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Abstract. The ELF observation at Moshiri (geographic coor-
dinates: 44.29◦ N, 142.21◦ E) in Hokkaido, Japan, was used
to find anomalous phenomena in the Schumann resonance
band, possibly associated with a large earthquake (magni-
tude of 7.8) in Taiwan on 26 December 2006. The Schu-
mann resonance signal (fundamental (n=1), 8 Hz; 2nd har-
monic, 14 Hz, 3rd harmonic, 20 Hz, 4th, 26 Hz etc.) is known
to be supported by electromagnetic radiation from the global
thunderstorms, and the anomaly in this paper is characterized
by an increase in intensity at frequencies from the third to
fourth Schumann resonance modes mainly in theBEW com-
ponent with a minor corresponding increase in theBNS com-
ponent also. Spectral modification takes place only in the
interval of 21:00 UT±1 h, which corresponds to the global
lightning activity concentrated in America. While distor-
tions were absent in other lightning-active UT intervals, in
particular, around 08:00 UT±1 h (Asian thunderstorms) and
around 15±1 h (African lightning activity). The anomaly oc-
curred on 23 December three days prior to the main shock.
The results observed were explained in terms of ELF radio
wave perturbation caused by the lower ionospheric depres-
sion around the earthquake epicenter. The difference in the
path lengths between the direct radio wave from an active
global thunderstorm center and the wave scattered from the
non-uniformity above Taiwan causes interference at higher
resonance modes, which is successful in explaining the ob-
servational data.
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1 Introduction

Schumann resonance (SR) is the global electromagnetic phe-
nomenon observed in the Earth – ionosphere cavity in the
ELF frequency band (Nickolaenko and Hayakawa, 2002).
It is excited by electromagnetic radiation from global light-
ning discharges and is used for monitoring the thunder-
storms worldwide (see e.g. Nickolaenko and Hayakawa,
2007; Sekiguchi et al., 2008).

The peak frequencies of power spectra of SR are 8 Hz (the
fundamental moden=1), 14 Hz (n=2), 20 Hz (n=3), 26 Hz
(n=4), etc. Amplitudes of resonant oscillations vary by a fac-
tor of 2–3 during the day in response to the motion of global
lightning activity, while the peak frequencies change only by
a few percents (Nickolaenko and Hayakawa, 2002). Thus,
the latter nature of SR enables us to use SR as a probe of the
lower ionosphere just like VLF/LF radio signals of fixed fre-
quency (Hayakawa, 2007; Molchanov and Hayakawa, 2008).

An anomalous effect in SR band has been reported for
the first time by Hayakawa et al. (2005), who have demon-
strated an abrupt enhancement around the fourth mode com-
bined with a significant frequency shift (by more than 1 Hz)
from its conventional value of 26 Hz. The effect was de-
tected at Nakatsugawa near Nagoya in Japan, being as-
sociated with a large Chi-chi earthquake (EQ) in Taiwan.
Ohta et al. (2006) have further performed a statistical study
of anomalous spectra of SR collected at Nakatsugawa for
many Taiwan EQs, who have confirmed a clear relationship
between SR modifications and the seismic activity in Tai-
wan. An explanation has been suggested by Hayakawa et
al. (2005) that spectral modifications arise from the wave in-
terference between the direct radio wave arriving at an ob-
server from the global thunderstorms and the wave scattered
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(a) Global map with the Moshiri observatory in the 
center  

 

 
 

(b) Vicinity of observatory and Taiwan 

 
 

Fig. 1. Global map centered at the Moshiri observatory.(a) Posi-
tions of three global thunderstorm centers in America, Africa, and
Asia are shown as ellipses with letter S inside.(b) The observatory
and EQ epicenter in Taiwan.

by the seismo-ionospheric perturbation. The plasma non-
uniformity occurs in the lower ionosphere positioned just
above the epicenter of a future EQ in Taiwan.

The present paper is a further development of the above
concept of unusual SR records associated with EQs. We ana-
lyze the time period around a large EQ in Taiwan occurred on
26 December 2006. Our observation site is placed in Japan
again, but not at Nakatsugawa (around the center of Honshu,
the main island of Japan) as in previous studies (Hayakawa
et al., 2005; Ohta et al., 2006). We use the ELF data from
an observatory at Moshiri in Hokkaido, the northern island
of Japan (geographic coordinates: 44.29◦ N, 142.21◦ E).

2 EQ treated in this paper

A large EQ took place in Taiwan on 12:26 UT (21:26 LT)
on 26 December 2006. The geographic coordinates of its
epicenter were 22.00◦ N and 120.48◦ E, and the magnitude
of the main shock was 7.3 and the depth was 10 km. There
was also a strong aftershock at 12:40 UT on the same day,
with the magnitude M=5.6 and the depth of 10 km.

3 ELF observation in Japan

At the time of this EQ the ELF observatory at Nakatsug-
awa was out of service, where the SR anomaly was first ob-
served in association with the EQs in Taiwan (Hayakawa et
al., 2005; Ohta et al., 2006), and the ELF equipment there
was being upgraded at that time. However, the ELF station
was fortunately working good at another station at Moshiri,
Hokkaido. We use below the ELF data recorded there: the
waveforms of two orthogonal horizontal magnetic field com-
ponentsBNS , BEW (subscripts NS and EW mean north-south
and east-west, respectively) and of the vertical electric field
EZ. Monitoring with the sampling frequency of 4 k Hz has
been continued since July 2004. Details of the ELF observa-
tions at Moshiri are found in Ando et al. (2005) and Matsudo
et al. (2007).

4 Anomalous ELF effects observed at Moshiri

Figure 1 depicts the global map with the origin at the obser-
vatory of Moshiri. It shows three global thunderstorm cen-
ters in America, Africa, and Asia marked as ellipses with
letter S (source) inside. Lightning strokes of each center
contribute to the SR signal at different times of day (Nick-
olaenko and Hayakawa, 2002) owing to the delay in maxima
of their activity. Asian thunderstorms play the dominant role
around UT=(8±1) h, the global activity shifts to Africa at
UT=(15±1) h, and to America around (21±1) h. The natural
ELF radio signals tend to arrive at an observer from differ-
ent directions during the day (Nickolaenko and Hayakawa,
2002). The lower panel (Fig. 1b) indicates the geometry of
our observatory and the EQ epicenter in Taiwan.

Figure 2 shows dynamic spectra of horizontal magnetic
field componentsBNS (upper panel) andBEW (lower panel)
for the particular interval UT=21±1 h (when American
source dominates) for the one-month period around the EQ
date (the day of EQ is marked by the black box). Individual
spectra corresponding to the relevant 2 h time intervals are
presented in Fig. 2 day after day. One may note in Fig. 2 that
theBEW intensity (lower panel) is considerably enhanced in
the frequency range above 10 Hz on 23 December being si-
multaneously depressed below 10 Hz. These deviations will
be discussed later in a quantitative way.

In order to make this anomaly seen in Fig. 2 much more
convincing, we have performed the following signal analysis.
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Fig. 2. Extremely low frequency dynamic spectra for the time in-
terval UT=21±1 h when the American thunderstorms dominate in
the Earth – ionosphere cavity. The upper panel presents the power
spectra of theBNS field component, and the bottom presents the
BEW spectra. The period covers from 18 November 2006 to the
beginning of February 2007. The EQ date is given by the black
box.

We have examined temporal evolutions of frequency spectra
of two horizontal magnetic field componentsBNS andBEW

during one year,±6 months around the EQ on 26 December
2006. For each 2 h time interval for three lightning sources
(America, Africa and Asia) of a given day, we estimate the
running average power spectrum (<B(f)>) in the frequency
band of 2.5–40 Hz for that day. That is, the spectrum aver-
aged over±15 days (total 31 days) just around the relevant
day, is regarded as a reference spectrum for that day. Then,
we make a difference between the frequency spectrum for
this particular day (B(f)) and the corresponding running av-
erage for this day (<B(f)>), and we obtain the difference
(residue)1B(f)=B(f)−<B(f)> for this day.

We have examined all of the three lightning sources
(America, Africa, Asia), and we have found that the relevant
difference (residue) spectra1BEW (f ) and1BNS(f ) show
no remarkable anomaly for other time intervals of African
source (UT=15±1 h) and of Asian source (UT=8±1 h). Fig-
ure 3 illustrates the dynamic spectra of1BNS(f ) (top) and
1BEW (f ) (bottom) for the UT interval of 21±1 h. A signif-
icant anomaly is clearly seen in Fig. 3 only when the global
thunderstorm activity moves to America (UT=21±1 h).

Figure 4 compares particular spectra of SR during normal
and abnormal days for the American source (UT=21±1 h).
Here, the blue lines in frames (a) and (b) depict the power
spectra observed on a quiet day of 21 December. Frames (c)
and (d) refer to the day with anomaly on 23 December. The
red lines in frames (a)–(d) depict the running mean spectra.
As already described before, these were averaged over±15
days around the dates of 21 and 23 December. Plots (e)–(h)
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Fig. 3. Dynamic spectra of the field deviations1BNS(f ) and
1BEW (f ) relevant to the time interval of UT=21±1 h. The upper
panel shows deviations1BNS(f ) and the lower is the1BEW (f )

spectra. An anomaly on 23 December is seen as vertical red-brown
bars in the frequency above 10 Hz.

show the spectra1BEW (f ) and1BNS(f ) in order to find
out any EQ signature. Thus, (a) and (b) frames of Fig. 4 show
the power spectraBNS andBEW in quiet conditions, while
the (c) and (d) spectra show the anomalous signal. That is,
one may observe that deviations appear at frequencies above
10 Hz with an apparent enhancement at the 2nd and 3rd of
SR modes on the anomalous day of 23 December. Modifi-
cation in theBNS field component is also present, but it is
less pronounced than that in theBEW field. Plots (e)–(h) of
Fig. 4 show deviations of power spectra from the monthly
running average. The horizontal straight lines here depict
theσ and 2σ levels whereσ is the standard deviation of the
power spectra in the 2.5–40 Hz frequency range for the whole
month period. These lines demonstrate the statistical signifi-
cance of spectral anomaly. Modifications in the plots (g) and
(h) substantially exceed the 2σ level, and we must conclude
that this anomaly is far beyond the usual fluctuations of SR
intensity. On the other hand, plots (e) and (f) illustrate the
spectral deviations on 21 December, which never go out from
the 2σ threshold and must be attributed to customary fluctu-
ations caused by statistical nature of the global thunderstorm
activity.

The spectral anomaly was apparent only in the UT in-
terval of 21±1 h, i.e. when American thunderstorms domi-
nate in the Earth – ionosphere cavity. In order to reconfirm
this fact, Fig. 5 presents the corresponding difference spec-
tra similarly obtained for other two intervals of UT=8±1 h
(Asian thunderstorms) and UT=15±1 h (African activity) on
the same “active” day of 23 December. One may observe that
no anomaly is present in these UT sectors.
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5 Interpretation of anomalous ELF effects

Similarly to Hayakawa et al. (2005), we interpret the abnor-
mal ELF radio signal as an interference of direct and scat-
tered radio waves. Figure 6 shows schematically the rela-
tive location of the disturbance over Taiwan and the observer
at Moshiri together with parameters of propagation paths.
Three global thunderstorm centers are shown: Asia (0◦ N
and 120◦ E), Africa (5◦ N and 10◦ E), and America (0◦ N
and 50◦ W). It follows from the geometry of Fig. 6 that only
American thunderstorms are able to provide an anomaly in
the SR band. Owing to the path orientation, the major modi-
fications will occur in theBEW field with the corresponding
smaller effect on theBNS component, exactly as it was ob-
served in the experiment.

Geometrical considerations indicate that the time of no-
ticeable changes in resonance spectra must coincide with
the period of American thunderstorms, i.e. UT=around 21 h,
which also coincides with the measurements. A difference
in the direct and scattered path lengths is the most important
quantity for the wave interference: it controls the frequencies
where spectral modifications might take place. The relevant
path difference was as follows: 0.23 Mm for Asian thunder-
storms, 2.4 Mm for African activity, and 5.7 Mm for Amer-
ican lightning strokes, as seen in Fig. 6. The longest path
difference corresponds to American sources, so that modifi-
cations might occur in the SR band only around UT∼=21 h.

Then we computed direct, scattered and the total vertical
electric field components in the disturbed Earth – ionosphere
cavity when the global thunderstorms concentrate in one of
three centers shown in Fig. 6. When introducing an iono-
spheric perturbation associated with the seismic activity, we
located the depression above the future EQ focus, assumed
that the lower ionosphere was reduced in height as a whole
by 20 km, accepted a Gaussian radial dependence of pertur-
bation, and found the relevant localized modification of the
ELF field. The characteristic size of disturbance was cho-
sen to be 1000 km. Further details of the modeling the non-
uniformity and ELF radio propagation might be found either
in Appendix, in Hayakawa et al. (2005) or in Nickolaenko et
al. (2006).

Figure 7 depicts the computed frequency spectra relevant
to separate thunderstorm centers of America (upper panel),
Africa (middle panel), and Asia (bottom penel). The thin
lines here show the spectra of direct wave, i.e. SR expected in
the uniform cavity with the given source position. The thick
lines refer to the ionospheric non-uniformity over Taiwan.
Owing to small differences in the path lengths for African
and Asian thunderstorms, substantial spectral changes occur
well above the SR band in the frequency range above 30 Hz.
A significant path difference for the American source pro-
vides modifications within the SR band, as is demonstrated in
Fig. 7. There is an increase around 10 Hz, a decrease from 16
to 20 Hz, and an enhancement from 20 to 30 Hz. Of course,
the agreement between our simple theoretical estimation and

the observation is not complete, but we can conclude that the
frequency dependence in the top panel of Fig. 7 is consistent
in general with the observation presented in Figs. 4c and 4d.
The discrepancy might arise from the following reasons:

1. computations refer to the vertical electric field compo-
nent, while horizontal magnetic fields are measured in
the experiment,

2. point sources were used in the model, and the exact lo-
cation and the size of zone occupied by global thunder-
storms is unknown for the moment of measurements,

3. the characteristics of ionospheric modification by pre-
seismic activity might deviate from that assumed in our
model.

We listed obvious factors that might alter the spectral
modifications, but the major features of pre-seismic effects
detected experimentally are also present in the model. In
particular, significant changes of frequency spectra occur at
higher resonance modes in the SR frequency range from 20
to 30 Hz.

6 Summary and discussion

In our previous study by Hayakawa et al. (2005), the
anomalous SR effects were recorded at the Nakatsugawa
observatory in possible association with EQs in Taiwan.
The anomaly was characterized by a narrow-banded nature
around the fourth resonance frequency in the form of a high
sharp peak shifted from the regular 26 Hz frequency. While,
significantly different characteristics are presented in this pa-
per, as based on the ELF observation at Moshiri, in associa-
tion with an EQ again in Taiwan; that is, a bias at frequencies
above 10 Hz and in the frequency range of 20–30 Hz. The
model ionospheric modification in this paper is exactly the
same as in Hayakawa et al. (2005), but the fundamental na-
ture of the difference between this paper and previous paper
by Hayakawa et al. (2005) is due to a much larger optical
path difference in the present paper.

Stimulated by the work by Hayakawa et al. (2005),
Schekotov et al. (2007) have tried to find any effects in the
ELF data collected at Kamchatka. No similar signals as in
Hayakawa et al. (2005) were detected there in the SR band,
but other peculiarities were found instead. That is, ELF
emissions appeared below the SR fundamental mode (8 Hz)
associated with local seismic activity. These seismogenic
ULF/ELF emissions occupied the frequency band of 4–6 Hz
and were detected as an enhanced Phh/Pdd power spectra
ratio (The horizontal magnetic components were measured
along (h) and across (d) the local magnetic meridian). An
increase in the ratio of Phh/Pdd was accompanied by a re-
duction in the standard deviation of the orientation angle
of the polarization ellipse. The area of these seismogenic
ELF modifications was estimated to be detected within a
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Fig. 4. Particular power spectra of ELF radio signal recorded in the time interval UT=21±1 hr. Panels(a) and(b) show the spectrum ofBNS

andBEW field components on a regular (undisturbed) day of 21 December. The red line is the monthly averaged power spectrum, while
the blue line is the spectrum of the particular day. Panels(c) and(d) present spectraBNS andBEW on the disturbed day of 23 December.
The red line is the monthly averaged power spectrum, and the blue line is the spectrum of the particular day. Panels(e)–(h) depict spectral
differences1BNS and1BEW on the quiet (21 December) and disturbed (23 December) days. The standard deviationσ and the 2σ level
are indicated by horizontal straight lines.

few hundred kilometers from the future EQ epicenter. Ohta
et al. (2001) had already observed at Nakatsugawa (Japan)
similar seismogenic ULF/ELF emissions possibly associated
with the great Chi-chi EQ in Taiwan. The emissions covered
a wide frequency band, up to a few tens of Hz, although the
frequency spectrum was not examined thoroughly.

An anomaly described in the present study takes place
above the SR fundamental frequency, and we do not address
here the modifications present at frequencies below 1 Hz as
seen in Fig. 4. “High frequency” modifications can hardly be
explained in terms of generation of the wide-banded electro-
magnetic noises directly by a seismic source just like it was
suggested for the ULF band (Fraser-Smith et al., 1990; Kopy-
tenko et al., 1993; Hayakawa et al., 1996). The reason is that
the skin-depth at the higher SR modes excludes any possi-
bility of subsurface signal propagation through the ground
soil to the atmosphere. To make information complete, we
mention that the ELF noise corresponding to the anomaly
observed on 7 December 2006 (see Fig. 3) was composed of
many frequent pulses. However, the seismic origin of these
impulses seems dubious.

It looks reasonable to attribute the anomalies detected in
this paper to changes in the lower ionosphere above the future
EQ focus and to the interference of direct and scattered ELF

radio signals. The major field source was the lightning activ-
ity in America as is evidenced by the major effect onBEW

and the signals were modified by reflections from the iono-
spheric non-uniformity caused by the pre-seismic activity in
Taiwan. Computed modifications of SR spectra agree with
the observations. No distinct effect was observed when thun-
derstorms concentrate in Asian and African sectors, in con-
sistence with the prediction of the model. Besides, the model
indicates absence of the considerable effect at frequencies
below 10 Hz since the path length difference between the di-
rect and scattered signals is small enough for all the sources.
Therefore we conclude that the experimental evidence pre-
sented here might be reasonably explained by model com-
putations, and both of them indicate a realistic modification
of the lower ionosphere (a depression) above the center of
future EQ.

To conclude the paper, we list the similarity and distinc-
tions of our results in comparison with published data by
Hayakawa et al. (2005) and Ohta et al. (2006).

6.1 Similarity

Spectral anomalies in the SR band are observed in Japan in
association with seismic activity in Taiwan.

Modifications tend to occur at higher SR modes.

www.nat-hazards-earth-syst-sci.net/8/1309/2008/ Nat. Hazards Earth Syst. Sci., 8, 1309–1316, 2008
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Fig. 5. Power spectra on the anomalous day of 23 December 2006, recorded in the time intervals UT=8±1 h (left plots) and UT=15±1 h
(right plots). Panels(a)–(d) show correspondingly the spectraBNS andBEW for UT=8±1 (Asian source) and 15±1 h (African source).
The red line is the monthly averaged power spectrum, while the blue line is the spectrum of particular day. Panels(e)–(h) show the spectral
differences1BNS and1BEW for UT=8±1 h and 15±1 h, correspondingly. Horizontal lines indicate levels ofσ and the 2σ .

Fig. 6 402 Fig. 6. Relative position of three global thunderstorm centers, the
ELF observatory at Moshiri, and the ionospheric disturbance over
Taiwan. The optical lengths are shown of the direct and scattered
propagation paths.

The “arrival angle” of modifying factor agrees with the
direction toward the EQ epicenter.

6.2 Distinctions

Effects observed at Moshiri were short-term modifications,
which were detected only on one day and in a narrow UT
interval of 21±1 h.

Spectral modifications at Moshiri have a clear precursory
character. They occurred three days prior to the main shock
and were absent afterwards (In this context, they look simi-
lar to the ULF precursors of Spitak, Loma-Prieta and Guam
EQs).

Anomalous signals at Moshiri occupy a wide frequency
band, while anomalies reported before had a narrow-band
nature.

Appendix A

We used the following model in our computations. We treat
the vertical electric field for simplicity. The primary radio
wave (E1) arrives at an observer together with the wave scat-
tered by a localized ionospheric disturbance wave (E2), so
that the total field (E) is a sum of these two waves.

E = E1 + E2 (A1)

The direct wave is found from Nickolaenko and Hayakawa
(2002),

E1(ω) =
M(ω)

4 ha2ε

iν (ν + 1)

ω

Pν [cos(π − θ H )]

sinπν
, (A2)

whereω=2πf is the circular frequency,M(ω) is the source
current moment,ν(ω) is the propagation constant,h is the
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ionospheric height,a is the Earth’s radius,ε is the dielec-
tric constant of free space,Pν (cosθ) is the Legendre func-
tion, andθH is the angular source – observer distance. The
function ofν(f ) is pertinent to the regular ionospheric pro-
file, which is defined by the standard equations (Nickolaenko

and Hayakawa, 2002):ν=−
1
2+

√
1
4+ (kaSν)

2 (k: free space

propagation constant),S2
ν=

HM

HE
(HM and HE are the ELF

wave reflection height for magnetic and electric fields, re-
spectively), andC2

ν=1−S2
ν . The subscript D of such asνD

indicates the disturbed ionospheric profile.
According to Williams et al. (2006), the electric (lower)

characteristic height (HE) in the knee model of ionospheric
conductivity profile is found from the following equation.

HE (f ) = HKNEE + ςa ln

(
f

FKNEE

)
+ 0.5(ςa − ςb)

ln

[
1 +

(
FKNEE

f

)2
]

+

 405 
 406 

Fig. A1 407 Fig. A1. Depression of the ionosphere profile right above the focus
of Taiwan EQ.

i

[
π

2
ςa− (ςa−ςb) tan−1

(
FKNEE

f

)]
(A3)

The knee altitude HKNEE=55 km and the frequency
FKNEE=10 Hz, as seen in Fig. A1. This means that at the
altitude of 55 km the displacement current of 10 Hz is equal
to the conduction current. The profile has different height
scalesζb=8.3 km andζa=2.9 km below and above the knee
altitude, respectively.

The magnetic (upper) characteristic height (HM ) and its
height scale are given by,

HM = HMP − ςM ln

(
f

fMP

)
− i

π

2
ςM

ςM = ςMP + BM

(
1

f
−

1

fMP

)
, (A4)

where the upper height parameters are left unchanged by
the disturbance: HMP =96.5 km, ζMP =4 km, fMP =8 Hz,
BM=20 km.

In the ionospheric depression due to the pre-seismic effect
shown in Fig. A1, only a single parameter varies, i.e. the knee
height, and it becomes equal toHKD=35 km. In other words,
only the lower part of profile goes down by 20 km as the
whole, as seen in Fig. A1.

The disturbed electric height is similar to Eq. (3) with a
new knee heightHKD only:

HED = HKD + ςa ln

(
f

FKNEE

)
+ 0.5(ςa − ςb)

ln

[
1 +

(
FKNEE

f

)2
]

+i

[
π

2
ςa − (ςa − ςb) tan−1

(
FKNEE

f

)]
(A5)

www.nat-hazards-earth-syst-sci.net/8/1309/2008/ Nat. Hazards Earth Syst. Sci., 8, 1309–1316, 2008



1316 M. Hayakawa et al.: Seismogenic anomalous ELF phenomena

The disturbed complex sine and cosine functions are equal to
S2

νD=
HM

HED
andC2

νD=1−S2
νD, so that a change of the com-

plex cosine propagation parameter is1C2
ν=C2

ν−C2
νD.

The relevant field modification is expressed through an ef-
fective changedZ=

π
2 dC2

ν · d2 of the surface impedance (the
“disturbed” boundary condition is held at the undisturbed al-
titude) whered is the size of the disturbance with the Gaus-

sian spatial dependenceδC2
ν=1C2

ν exp
(

cosβ−1
d2

)
, β is the

angular distance from the center of ionospheric modifica-
tion, andα is the internal azimuth counted from the direc-
tion to the field source. We acceptd=π /40 radians, hence
d=1000 km. For a small (in wavelengths) localized non-
uniformity, the normalized disturbance is Nickolaenko and
Hayakawa (2002):

BZ =
dZ · Q1

sin(πν) Pν [cos(π − θH )]
(A6)

where

Q1 = ν (ν + 1) Pν [cos(π − θ)] Pν [cos(π − γ )]

−M · P 1
ν [cos(π − θ)] P 1

ν [cos(π − γ )] , (A7)

P 1
ν (cosθ) is the associated Legendre function,θ is the

angular distance from the source to the disturbance and
γ is the angular distance from the disturbance to the
observer. The geometrical differentiation parameter is
M=

∂γ
∂θ

=
sinθ cosγ · cosα− sinγ cosθ

sinγ
. The disturbed vertical

electric field is given by

EDIST
= |1 + BZ| (A8)

We placed this kind of disturbance over Taiwan at the geo-
graphic coordinates (21.83◦ N and 120.54◦ E) and supposed
that a single of three global thunderstorm centers drives the
SR signal at the moment. After computing the normalized
disturbanceBZ(f ), we find the unperturbed (Eq. A2) and
perturbed Eq. (A8) fields and relevant power spectra shown
in Fig. 7.
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