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Abstract. The study of the Earth’s electromagnetic field
prior to the occurrence of strong seismic events has repeat-
edly revealed cases where transient electric potential anoma-
lies, often deemed as possible earthquake precursors, were
observed on electromagnetic field recordings. In an attempt
to understand the nature of such signals, several models have
been proposed based upon the exhibited characteristics of
the observed anomalies, often supported by different mathe-
matical models simulating possible generation mechanisms.
This paper discusses a candidate Electric Earthquake Precur-
sor (EEP) signal, accompanying the KythiraMw=6.9 earth-
quake in Greece (occurred on 8 January 2006). Neuro-Fuzzy
along with stochastic models are currently incorporated for
the modelling and analysis of the recorded Earth’s electric
field. The results of the study indicate that the Neuro-Fuzzy
model treats the observed possible EEP signal as an exter-
nal additive component to the recorded Earth’s electric field,
while the stochastic TARMA models accurately represent the
recorded electric signals in both the time and the frequency
domains. The complementary findings of both methodolo-
gies might potentially contribute to the future development
of a more accurate and generalized framework for the effi-
cient recognition and characterization of possible EEP’s.

1 Introduction

Earthquake prediction remains one of the biggest challenges
in modern earth science, as it aims to predict origin time,
hypocenter (or epicenter) and magnitude of an impend-
ing earthquake. Intermediate and long-term predictions are
mainly based on past and current records of seismic activity
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(earthquake forecasting). Short-term earthquake prediction,
in addition, relies on the detection of precursors (seismo-
associated phenomena). Only short-term and intermediate-
term time scales can be considered as true earthquake pre-
diction deterministic methods. During the last couple of
decades, a variety of types of earthquake precursors has been
increasingly reported by many researchers, with predominant
category that of pre-seismic and/or co-seismic variations of
the Earth’s electric, magnetic and electromagnetic fieldsPark
et al. (1993). The latter seems to cover almost the entire
electromagnetic spectrum, but the most promising lay on the
ULF-ELF-VLF bandsHayakawa(2004).

Ground-based measurements reveal subsurface transient
electrotelluric and/or magnetic signalsVarotsos(2005); Con-
sole (2001), whilst radio and ionospheric soundings along
with space observations, manifest VLF/LF subionospheric
signals, ionospheric perturbations and electromagnetic phe-
nomena in the coupled system lithosphere-atmosphere-
ionosphere associated with large seismic eventsPark et
al. (1993). Furthermore, scientists have tried to verify
and explain most of the observations mentioned above
by conducting laboratory experiments on rock samples
Hayakawa, 2004; Varotsos, 2005; Vallianatos et al., 2008,
2004; Stavrakas et al., 2004. Several physical generation
mechanisms have been proposed such as electrification due
to microfracturing, fluid diffusion, electrokinetic effects,
charged particle generation and motion, moving charged dis-
locations, electrical conductivity changes, piezo-stimulated
currents, piezomagnetic and piezoelectric effects etc., with
secondary effects in the atmosphere-ionosphere coupled sys-
tem such as total electron content changes, ionospheric mo-
tions, joule heating etc., but no definitive conclusions have
been drawn yetTzanis and Vallianatos(2002).
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Despite the richness of observed earthquake precursory
phenomena, significant scientific efforts are still required
to ensure qualitative and quantitative rigorous definitions
of earthquake precursors that could lead in developing ro-
bust and reliable earthquake prediction methods and this is
mainly due to lack of thorough understanding the physics of
pre-seismic processes, the physics governing the generation,
propagation and observation of the various precursory phe-
nomena and the physics of the earthquake source, as well as
due to large recurrence times involvedVarotsos, 2005; Con-
sole, 2001; Colangelo et al., 2000, 2001.

In the present study, the observed characteristics and fea-
tures of a recorded candidate Electric Earthquake Precursor
(EEP) signal of a strong earthquake in Greece, are investi-
gated. Previous studiesKonstantaras et al., 2007, 2002, 2004,
2006a,b provide information regarding the nature of EEP sig-
nals. These results indicate that EEP signals are transient
electric potential anomalies external to the natural (of iono-
spheric origin) electromagnetic field of the Earth.

Despite these similarities, there is an open issue as it con-
cerns this particular candidate EEP signal accompanying the
Kythira earthquake, namely the fact that it was only ob-
served upon the recordings of the electric field, whilst there
is no indication of the latter upon the simultaneous record-
ings of the magnetic field. To enhance and strengthen the
detection and identification of the observed transient electric
field anomaly as a possible EEP candidate signal associated
with the Kythira earthquake, two approaches are currently
addressed:

(a) Non-linear Hybrid Adaptive Neuro-Fuzzy Inference
Systems, and

(b) Non-Stationary Stochastic systems based upon
Functional-Series (FS) Time-dependent (T) AutoRe-
gressive (AR) Moving-Average (MA) (FS-TARMA)
models.

The aim of this paper is twofold:

(a) To access the possibility of efficiently representing the
Earth’s recorded electric field data by both system
classes, and

(b) To efficiently detect and identify a possible electric field
anomaly on the Earth’s recorded electric field.

The aforementioned approaches are mutually complemen-
tary, as non-linear Neuro-Fuzzy systems focus on the signal’s
lower frequency band and any kind of non-linearities (i.e.
transients, etc.), while Time-dependent ARMA (TARMA)
models aim at capturing the signal’s higher frequency com-
ponents and any kind of non-stationarities.

The rest of this paper, is organized as follows: the record-
ing station along with the recorded data are presented in
Sect.2. Neuro-Fuzzy and stochastic modelling and analy-
sis results are discussed in Sects.3 and4, respectively, and
the concluding remarks of the study are finally summarized
in Sect.5.

2 Data description

The present study focuses on providing evidence on the
dynamical structure of the recorded signal aiming to rein-
force its identification as a possible EEP associated with the
Mw=6.9 Kythira earthquake occurred on the 8 January 2006,
located 36.21◦ N (latitude) and 23.41◦ E (longitude), with an
epicentre depth of approximately 70 km. The signal under in-
vestigation was recorded by the MVC-2DS recording station,
which was designed and developed by the Institute of Terres-
trial Magnetism, Ionosphere and Radio-wave Propagation,
Saint Petersburg Filial (SPbF IZMIRAN), Russian Academy
of Sciences, in the frame of the INTAS-99-1102 project enti-
tled: “Study of the ULF electromagnetic phenomena related
to earthquakes (SUPRE)”,Kopytenko et al., 2001a,b.

The MVC-2DS recording stationKopytenko et al.
(2001b); Vallianatos et al.(2002), measures in GPS stamped
time the horizontal components of the electric field and the
three (two horizontal plus vertical) components of the mag-
netic field of the Earth, with a variable sampling frequency,
currently set to 5 Hz. In particular, magnetic field record-
ings are obtained using a highly sensitive torsion photoelec-
tric magnetometer, whilst electric field recordings are ob-
tained using two electric dipoles that have length of about
100 m and are deployed in the NS and EW direction, respec-
tively. The electric dipoles use Pb electrodes, buried at a
depth of about 1 m. The station has been in operation since
2001, which has enabled us to distinguish various distortions
from random and/or artificial noise sources. Indeed, it is
characterized by self-consistency as shown in Figs.1 and2
(Fig.1shows the recorded Earth’s electromagnetic fields dur-
ing June 2006, while magnetotelluric signatures are evident
in Fig. 2).

The location of the recording station with respect to the
main earthquake and the associated seismic sequence are
presented in Fig.3, see alsoVallianatos et al.(2006). The
recorded signals under investigation, last from approximately
9 p.m. on the 29 December 2005, till 1 p.m. on the 11 January
2006, Fig.4. It is interesting to note, that while a candidate
EEP is evident in both the electric field recordings (Fig.4a
and b), there is no obvious indication of it upon the simul-
taneous magnetic field recordings (Fig.4c and d, the square
in all subplots of Fig.4, indicates the occurrence time of the
main seismic event).

Figure 5a demonstrates the seismic sequence in paral-
lel with the observed electric transient potential anomaly,
Fig. 5b. No foreshocks have been observed before the main
earthquake whilst there were only a few aftershocks. It is
interesting, though, to note that the main swarm of the af-
tershocks practically ends with the return of the electric field
recordings to the background level, although the main event
occurred almost in the middle of the signal’s “duty cycle”.
It is also worth noting the large duration of the recoded
anomaly and the fact that it outlasts the main seismic event.
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Fig. 1. Recorded electric and magnetic field components from the 7 June 2006, till the 21 June 2006,fs=5 Hz: (a) Electric field component
Ex ; (b) electric field componentEy ; (c) magnetic field componentHx ; and(d) magnetic field componentHy .
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Fig. 2. Recorded electric field and magnetic field variations from approximately 2 p.m. on the 9 June 2006, till 4 p.m. on the 9 June 2006,
fs=0.2 Hz:(a) Electric field componentEx ; (b) magneticHy variations;(c) electric field componentEy ; and(d) magneticHx variations.
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Fig. 3. Location of the MVC-2DS recording station (denoted by
the white�) in Keramia, located 35.26◦ N (latitude) and 24.03◦ E
(longitude), Crete, along with the main earthquake epicentre (big
white◦), (the small white circles indicate the geographical locations
of the accompanying aftershocks),Vallianatos et al.(2006).

3 Neuro-fuzzy modelling and analysis

Neuro-fuzzy models are neural networks with intrinsic fuzzy
logic abilities where each layer of the network emulates the
input Membership Functions (MFs), rules, output MFs, and
defuzziffication function of a fuzzy inference system, respec-
tively Jang(1993). The use of Hybrid Adaptive Neuro-Fuzzy
Inference Systems aims for the recovery of the possible EEP
signature from the electric field backgroundVarotsos(2005);
Konstantaras et al.(2007), which enables significant infor-
mation to be extracted regarding its nature and possible asso-
ciation with the accompanying main seismic event.

To investigate whether this EEP candidate signal is indeed
an external addition to the natural electric field of the Earth,
a pattern recognition experiment has been devised with the
incorporation of soft computing technology. A neuro-fuzzy
model, i.e. a neural network with intrinsic fuzzy logic abil-
ities Jang(1993) has been developed and trained to identify
the recorded electric field signal using the data recorded prior
to the occurrence of the possible electric earthquake precur-
sor. Then, propagating through the electric field recordings,
the neuro-fuzzy model is used to forecast the next sample
of the recorded signal based upon a number of previously
recorded data. The purpose of the experiment is to identify
whether the neuro-fuzzy model follows the detected EEP sig-
nal as if it was part of the natural electric field of the Earth;
or rejects it as an external additive component by consider-
ably suppressing the EEP, aiming for the actual value of the
natural electric field alone.

3.1 Training and evaluation procedure

To train and evaluate the reaction of the neuro-fuzzy model,
4096 data samples of electric field recordings have been se-
lected Konstantaras et al.(2004), corresponding approxi-
mately to the time-period starting at 9 p.m. on the 29 De-
cember 2005 and ending at 1 p.m. on 11 January 2006,
which include the possible electric earthquake precursor. Al-
though the initial sampling frequency of the recorded data is
fs=5 Hz, the overall data set has been decimated by a fac-
tor of 1280 as it is very costly in terms of processing time
Kosko (1991) to train a neural network with such a heavy
workload. A sliding window consisting of four previous in-
puts, atn−12,n−24,n−36 andn−48Addison and Wermter
(2002), propagating through the time-series, determines the
input vectors fed to the neuro-fuzzy model. The first half of
the input vectors, i.e. the first 2048 samples in the time-series,
is used to train the neuro-fuzzy model to predict the next sam-
ple at time (n+1) in the time-seriesJang et al.(1997), whilst
the second half remains unseen during training. An initial
neuro-fuzzy model is obtained by applying grid partitioning
Konstantaras et al.(2002) on the first half of the input data
set. This initial model is subjected to training with a hybrid
algorithm Jang(1993), a combination of the least squares
method and the back-propagation algorithm. During a for-
ward pass, an input vector is fed to the neuro-fuzzy model
and the least squares estimator is used to adapt its consequent
parameters, which define the rules and output membership
functions (MF’s) of the model. A training error is computed
by subtracting the output of the neuro-fuzzy model, for the
current set of parameters, from the required output (the ac-
tual value of the electric field signal at samplen+1). The
training error is deployed during the backward pass through
the neuro-fuzzy model by the back-propagation algorithm to
adapt its premise parameters, which determine the shape and
dimensions of the input MF’s. After every training epoch the
neuro-fuzzy model is tested with the first 500 samples of the
unseen data (also recorded before the occurrence of the pos-
sible electric earthquake precursor) to prevent overtraining
Jang et al.(1997). The final neuro-fuzzy model holds the set
of parameters that minimized the checking error.

3.2 Neuro-fuzzy model development and operation
analysis

To generate an initial fuzzy inference system, grid partition-
ing was applied on the input data of the input/output data
set. For this particular application the two-dimensional in-
put space of every input was partitioned into four overlap-
ping fuzzy regions, each of which is governed by a fuzzy if-
then rule. The structure of the neuro-fuzzy model depicted in
Fig. 6, depends on the number of inputs and input member-
ship functions per input. The developed neuro-fuzzy model
has four inputs (layer 1), each of which has assigned to it
two input membership functions (layer 2), and is guided by
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Fig. 4. Recorded electric and magnetic field components from approximately 9 p.m. on the 29 December 2005, till 1 p.m. on the 11 January
2006,fs=0.0039 Hz,Ts=256 s:(a) Electric field componentEx ; (b) electric field componentEy ; (c) magnetic field componentHx ; and(d)
magnetic field componentHy (the squares indicate the occurrence time of the main seismic event).

Fig. 5. (a)Main seismic event (�) and aftershocks (?) sequence accompanying the Kythira earthquake;(b) the observed transient electric
anomaly in parallel with the seismic sequence.
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Fig. 6. Neuro-fuzzy model’s architecture: Black nodes: inputs to
and output from the neuro-fuzzy model; white nodes: neurons;
dashed node: rules bias neuron.

sixteen rules (layer 3). The contribution of each rule to the
output of the neuro-fuzzy model is determined by the output
MF (layer 4) allocated to it, whilst the bias neuron (dashed
line in Fig.6) sets a weighting factor to each rule. The neuron
in layer 5 defuzzifies the normalized weighted outputs of all
rules to produce a crisp output (layer 6). The layer-by-layer
operation of the developed neuro-fuzzy model is described
as followsJang(1993):

– Layer 1: The present and three previous samples of the
recorded electric signal are used as inputs (A to D) to
the network.

– Layer 2: Every nodei in this layer is an adaptive node
with a node function:

O1,i = µAi(x) for i=1, 2
or

O1,i = µBi−2(y) for i=3, 4
or

O1,i = µCi−4(z) for i=5, 6
or

O1,i = µDi−6(k) for i=7, 8

(1)

wherex (ory, orz, ork) is the input to nodei andAi (or
Bi , or Ci , or Di) is the equivalent membership function
denoted byµ(◦). The type of MF’sA, B, C andD is
that of the generalized bell function:

µA(x)=1/

(
1+

∣∣∣∣x−ci

αi

∣∣∣∣2·bi
)

(2)

where{ai, bi, ci} are the premise parameters of the net-
work which determine the shape and size of the MF,
Jang(1993).

– Layer 3: Every node in this layer is a fixed node calcu-
lating the normalized firing strength of either rule:

O2,i=wi=
wi∑
i wi

(3)

where:

wi=µAi(x)·µBi(y)·µCi(z)·µDi(k) (4)

– Layer 4: Every nodei in this layer is an adaptive node
using an output membership function to compute the
weighed output of the equivalent rule, according to the
following node function:

O3,i=wi ·fi wherefi=pi ·x+qi ·y+mi ·z+ni ·k+ri (5)

where{pi, qi, mi, ni, ri} are the consequent parame-
ters of the network that specify the rules of the fuzzy
inference system,Jang(1993).

– Layer 5: The single node in this layer is a fixed node,
which converts the weighted fuzzy outputs of all rules
in the system into a single crisp output, as described by
the following node function:

O4,i=

∑
i

wi ·fi (6)

– Layer 6: The node describes the actual output of the
neuro-fuzzy model for a given input data set.

3.3 Neural-fuzzy pattern recognition results

The proposed neuro-fuzzy model was initially trained upon
the first 2548 data samples of the recorded electric field sig-
nal (Ex), aiming to identify the main characteristics of the
electric field variations and thus predict the next sample in
the time-series. The initial 2048 data samples were used for
training the neuro-fuzzy model whilst the next 500 data sam-
ples (2049 to 2548) remained unseen for validation purposes.
The outcome of the neuro-fuzzy pattern recognition applica-
tion on the full electric field signal after training the neuro-
fuzzy model is shown in Fig.7.

The comparison of Fig.7a and b, reveals a significant sup-
pression of the apparent magnitude of the possible recorded
EEP signal. In detail, the output of the neuro-fuzzy model
closely follows the recorded electric field signal until the
moment of the occurrence of the possible EEP at approx-
imately sample 2752. The rapid rise in magnitude of the
recorded signal over the next few samples “confuses” the
neuro-fuzzy model and for a short time it becomes unstable,
hence the large spikes observed between samples 2780 and
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Fig. 7. (a) Recorded Earth’s electric field (the square indicates the occurrence time of the main seismic event);(b) neuro-fuzzy model
output indicating rejection of the possible EEP signal as an external addition upon the electric field recordings;(c) neuro-fuzzy model-based
prediction error (the error signal highlights the close proximity of the neuro-fuzzy model’s output signal to the recorded electric field before
and after the occurrence of the possible recorded EEP signal as well as the continuous incremental rejection of the latter at the time of its
occurrence).

2830. Thanks to the adaptive natureHaykin (1994) of neu-
ral networks, only a short time of approximately fifty (50)
samples was required by the neuro-fuzzy model for it to re-
act to the new information received at its input. Following
data-sample 2830 the neuro-fuzzy model makes a decision
not to follow the information received at its input, when de-
ciding what should be the value of the next sample in the
time-series at its output. Instead, it tries to approximate the
magnitude of the natural electric field alone, thereby consid-
erably suppressing the possible recorded EEP signal. Around
sample 3510, the neuro-fuzzy model is affected by a sudden
drop in the magnitude data received at its input (ending of
the possible EEP signal). Once-more, the neuro-fuzzy model
temporarily becomes unstable, leading to the large spikes ob-
served between data samples 3530 and 3585. What is re-
markable in this case is that once the model becomes stable
again, which is almost immediately after the end of the du-
ration of the possible EEP signal (around sample 3595), the
neuro-fuzzy model once more closely follows the recorded
electric field signal. The fact that the neuro-fuzzy model
closely follows the recorded electric field signal before (sig-
nal to difference ratio of 30.46 dB) and after (signal to dif-
ference ratio of 28.40 dB) the occurrence of the EEP signal,
and the rejection of the latter (signal to difference ratio of

−39.69 dB) at the time of its occurrence (Fig.7c), leads to the
conclusion that the neuro-fuzzy model treats the EEP signal
as an external additive component upon the Earth’s natural
electric field recordings.

4 Stochastic FS-TARMA modelling and analysis

Non-stationary stochastic signals, that is signals with time-
dependent (evolutionary) characteristics, are frequently en-
countered in engineering, and have been receiving increas-
ing attention in recent yearsNewland(1993); Kitagawa and
Gersch(1996); Fouskitakis and Fassois(2001, 2002). Typi-
cal application areas include seismic and structural systems,
mechanical vibrations, speech analysis, reliability analysis,
automotive and aircraft systems, rotating machinery, and so
on. From a physical standpoint, non-stationarity stems from
either time-dependent dynamics and transient phenomena
and/or inherently non-linear behavior,Poulimenos and Fas-
sois(2006).

Functional Series (FS) methods, are physically motivated
for many engineering systems where the evolution of the sig-
nal characteristics cannot be regarded as random. The im-
position of maximum (deterministic) structure on parameter
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1458 A. Konstantaras et al.: Stochastic analysis of seismic related geo-electric singular

Fig. 8. (a) Recorded electric field componentEx ; (b) first-order differencedEx ; (c) recorded electric field componentEy ; (d) first-order
differencedEy – fs=0.0278 Hz,Ts=36 s, the squares “�” in subplots(a, c) and the vertical dashed lines in subplots(b, d) indicate the
occurrence time of the main seismic event, the dashed frames is subplots(a, c) indicate the corresponding segments ofEx , Ey signals that
are subsequently differenced and then shown in subplots(b, d), respectively.

evolution (through properly selected functional spaces) al-
lows Functional Series methods to achieve: (i) High parsi-
mony, (ii) tracking of “fast” and “slow” evolution, and (iii)
high accuracy and resolution.

Functional-Series (FS) Time-dependent (T) AutoRegres-
sive (AR) Moving-Average (MA) (FS-TARMA) models,
provide an important generalization of their stationary
ARMA counterpartsPandit and Wu(1983), in that their pa-
rameters are explicit functions of time, belonging to func-
tional spaces spanned by sets of preselected deterministic
functions of time, referred to as the basis functions. A FS-
TARMA(na, nc)p model, with (na, nc) indicating its Au-
toRegressive (AR) and Moving-Average (MA) orders, re-
spectively, andp the corresponding functional base dimen-
sionality, is of the form (referred to as the shifted form):

y[t]+

na∑
i=1

ai[t]·y[t−i]︸ ︷︷ ︸
AR part

=e[t]+

nc∑
i=1

ci[t]·e[t−i]︸ ︷︷ ︸
MA part

(7)

with t designating normalized discrete time
(t=1, 2, . . . , N), y[t] the stochastic non-stationary
signal being modelled,e[t] an innovations (uncorrelated)
sequence with zero mean and varianceσ 2

e and N the

sample size ofy[t]. ai[t], ci[t] designate the model’s time-
dependent AR and MA parameters, respectively (notice
that a0[t]≡c0[t]≡1), which belong to a functional space of
dimensionalityp of the form:

F 1
=
{
G1[t], G2[t], . . . , Gp[t]

}
(8)

Hence, the time-dependent AR and MA parameters are ex-
pressed in terms of the mutually orthogonal basis functions
as:

ai[t]
1
=

∑p

j=1 ai,j ·Gj [t] (1≤i≤na)

ci[t]
1
=

∑p

j=1 ci,j ·Gj [t] (1≤i≤nc)

(9)

with ai,j , ci,j representing the corresponding coefficients
of projection. Functional spaces comprised by shifted
polynomials (such as Chebyshev, Legendre, Laguerre,
and so onAbramowitz and Stegun, 1970), trigonometric
(sine/cosine) functions or discontinuous Haar or Welch func-
tions Fouskitakis and Fassois(2002), may be considered
{G1[t]≡1(∀ t) in all cases}.

In the case where no MA part is included in the model,
the model of Eq. (7) drops to the FS-TAR case, in which
it may be easily shown that the model is linear in its pa-
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Fig. 9. Modelling of the first-order differenced and low-pass filteredEx , Ey signals:(a) Actual Ex signal and TARMA(40, 20)4 model-
based 1-step-ahead predictions;(b) normalized sample autocorrelation function of the TARMA(40, 20)4 model-based residuals for theEx

case;(c) actualEy signal and TARMA(40, 20)4 model-based 1-step-ahead predictions;(d) normalized sample autocorrelation function of
the TARMA(40, 20)4 model-based residuals for theEy case – the horizontal lines in subplots(b, d) indicate statistical significance at the
α=0.05 level; for subplots(a, c): (�): actual signal, (×): 1-step-ahead prediction.

rameters, and thus its coefficients of projection may be es-
timated via ordinary least-squaresPoulimenos and Fassois
(2006). In the full TARMA case, its coefficients of pro-
jection may be estimated via the Generalized Polynomial-
Algebraic (GPA) methodFouskitakis and Fassois(2001), or
the Two-Stage Least-Squares (2-SLS) methodPoulimenos
and Fassois(2006). Model selection may be based upon the
Bayessian Information Criterion (BIC)Fouskitakis and Fas-
sois(2001), which strikes a compromise between achievable
accuracy and model complexity. Final model acceptance
(validation) is based upon formal assessment of the uncor-
relatedness hypothesis of the model’s residuals.

4.1 FS-TARMA model estimation and identification results

The basic aim of the stochastic TARMA modelling and anal-
ysis procedure, is to reveal and accurately represent the
recorded electric field’s inherent dynamical structure – in
both the time and the frequency domains – during (as indi-
cated by the dashed frames shown in Fig.8a and c) the pos-
sible EEP (when the recoded electric field is “high”). The re-
jection of any kind of homogeneous non-stationarities (such

as trends, transients, mean value non-stationarity, cyclo-
stationarities, etc.) from the recorded electric field signals, is
achieved by taking the signal’s (raw data) first-order differ-
encesBrockwell and Davis(1996). The differenced signals
are subsequently low-pass filtered in order to reduce noise ef-
fects and sample size (and thus computational complexity),
and finally:fs=0.0278 Hz,Ts=36 s,N=4160.

The resultingEx, Ey signals shown in Fig.8b and d,
are thus modelled by full FS-TARMA models (estimated
by the 2-SLS estimation algorithm,Poulimenos and Fas-
sois(2006)). The application of several TARMA models of
various orders (na, nc), various functional spaces (spanned
by trigonometric, discontinuous Haar and shifted orthogo-
nal polynomials) and various subspace dimensionalities (p),
leads (based upon the BIC criterion) to a TARMA(40, 20)4
model for bothEx, Ey , the functional subspace of which is
comprised by the first 4 Haar functions in both cases. The
selected TARMA models constitute very accurate represen-
tations – in the time domain – of the signals under study,
as they achieve very low percentage RSS/SSS ratios [RSS:
Residual (1-step-ahead prediction error) Sum of Squares;
SSS: Series Sum of Squares], RSS/SSS=1.6381% for theEx
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Fig. 10. (a)Ex signal’s non-parametrically estimated (via SFFT) time-dependent spectrum;(c) its TARMA(40, 20)4 model-based “frozen”
counterpart;(b) Ey signal’s non-parametrically estimated (via SFFT) time-dependent spectrum;(d) its TARMA(40, 20)4 model-based
“frozen” counterpart (the vertical white dashed lines indicate the earthquake’s occurrence time).

case; RSS/SSS=1.6761% for theEy case, see also Fig.9a
and c, respectively. They are also formally validated, as the
normalized sample autocorrelation function of their residu-
als, falls within the limits of statistical insignificance at the
α=0.05 level, Fig.9b and d.

The “frozen” spectrumFouskitakis and Fassois(2002), of
the selected TARMA models are now presented in Fig.10,
and compared with their non-parametrically estimated (by
the Short-Time Fourier Transform (SFFT),Fouskitakis and
Fassois, 2002), counterparts. It is interesting to note, that
in both cases the TARMA model-based spectrum is in very
good agreement with its non-parametric counterpart. In ad-
dition, high frequency components are more evident present
after sample 3000.

5 Concluding remarks

The observed anomaly accompanying the KythiraMw=6.9
earthquake, demonstrated some special characteristics and
features with respect to earlier observations of possible elec-
tric earthquake precursorsStavrakas et al.(2004), namely its
large duration, the fact that it outlasts the main earthquake
and the lack of any signature on the simultaneous magnetic

field recordings, thus necessitating the establishment of a re-
liable signal recognition and identification procedure.

In the present study, two mutually complementary tech-
niques, e.g. non-linear Neuro-Fuzzy and non-stationary
stochastic models, were utilized for the accurate representa-
tion of the dynamical structure of the recorded Earth’s elec-
tric field. The two model classes presented, offered accurate
representation of the signal’s special characteristics in the
lower and the higher frequency bands, respectively. Both of
them are characterized by high representation accuracy, with
the Neuro-Fuzzy model classifying the observed anomaly as
an extrinsic additional component to the Earth’s natural elec-
tric field recordings. In addition, TARMA models provided
very accurate signal representations indicating a significant
change in the signal’s frequency content.

The complementary findings attained by both method-
ologies, might contribute to the future development of a
more accurate and generalized framework for the efficient
recognition and characterization of potential EEP’s includ-
ing the aforementioned special characteristics and features,
especially when they will not be distinct upon the Earth’s
recorded electric field.
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