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Abstract. Precipitation radar-based data constitute essential
input to Numerical Weather Prediction (NWP) and rainfall-
runoff models, however the data introduce a number of er-
rors. Thus their uncertainty should be determined to pro-
vide end-users with more reliable information about fore-
casts. The common idea is to use Quality Index (QI) scheme
for some number of quality parameters on the assumption
that: (1) relationship between the parameters and relevant
quality indexes is linear; (2) averagedQI is a weighted aver-
age of all particular indexes. The uncertainty parameters can
be topography-dependent, resulting from spatial and tempo-
ral distribution of data, etc. Uncertainty in radar-based data
is described by gamma PDF of precipitation, and it is pro-
posed to determine the probability density function (PDF)
parameters basing onQI values. Practically, precipitation is
presented as ensemble of quantiles of the PDF and such an
ensemble can constitute input to rainfall-runoff modelling.
Since the ensemble is a precipitation input, the hydrological
model needs to be activated according to a number of input
members.

1 Introduction

Radar-derived precipitation estimates and radar-based pre-
cipitation nowcasts constitute essential input to Numerical
Weather Prediction (NWP) and rainfall-runoff models. How-
ever the radar data and nowcasts introduce into final products
a number of errors from different sources. Thus their uncer-
tainty should be determined to provide end-users with proba-
bilistic forecasts as more reliable information about rain rate
and accumulation. Therefore investigation of data quality
and uncertainty in the whole processing chain is necessary.

In literature reviews of weather radar data errors and meth-
ods for their estimation are available. Due to the problem of
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complexity it is impossible to obtain sufficient information
and compute quantitatively the impact of each error. There-
fore it seems suitable to evaluate the radar-based data quality
not by giving definition and estimation of all radar errors,
but by analysing the data properties, among others statistical
ones.

The methodology of dealing with radar precipitation un-
certainty can be based on a concept of quality index (QI)
field which is a measure for data quality. Various schemes for
creating such aQI field for precipitation estimate fields are
proposed. An example can be the DLR (Deutsches Zentrum
für Luft und Raumfahrt) scheme (Friedrich et al., 2006). The
schemes take under consideration main sources of radar lim-
itations significantly affecting the accuracy of radar reflectiv-
ity measurements, like beam broadening, ground clutter con-
tamination, attenuation by hydrometeors, and inhomogeneity
in vertical profile of reflectivity. This technique requires se-
lecting the most crucial uncertainty parameters to compute
quality index fields for radar-based data.

The radar-based precipitation data is the most crucial in-
put for rainfall-runoff modelling, especially for very small
mountainous catchments, like the South of Poland, where
rainfall-caused flash floods are the most dangerous hydrolog-
ical events. It is due to required high spatial and temporal res-
olutions, and short lead-time of forecasts (nowcasts). There-
fore the radar-based inputs, their uncertainties, and propaga-
tion to hydrological modelling are a subject of this paper.

2 Test bed

2.1 Area

In Poland the Institute of Meteorology and Water Manage-
ment (IMWM) is responsible for a national meteorological
and hydrological service. The IMWM collects data from
telemetric (meteorological and hydrological) and remote-
sensing networks (weather radars, satellite, etc.).
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Fig. 1. Map of research area: south of Poland area with raingauge
and weather radar locations.

An area interesting from hydrological point of view is a
mountainous region in the south of Poland where the up-
per Vistula (Wisła) and Odra Rivers are the main sources of
flood hazard. In this area a small mountainous catchment was
chosen for case study, the Biała La̧decka River catchment of
316 km2 and altitude in range from 330 up to 1425 m a.s.l.

2.2 Precipitation data

Telemetric raingauge data (G) as 1-h accumulations from
107 telemetric raingauges within area shown in Fig. 1 were
employed.

Radar data are provided by Polish weather radar network
POLRAD that consists of 8 C-Band Doppler radars (Szturc
and Dziewit, 2005). They are Gematronik radars with Rain-
bow software, operated by IMWM (Fig. 2). Among prod-
ucts generated every 10 min the PAC (Precipitation Accumu-
lation) composite is used to deliver 1-h accumulations. The
PAC is produced from SRI (Surface Rainfall Intensity) prod-
ucts that measure precipitation on constant height above the
ground (in this case 0.7 km).

NIMROD system is UK Met Office software to process
radar data using other measurement sources and then to pro-
duce analyses and forecasts of precipitation (Weipert and
Pierce, 2003). The radar data used as a starting point in NIM-
ROD are provided every 10 min in form of four PPI (Plan
Position Indicator) scans at low elevations. The following
corrections are applied: ground clutter and anaprop removal,
Vertical Profile of Reflectivity (VPR) correction, and Mean
Field Bias correction. Corrected radar data are blended with
information from other measurement sources, such as ground
stations and satellite, to produce NIMROD analyses every
30 min (Golding, 1998).

Hydrological simulations were performed using combina-
tion of raingauge and NIMROD data as precipitation input.
The technique of combination is a Sinclair-Pegram method

(a)

(b)

Fig. 2. Polish radar network POLRAD:(a) radar locations,(b) ex-
ample of radar composite over geographical map from 31 March
2006, 05:30 UTC.

(Sinclair and Pegram, 2005). In this approach the informa-
tion from radar is used to obtain the correct spatial structure
of the precipitation field, while the field values are fitted to
the raingauge observations. The method consists of the fol-
lowing steps: (1) spatial interpolation of raingauge-derived
precipitation data is performed using one of known methods;
(2) next errors of the interpolation are determined as differ-
ences between two maps: radar data and radar data after spa-
tial interpolation from pixels only with raingauge locations;
(3) finally spatially interpolated raingauge data is corrected
using the differences (errors of interpolation). For spatial in-
terpolation Inverse Distance Weighting method was chosen.

This kind of precipitation field was found as the most
proper for this catchment from various kinds of the fields.
Quality of the estimation was evaluated (1) by comparison
to raingauge data (using RMSE, bias, correlation coefficient
and parameters based on contingency table) and (2) through
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Fig. 3. Radar-based precipitation data.

hydrological analyses of quality of hydrograph simulation
from different precipitation inputs (using as criteria among
others Nash-Sutcliff coefficient, correlation coefficient and
contingency table parameters) (see report on Task 4.08 of the
RISK-AWARE project: Szturc et al., 2007b).

The main idea of the nowcasting philosophy adopted in
NIMROD is merging of an extrapolated rainfall analysis with
output from a NWP model. NIMROD nowcasts are gener-
ated every 30 min with 15-min temporal and 4-km spatial
resolution up to six hours ahead.

The proposed Quality Index (QI) scheme is to estimate
the quality of all kinds of radar-based precipitation data that
are generated during the data processing chain. Precipitation
data from weather radar POLRAD network are corrected and
nowcasted by the NIMROD system using data from other
sources.

Generally the processing is carried out in the following
steps:

– radar data corrections (ground clutter removal, VPR
correction, raingauge adjustment, etc.),

– precipitation field analyses i.e. estimation of radar data
complimented with data from other sources (satellite,
synoptic stations, last forecasts, etc.),

– precipitation forecasting.

In the presented paper the outline of quality scheme based
on a quality index (QI) approach is proposed. Six sets of
parameters of the scheme can be distinguished for different
kinds of precipitation data (Fig. 3):

– composite corrected radar rate (RAD) and its accumu-
lation (6RAD),

Fig. 4. Scheme of the probabilistic hydrological forecasting.

– rate analysis (from NIMROD or after further process-
ing, e.g. combination with raingauge data) (NIM) and
its accumulation (6NIM),

– rate forecast (FCS) and its accumulation (6FCS).

All employed precipitation data were gathered during rainy
events in August 2006.

2.3 Hydrological data and rainfall-runoff modelling

A hydrological test of the proposed techniques for particu-
lar precipitation fields was performed on LISFLOOD model
(de Roo et al., 2000), that works operationally in Hydrologi-
cal Forecast Office of IMWM in Wroclaw. It is a distributed
(1×1 km) physically-based rainfall-runoff model taking ac-
count of the influence of topography, precipitation amounts
and intensities, antecedent soil moisture content, land use
and soil type.

The LISFLOOD model was calibrated on two events: 10–
15 August 2006 and 30 August–3 September 2006. A val-
idation was performed on data from 6–9 August 2006 as
this period included intense precipitation which triggered the
flood event. The research was carried out on selected Biała
La̧decka catchment.

3 Quality scheme for radar-based precipitation

3.1 Base

Quality Index (QI) schemes become more and more popular
in quantitative estimation of precipitation data quality. The
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(a) (b)

(c) (d)

Fig. 5. Topography-dependent maps of(a) DEM, (b) DR, and(c, d)
MH parameters for Polish radar network. TheMH map is shown for
two cases: when all radars (c) and only half of them (d) are running.
Scale: (a) 0–2.5 km; (b) 0–400 km; (c, d) 0–4 km.

QI approach required our knowledge about error sources and
their impacts on the data quality. The idea is based on the
following chain:

sufficient number of quality parametersXi

↓

the same number of particularQIi

↓

one averagedQI

where: Xi (wherei=1, . . . , N) are the quality parameters,
i.e. specific parameters related to data quality, like technical
parameters of radar, quantities connected to distance from
radar, spatial and temporal variability of precipitation field,
etc.;QIi are the quality indexes for relevantXi parameters;
QI is the averaged quality index.

The common idea is to use the scheme for a few quality
parameters assuming that (Friedrich et al., 2006; Szturc et
al., 2006a; 2007a):

1. The relationship betweenXi andQIi is linear:

QIi =


1 for Xi ≤ Xi1
0 for Xi ≥ Xi0

Xi0−Xi

Xi0−Xi1
for Xi1 < Xi < Xi0

(1)

where Xi0 and Xi1 are the boundary values for the
Xi parameter. For some quality parameters the higher
parameter, the higher quality index is (e.g. number of
products that are incorporated in a given accumulation).
In this case in the relationship (1) the inequality signs
must be replaced by opposite ones.

2. The averagedQI is calculated as a weighted average of
all QIi indexes:

QI =

N∑
i=1

QIi · Wi (2)

whereWi are the weights of particularQIi indexes. The
weights can be estimated basing on investigation of his-
torical data as it is described in Sect. 5.

The additional assumption that if anyQIi is over a critical
valueXicrit then averagedQI should be taken as equal 0 is
recommended here. It is to save the scheme from producing
quite wrong data.

The above assumption about linearity ofXi andQIi rela-
tionship is made as it is difficult to find exact form. However
some parametersXi from described in Sect. 4 does not show
such a behaviour, for instance increase of distance to radar
site results in nonlinear quality decrease.

3.2 Concept of precipitation uncertainty propagation into
hydrological modelling

The presented methodology of dealing with radar precipita-
tion uncertainty propagation to runoff forecasts is based on a
concept of (Fig. 4):

1. quality index field for all kinds of precipitation data,

2. PDF that is employed to characterise the phenomenon,

3. parameterisation of the PDF.

4. ensemble of the PDF quantiles as input to rainfall-runoff
models,

5. ensemble of runoff forecasts.

4 Quality parameters

4.1 Main radar errors

The selected quality parameters, which are to characterise all
kinds of data, have been divided into particular groups.

Two major kinds of uncertainty parameters are employed:
(1) topography-dependent and (2) resulting from spatial and
temporal distribution of radar-based data. For real-time ap-
plication it should be remembered that the particular quality
parameters must be easily determinable.

For quality of precipitation accumulation a number of rain-
rate products that compose a given sum is important and is
introduced as an additional quality parameter.

Two next parameters incorporated into the proposed
scheme are used only for forecasts. They are the lead-time
(LT) of forecasts and quality index previously determined for
estimated precipitation (QIE).
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(a) (b)

Fig. 6. Example of variability-dependent maps of radar data:(a) SVand(b) TV parameters for Polish radar network. Hourly accumulation
generated on 14 August 2006, 03:00 UTC. Scale: 0–10 mm.

Table 1. Main radar errors and related quality parameters.

Error Quality parameter Magnitude Frequency Range

Hardware problems, – medium – big continuous continuous
miscalibration,
pointing error, etc.
Earth curvature DR, MH medium continuous continuous
VPR variability DR, MH medium seasonal continuous
Spatial resolution DR, MH small continuous continuous
Beam blocking, shielding MH big continuous local
Total beam overshooting MH small – big seasonal local
Ground clutter DEM small – big continuous local
AP clutter, propagation changes – small – medium seasonal local
Interfering emitters, jamming – small – medium occasional local
Attenuation by precipitation DR small continuous continuous
Attenuation by wet/icy radome – small seasonal local
Hail, water phase,Z − R relationship SV small seasonal continuous
Orographic enhancement DEM small – medium continuous local
Overhanging precipitation – medium seasonal local
Temporal resolution NP, TV medium continuous continuous

Any number of other parameters can be added.

In Table 1 the most important error factors and parame-
ters that can describe the risk level of burdening with these
errors are listed. The list is valid especially for POLRAD
network associated with NIMROD system. It is not feasible
to produce the list which would be strict and unambiguous.
The list was prepared basing on experiences of Radar Centre
staff in Institute of Meteorology and Water Management and
other similar attempts, especially:Šálek et al., 2004; Michel-

son et al., 2005; NORDRAD (Future. . . , 2003). In Table 2 a
similar list for forecast quality factors is shown.

4.2 Definitions of quality parameters

Topography-dependent parameters

Distance from radar (DR) is a crucial parameter as radar
beam expands with distance from the radar site. Moreover
the curvature of the Earth surface results in increasing the
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Table 2. Main forecasting errors and related quality parameters.

Error Quality Magnitude Frequency Range
parameter

Quality of starting data QIE big continuous continuous
Lead-time LT big continuous continuous
Spatial resolution SV medium continuous continuous
Temporal resolution NP, TV medium continuous continuous

vertical distance of the radar beam to the ground. For the
lowest scan the beam height above the ground can reach over
2.5 km at a 200-km distance from radar (Fig. 5c, 5d).

The next parameter is a spatial pattern of altitude (DEM)
that is represented by DEM (digital elevation map). The im-
portant effects resulting from the presence of higher moun-
tain peaks are radar data contamination by ground clutters,
radar beam blocking, and shielding (Fig. 5a).

Third topography-dependent parameter is a height of the
lowest scan (MH). This height indicates the lowest point of
vertical profile of atmosphere that can be visible by any radar
beam since the lower altitudes are shielded by terrain be-
tween radar site and a given location. It can be seen that this
parameter combines both previously mentioned (Fig. 5a, 5b,
5c). TheMH field differs fromDR mainly in mountainous
area (in Poland it is in the South of the country, see Fig. 2a).

These three parameters are dependent on each other, so
two of them can be chosen as uncertainty parameters in the
proposed quality index scheme.

Spatial and temporal variability of precipitation fields

Next, the spatial (SV) and temporal (TV) variability of data
fields are investigated and used as measures of data uncer-
tainty.

Spatial variability (SV) is determined for each pixel on
grid bigger then radar pixel size. The grid can be e.g. 3×3
or 5×5 pixels (in our case), i.e. of size 12 or 20 km, if the
pixel size is 4 km. The measure of the variability is variance
(Fig. 6a).

Temporal variability (TV) is determined for each pixel on
n-hour moving time-window (wheren=6 in our scheme). If
a 1-h accumulation is input then the six previous time steps
are taken in case of QPE and six subsequent forecasts in case
of QPF. The measure is variance as well (Fig. 6b).

Representativeness of accumulations

An uncertainty of precipitation accumulation estimate is
strongly dependent on a number of rain rate products (NP)
incorporated in particular hourly accumulation (from 0 to 7
maps maximally). The number results from the actual avail-
ability of the data during the given hour and the POLRAD
network and NIMROD time-steps of data production.

Lead-time of forecasts

The uncertainty depending on lead-time (LT) is determined
directly from the lead-time value expressed in hours. For
forecastsLT varies from 1 to 6 h as maximally 6-h radar-
based nowcasts are generated in NIMROD system. The same
values ofLT are taken for the whole map.

Quality index for estimated precipitation

The quality of advection forecasts (nowcasts) strongly de-
pends onQIE – the quality of the initial field i.e. an estimate
of precipitation. Therefore, the averaged quality indexQI,
calculated from formula (2) for that estimate, constitutes an
important factorQIQIE in forecast quality as well. Then the
field of averagedQI for estimate is taken as the last parame-
ter of forecast quality.

4.3 Quality indexesQIi and averaged quality indexQI

The QIi fields calculated on the base of the parametersXi

using Eq. (1) are fixed for a given radar location and are in-
dependent of weather situations in the case ofLT, DR, and
MH. Since composite maps are used instead of single site
radar ones, theDR and MH maps (Fig. 5c, 5d) cannot be
fixed when not all radars operate at given time. TheQIi
fields based onSV andTV (Fig. 6) are variable temporally
and spatially so they have to be calculated for each time step
separately.

Finally Eq. (2) can be written in the following form:

QI =

N∑
i=1

QIi · Wi

= WDRQIDR+

+WMH QIMH + WSV QISV +

+WT V QIT V + WLT QILT +

+WNP QINP + WQIEQIQIE

(3)

with condition for the weights:

WDR+WMH +WSV +WT V +WLT +WNP +WQIE=1 (4)

The Eq. (3) is valid for both estimate and forecast, with some
weights equal to zero in dependence on the kind of data.
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Table 3. Correlations between some quality parameters and
ln(R/G) for 1-h and 24-h accumulations. Radar PACs are used as
R data; precipitation threshold is 0.5 mm.

Quality parameter
Correlation
1 h 24 h

DR 0.325 0.357
DEM −0.053 −0.171
MH 0.306 0.375
SV −0.007 0.635
TV 0.127 0.608

5 Determination of the quality parameter weights

In the proposed scheme quality indexQIi for each quality
parameterXi is calculated assuming a linear relationship be-
tween them. This calculation is made for each radar-map
pixel and in this way the field of the quality index is ob-
tained. Next all the individual fields are summarised to an
averagedQI field using appropriate weights (Eqs. 3 and 4).
The scheme should be calibrated in order to get objective
information about data quality. It requires a procedure for
the parameterisation of the scheme that involves determin-
ing some quantities for each parameterXi : its weight and
lower Xi0 and upperXi1 thresholds. The values are defined
as follows:Xi1 is boundary valueXi for which quality index
QIi = 1, andXi0 is boundary valueXi for which QIi=0, so
beyond these thresholds the quality indexQIi values are set
to 0 or 1. Moreover a critical value (Xicrit) is introduced,
which means that if the parameterXi reaches theXicrit value
then the averagedQIi value is set to zero for the pixel even
if other parameters are quite good.

The parameterisation of the proposed scheme is performed
on a historical dataset. It is assumed that raingauge data
are exact in their locations therefore information about dif-
ferences or the ratio between raingauge (G) and radar (R)
observations in these points can be a measure of quality. The
correlation between given quality parameterX and measured
errors, represented by e.g. ln (R/G) or (R − G), can indicate
the parameter importance in terms of data quality (hereR

means all radar-based data).
Correlations computed for August 2006 with employed

quality parameters are listed in Table 3.
For comparison correlations betweenR andG are 0.311

for 1-h accumulations and 0.523 for 24-h accumulations.
Basing on these correlations the optimal weights in Eq. (2)

can be determined for particularQIi fields (Table 4). More-
over threshold and critical values for linear interpolation of
these parameters are determined and finally averagedQI is
computed from Eq. (2). The quality information field ob-
tained in this way is attached to the radar-based precipitation
product (see Fig. 7).

(a)

(b)

Fig. 7. Example of: (a) radar data and(b) assigned averagedQI
field for 6RAD data: 1-hour accumulation from 15 August 2006,
08:00 UTC, POLRAD network. Scale: (a) 0–10 mm; (b) 0–1.

An example ofQI map is shown in Fig. 7. It can be noticed
that there is a good data quality where there is no rain, and a
reduced quality for wet pixels. It can be explained in the fol-
lowing way. EstimationR=0 is burdened with uncertainty,
but usually not very significantly, as only low-intensity rain
may be expected to occur in these places. However if the rain
is measured then the uncertainty is higher because of vari-
ability of rain field. In general: the higher the rain, probably
the higher the uncertainty is as well.

The most crucial task in thisQI scheme is setting the
thresholdsXi0,Xi1, andXicrit . They should be determined
basing on physical features of particular parameters. For ex-
ample a distance range to get the proper data from weather
radar can be estimated approximately. It is advised to take
into account e.g. data application, a distinction between strat-
iform and convective precipitation, etc.

6 Precipitation PDF

6.1 Precipitation ensemble – a review

The technique of ensemble of precipitation fields is com-
monly employed considering uncertainty in the NWP data.
However NWP-derived precipitation forecasts can only be
used in applications where high resolution is necessary. For
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Table 4. Example of quality scheme parameters for radar-based precipitation data.

Quality parameterXi Unit Xi1 (QIi=1) Xi0 (QIi=0) Xicrit Weights for . . .
RAD 6RAD NIM 6NIM FCS 6FCS

Distance to nearest radar (DR) km 10 100 >200 0.180 0.180 0.180 0.180 0 0
Min. Height (MH) km 0.5 5 >5 0.190 0.190 0.190 0.190 0 0
Spatial variability (SV) mm 0.01 0.1 >100 0.322 0.322 0.322 0.322 0.322 0
Temporal variabity (TV) mm 0.001 0.1 >100 0.308 0 0.308 0 0.308 0
Number of products (NP) – 7 3 ≤2 0 0.308 0 0.308 0 0.500
QIE – 1 0 <0.1 0 0 0 0 0.185 0
Lead-time (LT) hour 0 7 ≥7 0 0 0 0 0.185 0.500

Fig. 8. Example of gamma PDF (p=2.4,b=2.0).

instance COSMO-LM 14-km spatial resolution is too poor
for small mountainous catchments (of 100–1000 km2 area)
where flash floods are important events. A common approach
for dealing with uncertainty in NWP-derived forecasts is to
determine an exceedance probability of forecasted precipita-
tion.

This can be achieved by working on ensembles of fore-
casts, that are implemented as ensemble prediction system
(EPS), e.g. in ECMWF EPS (Roulin and Vannitsem, 2005).
It consists of 50 perturbed members (to 10 days with 80-km
resolution every 24 h) and one unperturbed forecast (with 40-
km resolution) (Molteni et al., 1996). These EPS forecasts
can be employed only for bigger catchments. The pertur-
bation technique may be Monte Carlo sampling (e.g. Pap-
penberger et al., 2005), also different NWP forecasts can
be used, e.g. including different resolutions from the same
model.

Such an ECMWF EPS ensemble can be used either to cal-
culate quantiles that constitute input to rainfall-runoff mod-
elling, or all the members are directly used if the calculation
time is not critical as 51 deterministic flood forecasts are gen-
erated (Gouweleeuw et al., 2005).

A different approach is based on the determination of a
probabilistic QPF (so called PQPF) like it is done in Na-

tional Weather Service Forecast Office in Tulsa, Oklahoma
(Amburn, Frederick, 2006). That is derived from two quan-
tities: deterministic QPF, that is treated as mean precipita-
tion amount, and Probability of Precipitation (PoP). The PoP
is calculated in dependency on present ground weather re-
ports. It is assumed that PQPF in means of Probability of
Exceedance (PoE) can be approximated by the exponential
probability density function (PDF). The description above is
for NWP fields. In the case of radar precipitation, the pro-
duction of the ensembles is more difficult but such a concept
becomes more and more popular nowadays. It is proposed
to introduce disturbances into the radar data (Germann et al.,
2006).

The availability of an ensemble of precipitation estimates
and forecasts opens up the possibility of constructing multi-
ple runoff forecasts and using them to quantify the accuracy
of the forecasts and the likelihood of a warning threshold
being exceeded. The uncertainty in the precipitation input
is likely to dominate runoff forecasts accuracy, then other
sources of errors, such as rainfall-runoff model itself errors
can be ignored here. The precipitation uncertainty informa-
tion can constitute a first guess in investigation of hydrologi-
cal forecast uncertainty.

6.2 Gamma PDF

It is proposed to take into account the uncertainty in estimates
or forecasts of precipitation using a specific PDF suitable to
reflect physical features of rainfall. The gamma distribution
can be used for this purpose (e.g. Amburn and Frederick,
2006, 2007):

PDF(x) =
bp

0(p)
xp−1e−bx (5)

wherep and b are the PDF parameters,p, b>0; 0 is the
gamma function (see Fig. 8).

Radar measurements are treated as random variableR. A
specific value ofR will be denoted asr. The true value
of precipitation is searched, that is approximately taken as
a raingauge valueG (if it was available) in a pixel containing
it. It is needed to know the true values in each pixel and their
uncertainties.
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A new random variableX that represents the true precipi-
tation is introduced:

X = E(G|R = r) (6)

that means expectation E of the true valueG under condition
that radar valueR equalsr.

In the case of a continuous variableR the interval of width
ε (increasing withr) is taken instead of one valuer:

X = E(G|R ∈ [r − ε, r + ε]) (7)

Statistical characteristics of theX variable can be estimated
from other, more available data. It is assumed that the vari-
ance:

var(X) = var(R − G) (8)

Another measure of theR field uncertainty can be applied,
like log(G/R), instead of (R−G).

If the last relationship is true, then the variancevar(R−G)

can be estimated on historical data using radarR and rain-
gaugeG data together with appropriateQI data.

To estimate the PDF for radar data it is assumed that:

1. the PDF parameters are related to the averagedQI value,

2. this relationship can be experimentally determined for
each pixel of the precipitation data field.

As a consequence the probabilistic precipitation field may
consist of three values for each pixel (see Fig. 9): two PDF
parameters (or more in dependence on the specific PDF) and
QPE (or QPF).

6.3 Relationship betweenvar(R–G) andQI determined on
historical dataset

The QI fields are computed for radar-based precipitation
fields using Eq. (3) and appropriate weights. Having these
fields the next step is to determine a precipitation PDF (which
can be gamma PDF from Eq. 5) for each pixel of the fields.
In order to solve this task the parameterisation of the PDF is
required, i.e. calculation of both PDF parameters.

The concept proposed in the paper is to determine the vari-
ancevar(R − G) that is the variance of the radar-raingauge
difference observed at raingauge locations on historical data.
Then the linear regression of the relationship between this
variancevar(R − G) and the quality indexQI is to be com-
puted. In practice it may be done as follows.

If the following historical data are available:
radar/NIMROD data R, raingauge dataG (both as
e.g. hourly accumulations), andQI field, then at firstQI
values (that vary in range from 0 to 1) are divided into a
numbern of classes (for instancen=10). Then the variance
of (R–G) is calculated for each class:

var(R − G) =
1

N

N∑
i=1

(
(Ri − Gi)

2
− B2(R, G)

)
(9)

whereN is the number of radar-raingauge pairs;B(R,G) is
defined as follows:

B(R, G) =
1

N

N∑
i=1

(Ri − Gi) (10)

Then relationship betweenvar(R − G) andQI is estimated
using linear (or any non-linear) regression. As a result an
interpolated variancevar(R − G) is determined:

var(R − G) = a1 · QI + a2 (11)

wherea1 anda2 are the linear regression coefficients.
In Fig. 10 an example of the relationship between

var(R−G) and QI divided into classes is shown. For
this example the relationship (Eq. 11) was established as:
var(R−G)=−1.18·QI+0.98, with a correlation coefficient
equal to 0.92. The data were NIMROD analyses (i.e. pro-
cessed radar data6NIM) that seem to be the best NIMROD
precipitation estimation (Szturc et al., 2007b). The data were
combined with raingauge data for selected flood event from
6–9 August 2006. For comparison: using radar-derived PAC
(Precipitation Accumulation) data the relationship was estab-
lished as:var(R − G)=−4.46·QI+4.81, with a correlation
coefficient equal to 0.85.

6.4 Real-time relationship between the PDF parameters
and both precipitationR and quality indexQI

Having this last relationship between the variancevar(R −

G) and quality indexQI computed on historical data, it is
possible to estimate in real-time the following statistical mo-
ments of precipitation for a particular precipitation field: ex-
pectation E(X) and variancevar(X). Now the parametersp
and b are computed from E(X) and var(X) values as it is
described below.

GammaPDF(x) is defined by Eq. (5). Relationships be-
tween the PDF parametersp andb, and precipitation statis-
tical moments E(X) andvar(X) are as follows:

E(X) =
p

b
; var(X) =

p

b2
(12)

From the above equation system both parametersp andb can
be determined:

p =
E2(X)

var(X)
; b =

E(X)

var(X)
(13)

In Eq. (13) the expectation E(X) may be identified with the
radar/NIMROD precipitation estimateR, whereas the vari-
ancevar(X) is calculated from the interpolated relationship
betweenvar(R − G) andQI (Eq. 11). Therefore:

E(X) = r; (14)

var(X) = var(R − G) = a1 · QI + a2 (15)

Finally, for a given data pixel with the knownQI andR val-
ues bothp andb parameters can be calculated from the above
equation system (Eq. 14–15). In this way the precipitation
PDF can be computed for each data pixel.
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(a) (b)

Fig. 9. Example of maps of gamma PDF parameters:(a) p and(b) b for Polish radar network for hourly accumulation generated on 14
August 2006, 03:00 UTC. Scale: 0–10.

Fig. 10. Example of determination of relationship betweenvar(R–
G) andQI (6RAD 1-h data from 6–9 August 2006).

6.5 Probabilistic precipitation – ensemble of precipitation
quantiles

The rainfall-runoff model is a deterministic model that re-
quires not probabilistic precipitation as its input but deter-
ministic one. In order to overcome this difficulty a common
solution is to produce an ensemble of a few deterministic
inputs instead of only one. It may be done by selection of
some characteristic maps. From a practical aspect a number
of members of ensembles should not be too big. The en-
semble members can be chosen as quantiles, e.g.q%=5, 25,
50, 75, and 95% basing on a cumulative distribution function
CDF. Theq%-quantiles of the PDF, i.e.Pq% is calculated

from the gamma CDF:

Pq% = F(q%) =

q%∫
−∞

f (x)dx =

q%∫
0

bp

0(p)
xp−1e−bxdx (16)

This ensemble is used to compute an ensemble (sequence) of
inputs to a deterministic rainfall-runoff model. The way is
as follows. First distances betweenP50% and all other quan-
tiles are calculated, i.e.P5%–P50%, P25%–P50%, P75%–P50%,
andP95%–P50%. Next is to calculate the corrected quantiles
according to:

Rq% = R + (Pq% − P50%) (17)

where R is the radar-based precipitation.
E.g.R75%=R+(P75%-P50%), etc.

7 Probabilistic runoff

7.1 Precipitation ensemble as input to rainfall-runoff model

The proposed hydrological ensemble prediction system is de-
signed not only to forecast the most likely hydrological sce-
nario, but also to estimate the uncertainty of such a forecast-
ing due to the meteorological uncertainty. The uncertainty
introduced by rainfall-runoff model is not taken into account
here.

Since input to rainfall-runoff model is probabilistic, an en-
semble of precipitation fields is provided. In consequence
the hydrological model needs to be activated 5 or 7 times ac-
cording to a number of quantiles (Szturc et al., 2006b). As an
output from the rainfall-runoff model the same number of 5
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Fig. 11. Example of maps (from left to right): P5%, P25%, P50%, P75%, and P95% quantiles of gamma PDF for Polish radar network for
hourly accumulation generated on 14 August 2006, 03:00 UTC. Scale: 0–10 mm.

or 7 discharge hydrographs will be obtained (Fig. 12) which
define classes of runoff uncertainty.

Classes of runoff probability will be determined basing
on the statistical investigation of a big number of rainfall
flood events (Gouweleeuw et al., 2005; Roulin and Vannit-
sem, 2005).

A more advanced way of direct using probabilistic input to
deterministic rainfall-runoff model and deriving probabilistic
runoff forecast is an analytic-numerical Bayesian forecast-
ing system (BFS) proposed by Krzysztofowicz (Kelly and
Krzysztofowicz, 2000; Krzysztofowicz, 2002; Herr et al.,
2002). Within a framework of BFS Krzysztofowicz (2002)
proposed a methodology to produce a probabilistic river
stage forecast for the short range. The system decomposes
the total forecasting uncertainty into input uncertainty and
hydrological uncertainty. The former source of uncertainty
is dominated by the unknown future precipitation; the lat-
ter generally aggregates all other uncertainties and includes
model, parameter, estimation and measurement errors.

Having the sequence of ensembleRq% of precipitation in-
put to rainfall-runoff model, the ensemble of hydrographs
(i.e. sequence of dischargeHq%) can be obtained as the whole
ensemble of precipitation estimates is employed to generate
forecasts. That means the rainfall-runoff model should run
for each quantile separately.

Next task is to estimate the PDF of discharge for a given
time step like it was done for precipitation. However because
of the non-linear relationship between precipitation and dis-
charge a simple transformation of uncertainty is not possible.

7.2 Example

The example of the hydrograph ensemble is shown in Fig. 12.
Data from a 6–9 August 2006 flood event were used here.
The used LISFLOOD rainfall-runoff model was calibrated
for various kinds of deterministic precipitation inputs and
verified on independent data in order to choose the best input.
As a result, raingauge-radar combination by Sinclair-Pegram
method was found the best one (see Sect. 2.2). The examined
event had not been used in the calibration.

Uncertainty in river runoff forecasting is a result of quality
of the whole data set and all particular uncertainties of pro-

Fig. 12.Ensemble of probabilistic precipitation fields (5, 25, 50, 75,
and 95%) as input to rainfall-runoff model and resulting ensemble
of hydrographs and observed hydrograph. On the right an enlarged
excerpt of the hydrographs peaks is shown.

cessing chain. The uncertainties in output data are mainly
caused by the errors in:

– precipitation measurement (weather radar, raingauge
etc.) and estimation (VPR correction etc.),

– precipitation forecasting (radar-based, NWP),

– other meteorological measurement (temperature etc.),

– soil measurement and data (soil type, land use, etc.),

– hydrological measurement (water level, discharge, etc.),

– rainfall-runoff model algorithms.
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Fig. 13. Diagrams of discharge and quantiles relationship for two
specific time steps (8 August 2006, 02:00 UTC and 9 August 2006,
01:00 UTC) with similar median value.

From the above list the first two errors are the most signifi-
cant and they are introduced into the proposedQI scheme.

In Fig. 12 the precipitation uncertainty is visible by the
range of the hydrogram ensemble. Since the observed hy-
drogram is only partially within the ensemble range, it is
most probable that it is not because of precipitation errors
but rather influence of theQI scheme parameterization.

In Fig. 13 two diagrams of relationship between discharges
and quantiles for two specific time steps with similar median
value are presented. The flatter curve is assigned to higher
quality radar data, i.e.QI averaged on investigated catchment
is more close to one.

The relationships in the range of quantiles above 25% be-
came linear, so transformation between precipitation field
quantiles and runoff quantiles may be linear as well. This
observation is corresponding to the Horton overland flow:
lower rates of rainfall influence the overflow less because of
higher infiltration.

8 Remarks

The task of the paper was to propose a more common quality
index (QI) scheme, e.g. for international exchange of radar-
based data, that must not be assigned to algorithms used for
making specific products for domestic applications.

The proposed scheme is not complicated, but universal
since it can be employed for each radar-based data origi-
nating from any network and does not matter what mea-
surement techniques and algorithms for data processing have
been used. As a result, the implementation of the scheme is
easy. However parameterisation of the scheme is ambiguous
so it is not an easy task because clear criteria of quality are
not known and commonly understood.

In next part of the paper it was showed how to deal with the
quality information while using the radar-based data in hy-

drological rainfall-runoff modelling, especially how the input
data uncertainty is transformed into hydrological data (river
discharge). It is a way of precipitation data uncertainty in-
corporation into hydrological modelling.

Up to now the quality index scheme has been operated
only in a research mode. A precise evaluation of different
weighting factors for different applications and weather situ-
ations should be done in operational mode.
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Jurczyk, A., Ósródka, K., and Szturc, J.: Research studies on im-
provement in real-time estimation of radar-based precipitation in
Poland, Meteorol. Atmos. Phys., accepted, 2008.

Kelly, K. S. and Krzysztofowicz, R.: Precipitation uncertainty pro-
cessor for probabilistic river stage forecasting, Wat. Resour. Res.,
36, 2643–2653, 2000.

Nat. Hazards Earth Syst. Sci., 8, 267–279, 2008 www.nat-hazards-earth-syst-sci.net/8/267/2008/

http://ams.confex.com/ams/pdfpapers/100354.pdf
http://ams.confex.com/ams/pdfpapers/100354.pdf
http://ams.confex.com/ams/pdfpapers/124735.pdf
http://ams.confex.com/ams/pdfpapers/124735.pdf
http://nordrad.fmi.fi/methods/Problem_class.html
http://www.hydrol-earth-syst-sci.net/9/365/2005/
www.nws.noaa.gov/oh/hrl/presentations/fihm02/
www.nws.noaa.gov/oh/hrl/presentations/fihm02/


J. Szturc et al.: Uncertainty in radar-based data for hydrological purpose 279

Krzysztofowicz, R.: Bayesian system for probabilistic river stage
forecasting, J. Hydrol., 268, 16–40, 2002.

Michelson, D., Einfalt, T., Holleman, I., Gjertsen, U., Friedrich, K.,
Haase, G., Lindskog, M., and Jurczyk, A.: Weather radar data
quality in Europe – quality control and characterization, Review,
COST Action 717, Working document, Luxembourg, 2005.

Molteni, F., Buizza, R., Palmer, T. N., and Petroliagis, T.: The
ECMWF Ensemble Prediction System: Methodology and vali-
dations, Q. J. R. Meteorol. Soc., 122, 73–119, 1996.

Peura, M., Koistinen, J., and Hohti, H.: Quality information in pro-
cessing weather radar data for varying user needs, Proceedings
of ERAD 2006, 563–566, 2006.

Pappenberger, F., Beven, K. J., Hunter, N. M., Bates, P. D.,
Gouweleeuw, B. T., Thielen, J., and de Roo, A. P. J.: Cascad-
ing model uncertainty from medium range weather forecasts (10
days) through a rainfall-runoff model to flood inundation pre-
dictions within the European Flood Forecasting System (EFFS),
Hydrol. Earth Syst. Sci., 9, 381–393, 2005,
http://www.hydrol-earth-syst-sci.net/9/381/2005/.

Roulin, E. and Vannitsem S.: Skill of medium-range hydrological
ensemble predictions, J. Hydrometeor., 6, 729–744, 2005.
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