouraged however (Collier, 2007), because such a re-
duction can compromise an evaluation as shown byAhrens
and Walser(2008). Indeed, the median of HEPS10w com-
pletely misses the runoff peak, in contrast to that of the full
ensemble (HEPS51). In contrast to the ensemble median,
the interquartile range (IQR) from the HEPS10w differs only
slightly from the HEPS51 IQR, indicating a proper represen-
tation of the full ensemble. The observed runoff is well cap-
tured by the IQR of both the full and the reduced ensembles.

In Fig. 4b, the HEPS51 IQR again captures the observed
runoff. The HEPS10w IQR on the other hand, is lower and
does not capture the observed runoff perfectly, and is there-
fore less representative of the full ensemble than in Fig.4a.

The influence of a less than optimal representation of the full
ensemble is discussed later. HREF (Fig.4b) peaks too early
and is too low, probably an effect of the simplified repre-
sentation of lakes within the model (linear storages;Verbunt
et al., 2006), without consideration of lake regulations. In
both Fig.4a and4b, the spread of each ensemble, which rep-
resent the uncertainty of the ensemble forecast, grows rapidly
before narrowing again towards the end of the event. This
behavior cannot be represented by the error statistics of a de-
terministic forecasting system, which would yield an uncer-
tainty, that grows monotonically in time.

3.2 Assessment of exceedance probability of flood thresh-
olds

In the previous subsection only two selected catchments were
discussed. In order to evaluate the performance of the sys-
tem over the full study area during the event period (cf.
Fig.3), exceedance probabilities for a 10 year recurring event
(HQ10) were tested. The red framed boxes in Fig.5 indicate
catchments where observed runoff exceeded the HQ10. The
sub-squares represent the different lead times for HEPS51,
HEPS10w, HEPS10 and HALMO. The different grey tones
show the fraction of the respective ensembles reaching the
threshold. Thus, black indicates an exceedance of the HQ10
with a 100% probability and white indicates that this thresh-
old was not reached by any of the ensemble members. For
HALMO, the boxes are either black or white. In general,
most catchments where observed runoff exceeded the HQ10
(i.e. red framed boxes), show darker sub-boxes, indicating
that the models often also reached an HQ10 at least once
within the time-window.

One exception to this is catchment C6. Here, simula-
tions were not able to capture the runoff peak during the
event, although the general simulation performance during
calibration/verification shows no noticeable problem (Nash-
Sutcliffe coefficient: 0.87/0.81). A closer look at an event
occurring in 1999, reveals that runoff simulations for C6
also underestimated this event. A calibration giving more
weight to correctly resolved extreme peaks might help in this
case (although possibly at the expense of the overall perfor-
mance).

The large-scale precipitation pattern (cf. Fig.1) and the
resulting pattern of peak runoffs (cf. Fig.5) with peak inten-
sity along the northern slope of the Alps is generally well
captured by the meteorological-hydrological modeling sys-
tem. Even the deterministic simulation HALMO (last row in
Fig. 5) shows surprisingly good results (note that the 120 h
lead time simulation is contaminated by the extension past
its true forecast range, cf. Fig.3). The positive results at 96 h
and 72 h can be attributed to the generally high atmospheric
predictability of the event (Hohenegger et al., 2008).

It should be mentioned, that an evaluation based on one
single threshold (i.e. exceedance of HQ10) does not penalise
a forecast that overshoots this threshold. While the spatial
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distribution of the deterministic QPF was quite accurate, an
overprediction certainly occurred in the case of the forecast
with the shortest lead time (72 h) (MeteoSchweiz, 2006),
which artificially enhances the skill in those catchment where
the observation exceeded the threshold.

HEPS51 shows some advantage over the reduced en-
sembles, especially for the longest lead time (120 h), and
only a marginal difference is visible between HEPS10 and
HEPS10w. The ensembles show some clear advantages over
the deterministic simulation when observed runoff values are
either just below or above the threshold (e.g., C23 with an
event peak reaching a recurrence period of 5 to 10 years).
While the deterministic simulation can provide only “yes” or
“no” information, around half of the members from the three
ensembles reached the threshold, with the other half remain-
ing below, actually providing reliable forecast information
and demonstrating the advantage of a “smoothed” threshold.
Tests using HQ50 instead of HQ10 (not shown) yield very
similar results, although the fraction of catchments reaching
the threshold is smaller, resulting in a slight increase of the
overall false-alarm rate (especially occurring for the shortest
lead time). It is important to keep in mind, that a possible
forecast product based on a figure similar to that in Fig.5
only provides a quick overview as to where the situation
could become critical. In practical applications however, it
should be used in combination with the related hydrograph
plots (cf. Fig.4).

3.3 Evaluation of event discharge

Figure 6 shows the event discharges for the two example
catchments in Fig.4 (C12, C21) and catchment C23, which
captures the out-flow from all catchments and thus represents
the entire study area. Results from hindcasts starting on 20
August, corresponding to 96 h lead time, are shown. The
ensemble spreads for HEPS51 nicely capture both observed
runoff and HREF in all three catchments. The weighted
ensemble HEPS10w improves the results with respect to
HEPS10 for catchment C12, while for C21 the effect of the
weighting is less pronounced. In addition, HALMO shows
remarkably good performance for C12 and C23 for the pre-
sented lead time (96 h), as noted in the previous section. For
catchment C23, all simulations show a distinct reduction in
ensemble spread and error. This indicates an overall decrease
in uncertainty for forecasts over larger areas (i.e. differences
in forecasts for small catchments even out over larger areas).

The general performance of an ensemble is determined by
the relation between the error of the median of the ensem-
ble with respect to the reference, and the spread of the en-
semble. Assuming a perfectly calibrated probabilistic fore-
cast, the following relation between the two variables should
be found: the median of the error distribution should ex-
actly match half the ensemble IQR (Lalaurette et al., 2005).
Thus, a higher median error should be accompanied by a
wider spread in order to account for the ensemble uncer-
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Fig. 6. Event discharges (mm/60h) for observed runoff (black),
HREF (turquoise), HALMO (yellow), and whisker plots for the en-
semble forecasts HEPS51 (blue), HEPS10 (green) and HEPS10w
(red). Results are presented for the two catchments previously
shown in Fig.4 (C12, C21) and the catchment C23, representing
the whole study area. All displayed forecasts are started on 20 Au-
gust.

tainty. Considering this relationship for all catchments and
lead times, HEPS10 tends to slightly underestimate spread,
although the weighting improves this to some degree. Both
the underestimation in spread (HEPS10) as well as the im-
provement through weighting (HEPS10w) can be seen for
all catchments in Fig.6. While the median of HEPS10
and HEPS10w only slightly differ, the spread of HEPS10w
is providing a better coverage of the measured runoff and
HREF. Strong deviations from this generalization are found
for the longest lead time, where high values occurred for
median errors without the necessary compensation through
a widened spread (reasons for this are discussed in greater
detail in Sect.3.5). HEPS51 does not show this behavior and
generally provides the necessary spread to cover the uncer-
tainty.

3.4 Probabilistic verification of time series

The evaluation of exceedance probabilities and event dis-
charges alone do not address the temporal evolution of the
hydrographs. As a result, it is not clear whether the simu-
lations peak too early or too late. Although an evaluation
based on hourly time steps is quite a challenge for a model
system (especially in the case of an extreme event), the next
logical step is an evaluation of the temporal evolution using
the Brier Skill Score (BSS). In Table2 we compare HEPS51,
the weighted ensemble HEPS10w, the unweighted HEPS10
and HALMO against HREF, using the mean event runoff
from HREF as a threshold. The use of HREF as the refer-
ence for the BSS calculation, in place of the observed hy-
drographs, allows hydrological uncertainties to be excluded.
Using HREF in place of the runoff observations generally
yields higher scores (e.g., +0.11 on the median score of
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Table 2. BSS for simulated runoff (relative to simulation HREF)
and related area-mean precipitation (relative to observations) during
the event period for three different lead times. Middle and right
columns show median scores (for the 23 catchments considered),
for the different lead times and the combined median (c. median)
for all catchments and lead times, respectively.

median c. median
lead time runoff precip. runoff precip.

HALMO
120/114 na na

na na96/90 0.27 0.00
72/66 0.07 0.07

HEPS10
120/114 −0.23 −0.53

0.21 0.0596/90 0.31 0.09
72/66 0.57 0.39

HEPS10w
120/114 −0.23 −0.66

0.29 −.0196/90 0.37 −0.01
72/66 0.59 0.37

HEPS51
120/114 0.07 −0.09

0.32 0.1796/90 0.37 0.21
72/66 0.61 0.41

HEPS51). The skill of the precipitation forecasts (time se-
ries of the catchment mean) was calculated analogously, us-
ing the hourly time series of the observed spatially interpo-
lated precipitation on the respective catchment as reference,
and its median as threshold.

In the case of the deterministic forecast (HALMO), the
longest lead time is suppressed (na) in Table2. While show-
ing good results for threshold exceedance, HALMO gener-
ally has lower skill scores than the ensembles. For the lead
time of 96 h, HALMO median runoff skill scores almost
reach the level of HEPS10, reflecting the correct distribu-
tion of precipitation with only a slight overestimation (Me-
teoSchweiz, 2006). This is not visible in the median BSS for
precipitation alone, as the precipitation forecast still needs to
be elongated by 18 h. For the shortest lead time, the median
performance of HALMO is compromised by the pronounced
overestimation in precipitation and runoff.

Regarding the ensembles, an increase in skill with shorter
lead times for all ensemble sizes is evident. Scores for pre-
cipitation alone suffer much more from the decrease in pre-
dictability with longer lead times and are generally lower
than those for runoff. This is the case, since the scores for
runoff profit from the information stored within the hydro-
logical system (soil moisture, status of water storages) as
well as from the filtering effect of the direct input (smooth-
ing through the retarding effect of the hydrological system
through the different water storages). This applies to most of
the individual catchments as well as for the mean values of
the ensemble simulations.
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Fig. 7. Median BSS for sampled ensembles from HEPS51 with
gradually reduced ensemble sizes, shown for catchment C10 (blue,
with 90% quantile). BSS for HEPS10w (red, marked at effective
ensemble size), HEPS10 (green) and HALMO (black) are addition-
ally marked.

3.5 Representativeness of the reduced ensemble

In Table2, a general loss of information due to the reduction
of the ensemble size is found for runoff as well as for pre-
cipitation in almost all catchments (i.e. the score is worse for
HEPS10 compared to HEPS51 for the corresponding initial-
ization time). The weighting of the reduced ensemble com-
pensates for this loss of information to some extent. This is
not the case for precipitation alone, where weighting actu-
ally worsens BSS. Since the general performance of an en-
semble is determined by the relation between the error of
the median of the ensemble with respect to the reference and
the spread of the ensemble, a higher median error should
be accompanied by a wider spread to account for the uncer-
tainty. Because the relation between the median error and the
IQR changes through the application of the hydrological sys-
tem (the median error experiences a stronger reduction than
IQR), the weighting shows a different effect for precipitation.
Relative shifts of the median error show a larger effect espe-
cially for low scores, without being able to compensate with
a widened spread.

The observed loss of information by the reduction in en-
semble size (from HEPS51 to HEPS10) shown in Table2,
leads to the question of representativeness of the reduced
ensemble. To test the representativeness of reduced ensem-
bles and the influence of the weighting, a statistical analysis
was carried out. For this purpose we decreased the member
size of the full ensemble step-wise by one ensemble member
from 51 to one, and sampled 1000 of the possible member
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combinations of the full ensemble for each step, with the ex-
ception of ensemble sizes 1, 50 and 51, where the maximum
of possible member combinations was used. With a sample
size of 1000, the possible member combinations are well rep-
resented, while the amount of data is still easily manageable.

Consideration of small ensembles leads to a negative bias
of the BSS (Müller et al., 2005; Weigel et al., 2007a). By
comparing the skill scores at the respective ensemble sizes,
we do not need to correct this bias. A reduced ensemble
therefore represents the full ensemble if its skill is equal to
the median skill of the sampled member combinations at the
respective ensemble size. The analysis was performed for all
of the catchments using the evaluation time window for the
three different forecast lead times.

Figure7 shows the dependence of skill score on ensemble
size for catchment C10 for the shortest lead time (72 h). The
blue circles and the vertical bars mark the median BSS of the
1000 ensemble samples at each member size with 90% confi-
dence interval. Some general ensemble properties are nicely
reproduced: The reduction in median skill with smaller en-
semble size is accompanied by an increase in spread (of the
skill values). A saturation effect is also visible at member
sizes of 5 to 15. For larger ensemble sizes, the median BSS
no longer increases significantly, while the spread of the skill
score decreases continuously. The risk of a forecast failure
through an unfavorable selection of representative members
is thus reduced. The choice of the ensemble size for the re-
duced ensemble (10 members) seems reasonable, as it lies
within the region of saturation and has a noticeable reduction
in skill score spread. The BSS of HEPS10 is slightly below
the median sampled BSS. Weighting the reduced ensemble
(HEPS10w) further improves the match. The weighted en-
semble HEPS10w is marked at the position of its effective
ensemble size

meff =
1∑10

n=1 w2
n

. (5)

This reduction by a nonuniform weight (w) distribution is
qualitatively understandable, when looking at the two ex-
treme weighting possibilities. If all ensemble members are
equally weighted (w=0.1), the unweighted case of HEPS10
is reproduced. At the other extreme, if all weight is assigned
to a single ensemble member and the others receive zero
weight, the effective ensemble collapses to a single mem-
ber ensemble. For all other weight distributions the effective
ensemble size lies somewhere in between these two extremes
(Weigel et al., 2007b).

The skill score for HALMO in Fig.7 is well below the en-
semble scores, which is generally reflected in Table2. Com-
pared to the ensemble sample at member size 1 (consisting
of the 51 individual ensemble members), HALMO outper-
forms the ensemble median. HALMO probably profits from
the smaller grid-spacing of 7 km instead of 10 km used for
the ensembles.
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Fig. 8. Combined BSS for 23 subcatchments and three lead times as
a function of ensemble size. The plot shows the median (bold blue
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and the full range (light blue). The overlayed whisker plots show
the BSS for HEPS10 (green) and HEPS10w (red).

Figure8 combines the results shown in Fig.7 for all catch-
ments and lead times. In order for HEPS10 (or HEPS10w)
to optimally represent HEPS51, the median and quantiles of
the respective reduced ensemble BSS should match those of
the sampled BSS at the respective ensemble size. The me-
dian BSS of HEPS10 is slightly lower than that of the me-
dian sampled BSS, and its lower quantiles show a further
decrease. The weighting with the represented cluster sizes
(HEPS10w) improves the match of the statistical properties,
specifically for the quartiles and the median. This is an effect
of the widened ensemble IQR which occurs through weight-
ing (especially for the 96 h lead time as apparent from Ta-
ble 2), resulting in a better representation of the ensemble
uncertainty. The effect of the weighting on the ensemble me-
dian error is less important in comparison to spread. This
is not true for low skill values, where a weighting actually
worsens the BSS. The low skill values can be matched to the
longest lead time of 120 h, as apparent in Table2, where the
median skill does not benefit from weighting. Even though
the weighting still increases the ensemble IQR (for 17 out
of 23 forecasts), it actually decreases the spread of the 10–
90% ensemble quantile (in 18 out of 23 forecasts). The high
value of the ensemble median error averaged over all catch-
ments for 120 h lead time (0.17 mm, compared to 0.07 mm
and 0.06 mm for 96 h and 72 h) without the necessary in-
crease in spread explains the reduction of the BSS at low
skills by weighting.

Figure8 shows that not only HEPS10w, but also HEPS10
does not properly represent HEPS51 on low skills (matching

www.nat-hazards-earth-syst-sci.net/8/281/2008/ Nat. Hazards Earth Syst. Sci., 8, 281–291, 2008



290 S. Jaun et al.: A probabilistic view on the August 2005 floods in the upper Rhine catchment

the 120 h lead time). This can be traced back to the used
clustering methodology with recombination (based on twice
51 EPS members, cf. Sect.2.2). The recombination with
old forecast information favors the selection of representa-
tive members with low runoff values and therefore underes-
timates the event.

Besides the recombination, the clustering methodology it-
self can affect the skill of the forecasts, as it is based on large-
scale weather patterns over the full COSMO-LEPS domain.
This does not necessarily result in the ideal set of represen-
tative members for the considered, relatively small, subdo-
mains (i.e. catchments), especially as the quantitative precip-
itation amounts, which are of major importance for the hy-
drological forecast, are not directly considered for the clus-
tering (Molteni et al., 2001). As the (median) loss in skill is
not dramatic, it seems justified to use the reduced ensembles,
although one is faced with potentially lower skill for specific
catchments and lead times.

4 Conclusions

Using the extreme Alpine flood of August 2005 as a case
study, we find a good hindcast performance of the applied
coupled meteorological-hydrological ensemble forecast sys-
tem. Statistical tests demonstrates that the use of the re-
duced ensembles with representative members seems justi-
fied, while weighting further improves the skill of the system
(except on low scores). The median BSS of HEPS10w of
0.29 for all catchments and lead times shows that the fore-
cast system has useful skill. While the deterministic hindcast
shows good results for a lead time of 96 h, the forecast with
a lead time of 72 h strongly overpredicts the event. This il-
lustrates the effect of “badly” chosen (versus “well” chosen)
initial conditions of the meteorological model, a difficulty
which can be accounted for by the use of ensembles. The ad-
ditional probabilistic information resulting from the ensem-
ble therefore helps to classify the deterministic forecast, and
provides useful information about its uncertainty.

An obvious practical application of the medium forecast
ranges are “wake up calls”. The significantly higher skill of
the coupled meteorological-hydrological system in compar-
ison to the meteorological precipitation forecast shows the
importance of the filtering through the hydrological system
and the overall added benefit of the coupled model system.

To assess the applicability of the proposed meteorologic-
hydrologic forecast system for day-to-day application, a
hindcast study providing two years of continuous probabilis-
tic hindcasts is currently in progress. While the current study,
using a unique extreme event, puts the emphasis on the im-
pact of the ensemble size, the work on the longer time series
will concentrate on the role of the lead time, the extension to
several skill scores as proposed byLaio and Tamea(2007)
and an evaluation for a wide range of weather situations.
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