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Abstract. A decade of NOAA-15 particle flux data of-
fers an opportunity to test claims of correlations between
seismic activity and effects on the ionosphere. Over the
last two decades, potentially interesting observations in the
ionosphere-magnetosphere transition region have been in-
vestigated. Specifically these consists of anomalous particle
fluxes detected by several space experiments and correlated
with the earthquake occurrence. These particle fluxes are
characterised by anomalous short-term and sharp increases
in high energy particle counting rates, referred to as particle
bursts. In this work, more general rules for particle bursts se-
lection have been defined and tested on the NOAA database,
for particles inside and outside the South Atlantic Anomaly
region. The whole period of ten years burst activity from
NOAA-15 database is reported. Data from four satellites,
NOAA-15, 16, 17 and 18, were analyzed during periods of
solar quiet activity in connection with strong earthquakes, re-
vealing presence of bursts detected on more than one satellite
close to the time of the same seismic events. This prelimi-
nary study presented here concentrates on periods of major
Indonesian earthquakes from 1998 to date, including Suma-
tra event M=9, during which geomagnetic Ap index was less
than 16 and with no sudden ionospheric disturbances. During
this period particle burst temporal distributions have shown
some correspondence with earthquake times. The limits of
the analysis presented in this papers are discussed as well as
prospects for future work.

1 Introduction

This study presents for the first time some preliminary result
of an ongoing analysis of the National Oceanic and Atmo-
spheric Administration (NOAA) particle database in connec-
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tion with seismic activity. This work started in 2006 from a
general study of particle data (Esposito, 2008).

The NOAA and the National Aeronautics and Space Ad-
ministration (NASA) jointly developed a series of Polar Op-
erational Environmental Satellites (POES). These Advanced
TIROSN (ATN) spacecrafts, named after the prototype satel-
lites, TIROS-N (Television Infrared Observation Satellites),
have been flying since 1978 (Davis, 2007). The system
consists of pairs of satellites, which ensure that every part
of the Earth is regularly observed at least twice every 12 h
from about 800 km altitude. Starting with the NOAA-15
satellite in 1998, an upgraded version of the Space Environ-
ment Monitor (SEM-2) is being flown. The SEM-2 contains
two sets of instruments that monitor the energetic charged-
particle environment near the Earth. They detect and monitor
the influx of energetic ions and electrons into the atmosphere
and the particle radiation environment at the altitude of the
satellite.

Geomagnetic and ionospheric activities need to be taken
into account because of their relevant influences on fluxes
recorded from NOAA particle telescopes. Particle fluxes
vary principally as a result of geomagnetic storms of which
solar origin depends on the temporal response of magneto-
sphere plasma to the solar wind speed (Baker, 2000). Links
between electron fluxes recorded by NOAA satellites and
solar activity were studied in connection with geomagnetic
storms (Obara et al., 2001), under the radiation belts (Grigo-
ryan et al., 2008) and in the inner belts within the South At-
lantic Anomaly (SAA) (Asikainen and Mursula, 2008). Sim-
ilar studies have been carried out on NOAA proton fluxes
in connection with geomagnetic storms (Soraas et al., 1999),
under the radiation belts (Soraas et al., 2002) and within them
(Evans et al., 2008). These studies show the influence on
the data of solar wind speed; moreover, the ionosphere is
influenced by electromagnetic emissions coming from solar
flares. Sudden Ionospheric Disturbances (SID) are caused by
X-Ray and ultraviolet ionisation followed by particle precipi-
tation (Huang et al., 2007). SID are also produced by Gamma
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Ray Bursts as the X-Ray portion of these events will have the
same effect as a solar flares X-Ray emissions (Mandea and
Balasis, 2006).

Several types of electromagnetic waves in the ionosphere
and magnetosphere can produce particle acceleration and
precipitation (Millan and Thorne, 2007). A brief list of such
phenomena include: electron precipitation coincident with
ELF/VLF wave bursts (Walt et al., 2002); ULF modulation
of energetic particles in the dayside magnetosphere (Zong et
al., 2007); electron micro-bursts in association with chorus
(Lorentzen, 2001); acceleration and loss depending on plas-
maspheric hiss (Meredith et al., 2004); precipitation of radia-
tion belt electrons induced by whistlers (Lauben et al., 2001);
electron precipitation induced by magnetospheric reflected
whistler waves (Bortnik et al., 2006); pitch-angle scatter-
ing by electromagnetic ion cyclotron waves (Summers and
Thorne, 2003). Some mechanical wave interactions were in-
vestigated: acceleration by fast magnetosonic waves (Horne
et al., 2007) and electrons precipitation in relation to equa-
torial plasma wave turbulence phenomena (Morioka et al.,
2001). Furthermore, there are some kinds of electromag-
netic waves coming from the surface of the earth, such as
anthropogenic noise and natural emissions. In order to ex-
plain the existence of electron precipitation zones at middle
latitudes, several hypotheses are currently under investiga-
tion (Millan and Thorne, 2007). One of these hypotheses re-
garding the connection with ground-based radio-transmitters
has been recently confirmed (Inan et al., 2007a). Another
hypothesis concerning global thunderstorms activity has also
been considered and it was confirmed that lightning induces
electron precipitation (Inan et al., 2007b).

Short term variations in high energy charged particles
fluxes near the South Atlantic Anomaly (SAA) space were
associated to seismic activity (Voronov et al., 1989). The
electromagnetic link between particle fluxes and earthquakes
(EQs) constitute another interesting hypothesis based on the
observation that VLF radiation is related to seismic activ-
ity (Larkina et al., 1983), which was recently confirmed by
the DEMETER satellite in (Rozhnoi et al., 2007). Experi-
mental data on high-energy charged particle fluxes, obtained
from various near-Earth space experiments (MIR orbital sta-
tion, METEOR-3, GAMMA and SAMPEX satellites) were
processed and analyzed; a 2 to 5 h precursor effect resulted
(Aleksandrin et al., 2003), although its statistical signifi-
cance was somewhat limited. A re-analysis of the SAM-
PEX database also shows a 4 h precursor effect (Sgrigna et
al., 2005). The case study of HF wave measurements and
gamma rays diagnostic performed on board the CORONAS-I
satellite have shown a possible correlation between enhance-
ments of whistler wave activity and soft gamma ray fluxes
related to seismic activity (Rothkaehl et al., 2006).

Satellite experiments including Vulkan constellation (Pu-
linets, 2006), ESPERIA (Sgrigna et al., 2007), CSES (Xuhui
et al., 2007) and ARINA (Bakaldin et al., 2007) are aimed to
study in detail the seismic effects in the near-Earth magne-

tosphere. While Vulkan constellation, ESPERIA and CSES
are still at the design level, ARINA has been build and is cur-
rently operated on a Resurs-DK1 satellite (Casolino et al.,
2008), since 2006 both studied and implemented.

A limitation of these correlation studies is that they
have been performed over short time intervals (less than
16 months) compared to the frequency of strong EQs. The
NOAA database includes up to 10 years of recording parti-
cle data from NOAA-15, nearly eight years from NOAA-16,
six years from NOAA-17 and three years from NOAA-18
(Davis, 2007). Therefore, correlations among similar instru-
ments located in more than one satellite can also be studied.

2 NOAA polar satellites and instruments

POES circle the Earth in an almost North-South circu-
lar orbits, passing close to both poles, with an altitude
between 833 (morning orbit) and 870 (afternoon orbit)
km. Their orbital period is about 100 min and they are
sun synchronous: NOAA-15 ascending orbit retrievals re-
sults in a 07:30 p.m. analysis, and the descending orbits re-
trievals results in a 07:30 a.m. analysis; NOAA-16 and 18
ascending orbit retrievals results in a 02:00 p.m. analysis,
and the descending orbits retrievals results in a 02:00 a.m.
analysis; NOAA-17 ascending orbit retrievals results in a
10:00 p.m. analysis, and the descending orbits retrievals re-
sults in a 10:00 a.m. analysis (NASA, 2004). Geographically
the satellites cover all longitudes and all dipole tilts, while
the satellites cover virtually all magnetic latitudes. Due to of
the polar orbit, the satellites sample virtually all values of the
McIlwain parameter L, although the coverage in (B, L) space,
where B is the geomagnetic field, is somewhat limited.

The SEM-2 package was developed primarily to study
phenomena in the auroral regions and consists of three dif-
ferent instruments: the Medium Energy Proton and Electron
Detector (MEPED) measures energetic electrons and protons
mirroring above and precipitating into the high-latitude at-
mosphere, the Total Energy Detector (TED) measures the to-
tal energy flux carried into the atmosphere by particles of
auroral energies and the High Energy Proton and Alpha De-
tector (HEPAD) measures protons and alpha particles, pri-
marily of solar origin. Here we have analysed only MEPED
data. Each MEPED consists of two sensor assemblies: the
directional (telescope) particle detectors and the omnidirec-
tional proton detectors. Telescopes are mounted in two pairs,
one from each pair detects electrons, while the other detects
protons and heavier ions. One pair of detectors is mounted to
view outward along the Earth-satellite radial vector zenith.
At geomagnetic latitudes greater than 30◦, these detectors
view charged particles that are in the atmospheric loss cone
and will enter the atmosphere. The other detector pair is
mounted to view at about 80◦ compared to the first, and
for magnetic latitudes greater than 30◦ will measure particles
that have pitch angles near 90◦.
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The electron detector is a thin (700µm) 25 mm2 solid-
state detector covered by 0.51µm thick nickel foil, that sup-
presses detector response to photons and reduces pulse pile-
up caused by incident low-energy electrons or ions. Elec-
tronic pulse-height discrimination is used to select pulses due
to incident electrons of nominal energies greater than 30 keV,
100 keV and 300 keV. The contaminant response to protons
that deposit more than 1 MeV in the detector is eliminated
electronically. The detectors are, however, sensitive to pro-
tons between about 135 keV and 1 MeV. Data from the direc-
tional proton detectors may be used to correct for this effect.

The proton (ion) detector within each telescope pair is a
two-element, solid-state detector telescope. The front el-
ement has an effective area of 25 mm2 and thickness of
200µm. The back element has an effective area of 50 mm2

and a thickness of 200µm. A 2500-gauss magnet is mounted
across the input aperture of this detector assembly to pre-
vent any electrons of energies less than 1.5 MeV from reach-
ing the detectors. Electronic pulse height discrimination, to-
gether with coincidence logic on the pulses from the two
detectors in the telescope, is used to select protons in six
energy pass bands (nominally 30–80 keV, 80–250 keV, 250–
800 keV, 800–2500 keV, 2500–6900 KeV and>6900 KeV)
and an integral channel for energies greater than 2.5 MeV.
This detector is also sensitive to heavy ions (e.g. He and O)
although the particle energies defining the pass bands will be
marginally higher than those given for protons. The geomet-
ric factor for both the electron and proton directional detector
systems is 9.5×10−7 m2 sr.

The omnidirectional sensors consist of three nominally
identical Kevex Si (Li) solid-state detectors of 50 mm2 area
by 3 mm thickness, independently mounted under spherical
shell moderators. Each detector has a full-opening view an-
gle of 120◦ in the zenith direction. The detectors are shielded
from below by approximately 0.5 cm of Mallory, and the
spacecraft itself provides additional shielding from below.
Assuming that it is an isotropic flux the omnidirectional ge-
ometric factor would be 0.215 cm2 (Evans and Greer, 2004).

3 NOAA data preparation

The NOAA database binary files were downloaded from the
NOAA web pagehttp://poes.ngdc.noaa.gov/. A binary file
contains a daily archive record and is free to download from
the NOAA web page a day after its recording. The archive
record comprises (Evans and Greer, 2004) 32 s of data, in-
cluding a full set of orbital parameters provided every 8 s
(sub-satellite latitude and longitude every 2 s), 16 full data
collection cycles from the TED, the MEPED electron and
proton telescope instruments and 4 full cycles of the omni-
directional detector sensors. A full set of background data
from the 8 TED detector systems is included once in the 32 s
archive record. Finally, a selected portion of the SEM-2 in-

strument status, temperature, and system health data as well
as data quality and ancillary information are included.

As the amount of NOAA data is large we have used
the HBOOK Fortran package for histogramming and fit-
ting, which are developed at CERN. The HBOOK system
consists of a few hundred Fortran subroutines which en-
able the user to symbolically define, fill and output one-
and two-dimensional density estimators, under the form of
histograms, scatter-plots and tables and to handle Ntuples
(Couet and Goossens, 1998). Ntuples is a suitable way of
writing micro data-summary-files for further processing, al-
lowing for the projections of individual variables or correla-
tion plots and a selection mechanisms may be defined. The
first step in the preparation of NOAA data consists of the
transformation of all binary files into Ntuples, making op-
portune selections and additions of data.

First of all we included in Ntuples only orbital parame-
ters, MEPED and omni-directional data from binary files.
The instrument status, temperature, and system health data
as well as data quality and ancillary information were
used to select the data coming from instrumental errors.
Daily average geomagnetic and ionospheric activities were
included in the Ntuples with the respective indexes Ap
and SID. Data were downloaded respectively from the In-
dices of Global Geomagnetic Activity of Geo Forschungs
Zentrum (GFZ) Postdam atftp://ftp.gfz-potsdam.de/pub/
home/obs/kp-ap/tab/and from the American Association of
Variable Star Observers (AAVSO) athttp://www.aavso.org/
observing/programs/solar/sidbase/. Furthermore, we added
the calculus of the minimum mirror point altitudes by the
UNILIB libraries (Krunglanski, 2002) to determine if parti-
cles were precipitating. The library consists of FORTRAN
subroutines which enable computation of the geomagnetic
field strength, to evaluate averaged quantities along a drift
trajectory and to trace magnetic field lines and drift shells.
As well as the widely used (Bm, L) coordinates, the library
enables evaluation of parameters such as the magnetic field
intensity, the McIlwain parameter L, the third adiabatic in-
variant I, the altitude of the lowest mirror point, etc. (Schmitz
et al., 2000).

All sets of orbital parameters are provided every 8 s, so we
chose this value as the base time for our study. Consequently
all the other variables were defined with respect to the 8 s
step. Thus 8 s averages of counting rates (CRs), latitude, lon-
gitude, MEPED and omni-directional data were calculated.
Unreliable CRs with negative values were labeled and ex-
cluded from the analysis. Being that the energy detected for
the electron is a cumulative sum over three thresholds equal
to E1=30 KeV,E2=100 KeV andE3=300 KeV, we decided
to define new energy channels from the difference of the en-
ergies to obtain electrons detected in intervals equal to 30–
100 KeV, 100–300 KeV and>300 KeV, which is similar to
how the proton energies were detected. Also in the case of
the new energies stated above, unreliable CRs were defined
and excluded whenE2−E1<0 and whenE3−E2<0.
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Fig. 1. CR daily average common data cell filling in the adiabatic coordinates on 26 December 2004.n= satellite passes through the same
cell.

To correlate seismic activity with NOAA data we built an-
other Ntuple which contains EQs data including: time of
events, locations, magnitudes and depths. These data were
downloaded from the Earthquake Center of US Geological
Survey (USGS) athttp://neic.usgs.gov/neis/epic/epic.html.
The values of the corresponding L-shells of the EQ epicen-
ter projected to different altitudes were also calculated by
UNILIB and included in the Ntuples. This was done to de-
termine the presence and location of a possible link between
EQ and particle fluxes.

Finally, after Ntuples were filled, we converted them into
ROOT files to compress the data rendering them simpler to
manage, study and plot the results using ROOT framework.
ROOT is an object-oriented C++ analysis package aimed at
solving the data analysis challenges of high-energy physics
(Brunet al., 2007) and it is downloadable from the ROOT
web site at:http://root.cern.ch/root/Availability.html.

4 NOAA data analysis

Sharp, short-term increases in particle CRs ranging from
tens of seconds to a few minutes were observed for the
first time in the MARIYA experiment, operating on board
of the SALYUT-7 orbital station during 1985 (Voronov et
al., 1987). It was in that occasion that the term high-
energy charged “particle bursts” (PBs) was coined. Our data
analysis started from a selection of PBs from the NOAA
database. Our analysis method follow the strategy introduced
by Sgrigna et al.(2005) but implements some differences.
These differences were necessary because, compared to the
previously published experiments, NOAA satellites operate
at higher orbits and covers different energy range intervals.
We calculated the daily averages of CRs and then defined
the condition for which a CR fluctuation was not likely due
to possible statistical fluctuations with a probability equal to
99%, the PBs. We then proceeded to fill the Ntuples with the
PBs information.

In agreement with a previous work (Sgrigna et al., 2005),
the daily averages of CRs were calculated according to their
invariants coordinates. In addition, we also considered the
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Fig. 2. Distribution of averaged 8 s counts on 26 December 2004, for 0◦ electrons with energy from 30 KeV to 100 KeV, 1.1<L<1.2 and
90◦<α<105◦. The left distribution was detected outside the SAA with 22µT <B<25µT while the right distribution was detected entering
the SAA with 20.5µT <B<22µT .

geomagnetic field B at the satellite locations. It was nec-
essary to take into account the CRs amplitude and variation
versus geomagnetic coordinates, because the spatial gradient
of particle fluxes near the SAA was too large. In this situa-
tion B can be considered a suitable parameter for delimiting
the transition region between inner and outer radiation belts
(Walt, 1994) where large gradient are located, sub intervals
of the B are defined, so that the CR amplitude variations are
limited. The averages were calculated in every sector of a
three dimensional matrix divided by L-shell, pitch angleα

and B. The L-shell bin was set at 0.1 as in the past cases
(Sgrigna et al., 2005) and the range between 0.9 and 2.2 so
that we have 13 intervals. In this study the pitch angle is
equal to the difference between the particle telescope and ge-
omagnetic field directions. The SEM-2 detectors however,
have a finite aperture of 30◦ so that we chose a bin of 15◦ for
a total of 12 intervals. The geomagnetic bin was fixed to be B
dependent with shorter intervals going through the radiation
belts, because we needed to compensate for the non linear
increase of CRs when the satellite goes through the SAA.
The nine B intervals are the following: 16.0–17.5µT , 17.5–
19.0µT , 19.0–20.5µT , 20.5–22.0µT , 22.0–25.0µT , 25.0–
29.0µT , 29.0–33.0µT , 33.0–37.0µT and 37.0–41.0µT . A
two dimensional matrix (L, B) was used to examine particle
data of the 4 omni-directional telescopes. In all other cases,
we used a three dimensional matrix (L,α, B). To obtain a re-
liable statistic we made sure that the satellite passed at least
20 times through the cells with the same intervals for all the
variables. We did not consider the CRs and CR daily aver-
ages relative to the cells in which satellite passed less than 20
times. Figure 1 shows typical average daily CR data filling
of the adiabatic intervals for every geomagnetic cell and the
first four pictures are relative to the SAA.

Figure 2 shows typical 8 s CR distributions inside two dif-
ferent cells; they are compatible with Poisson distributions in

agreement with earlier works (Sgrigna et al., 2005). To de-
fine the condition for which a CR is a non-poissonian fluctu-
ation with 99% probability, we introduced the numbernσ of
σ that the amplitudex of the CRs must exceed the averagex̄.
In other words we usednσ for which P(x>x̄+nσ σ)<0.01.
We had to remember that our amplitudes are the results of an
average of four independent variables, so the correct condi-
tion for the probability became (Young, 1964)

P

(
x > x̄ +

nσ σ
√

3

)
< 0.01. (1)

To obtainnσ that satisfy the relation above we considered
the tabulated confidence interval for a Poisson distribution
(Cowan, 1998). From the upper value of the intervalxM ,
which correspond to the probability less than 0.01, we have

nσ =
xM − x̄

σ
, (2)

whereσ=
√

x̄ for a Poisson distribution. Sincēx is not an
integer number, we interpolatednσ for every value of̄x using
a double exponential fitting:

nσ (x̄) = no + n1

(
1 − e−x̄/x1

)
+ n2

(
1 − e−x̄/x2

)
; (3)

the behavior of this function is plotted in Fig. 3.
In order to select the 8 sx events to be considered as PBs

we applied condition in Eq. (1). However, near the SAA re-
gion we interpolated thēx between two cells to have a better
precision in the selection algorithm. The interpolation of the
points outside the SAA was realized by a linear method while
a non-linear bicubic method (Press et al., 2001) was used for
the points inside the SAA. Special attention was given to the
calculus of first and second derivatives for the interpolation
algorithm along the boundary of the (L, B) subspace.

To confirm reliability of the interpolated averages we de-
veloped another method to evaluate the same averages for
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Fig. 3. The double exponential behavior ofnσ used to select the
fluctuations which had 99% probability to be non-poissonian. The
squared point positions were calculated from the tabulate ampli-
tudes of the confidence intervals.

each point on the (L,α, B) space. The idea was to consider a
number of cells in the (L, B) subspace so that a more precise
definition of average hyper-surface become possible. But, to
have such precision we needed a large number of data as one
day was not sufficient to assure 20 satellite passages through
the very small cells. Given this we used 3 months of data that
preceded the day which was examined. The requirement of
at least 20 satellite passages through each cell was respected
with a division of 130 intervals for L range multiplied by
100 intervals for B range. In this way, a reliable value of
the averages in the regions near SAA can be obtained and
selection rules in Eq. (1) can be directly applied. Periods of
strong solar activity were also excluded from the 3 months
of averaged data, but these were not for the trend due to long
periods of solar variations. Hence, the use of a larger portion
of the database should be done with great attention. Identi-
cal results in PBs selection were obtained using this different
method, thereby confirming the results of the previous anal-
ysis and rendering them more robust.

The Fortran program filled the new daily Ntuples with both
orbital and invariant coordinates, geomagnetic and iono-
spheric activities, CRs values of all particles and energies,
selection rules and PB features. Selected rules are referred
to as x̄ and nσ . For the PB features we defined an index
which labels PB events and calculated the temporal length of
contiguous PB events together with their average times and
amplitudes. Because Van Allen belts are densely populated
and strongly influenced by solar activity we are interested
in anomalous particle fluxes outside of them. The NOAA
satellites go through the Van Allen Belts inside the SAA and
polar regions, thus these regions can be excluded by select-
ing respectively B>22µT and L<2.2. A summary of the
remaining burst activities from the entire 10 year NOAA-
15 database of electron at 0◦ with energy from 30 KeV to
100 KeV is reported in Fig. 4.

5 NOAA particle bursts and earthquakes

In Fig. 4 burst activity is shown in black to identify quiet
solar periods (Ap<16 and SID=1) and in gray for the other
periods. An inverse correlation appears between the inten-
sity burst and the 11 years solar cycle; an additional corre-
lation between the PBs and the the boreal summer is also
seen. Concerning the sun activity flags those conditions will
be carefully analysed in future work. For instance a feature
to analyse is the connection between sudden phase anoma-
lies in VLF transmitters and solar x-ray which was observed
to be more influential at the time of minimum solar activity
(Raulin et al., 2006). On the other hand, strong solar storms
influence the ionosphere up to several days after the solar
event that generated them (Baker and Kanekal, 2008). Fur-
thermore geomagnetic storms can begin or finish at the end of
the previous day or during the early hours of the subsequent
day respectively. The Ap averages over these days could then
be lower than 16 while at the same time solar activity can still
influence the ionosphere.

To better define the particles that are affected by external
perturbations we need to verify if they are precipitating par-
ticles (Sgrigna et al., 2005). Particle precipitation from the
lower boundary of the radiation belts can be described as a
result of pitch-angle diffusion and drifting around the Earth
along L-shell (Abel and Thorne, 1998a,b). In this process
the altitude of the bouncing points falls and when the parti-
cles go below 100 km they interact with the atmosphere and
are lost. Through the UNILIB subroutines we calculated the
minimum L-shell bouncing altitudeHmirr and recorded them
in the Ntuples so we can now select particle precipitation
events by the conditionHmirr <100 km.

At the beginning we initially considered only stronger
seismic events since larger effects are expected in the iono-
sphere. For example, ionospheric anomalies close to the
Sumatra EQ on 26 December 2004, were detected using
magnetic and electron density data (Balasis and Mandea,
2007). By using the method discussed here, we observe
anomalous PB activity in the NOAA-15 electron data (0◦,
30 KeV to 100 KeV) during December 2004, an high num-
ber of burst appear on 26 December. For this period we also
took into account the short time behavior of Ap index (3 h)
to analyse in detail the burst dependence on solar activity.
Black and gray bursts in Fig. 5 were selected in the same
way as in Fig. 4. But now on Fig. 5 (left) we can distinguish
black dashed PBs with daily Ap<16 but Ap>24 for at least
3 h, they were on 1, 5, 11, 13, 16, 18 and 21 December. We
can also distinguish gray dashed PBs with daily Ap<16 and
Ap<25 for all the day but SID=1, they were on 2, 7, 19,
23, 27 and 31 December. Figure 5 on the right shows the
results of the same analysis using 30 min time intervals and
helps us to evaluate the importance of PBs on December 13
and 21. They are concentrated over a few hours and could
be linked to the 3 h Ap index hight values on the same days.
With reference to the mean number of bursts in December

Nat. Hazards Earth Syst. Sci., 8, 1277–1291, 2008 www.nat-hazards-earth-syst-sci.net/8/1277/2008/



C. Fidani and R. Battiston: NOAA particle data and seismic activity 1283

  

Fig. 4. A decade of PB selection from the NOAA-15 database during quiet solar days with Ap<16 and SID=0 (in black) and during the
resting days (in gray). Solar Cycle 23 was also reported for a comparison.
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Fig. 4. Continued.
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Fig. 5. The PB selection in the December 2004 NOAA-15 database. Black and gray PBs were selected in the same way as in Fig. 4. Black
dashed PBs were selected on days with daily averages of Ap<16 and with at least one of the 8 three hour periods where Ap>25. Gray dashed
PBs were selected on days with SID activity. The horizontal dashed line is the monthly quiet solar period PB average. In the left graph we
chose a 24 h intervals to show the daily PB sums while for the right graph we chose half-hour intervals to show the detailed PBs importance
and their temporal distribution.

2004 (horizontal dashed line) we can see that the SID activ-
ity produced unimportant PB numbers on days 2, 7, 19, 23,
27 and 31.

We tested the algorithm over a longer period and applied
the PBs selection from 1 September 2004, to 31 December
2004. The PB activity measured by the three satellites to-
gether with the global seismic activity are shown in Fig. 6.
During this long period strong and moderate geomagnetic
perturbations were recorded. Ap index went above 100 at
the beginning of November 2004 and many days of perturbed
particle fluxes were reported (Lekshmi, 2008). The period 2–
11 November was characterised by activity which generated
two X-class X-ray flares (Yermolaev et al., 2005) and weak
geomagnetic activity was recorded in 5 December (Tver-
skaya et al., 2006). On 27 December 2004, at 21:30:26.5 UT,
a giant hard X-ray/g ray flare, near the solar zenith, ionized
the exposed part of Earths dayside ionosphere (Inan et al.,
2007c). We stopped at the end of December 2004, since the
month of January 2005 was perturbed by several ionospheric
phenomena (Longden et al., 2007) which were associated
with at least seven moderate or weak storms (Tverskaya et
al., 2006). Days with high solar activity were excluded when
we searched for any possible connection with seismic events
and were labeled in grey in all the figures here. The top plot
in Fig. 6 shows the geomagnetic activity during period by
means of Ap and SID indexes. The dotted line in the Ap
plot is the threshold and is equal to 16 while the grey bands
represent days with SID=1.

Differently from Figs. 4 and 5, to search for a correlation
with strong seismic activity, in Fig. 6 we defined black PBs
only during quiet days (QDs) when the daily averages of
Ap<16, Ap<25 in each of the three hour intervals during
the same day and SID=0. We labeled all the other PBs in

gray. We focus on EQs having a magnitude larger than 6.5.
Exceptional number of PBs measured by at least one satel-
lite were observed during QDs on 6, 8 and 29 September,
10 October, 16 and 26 November, 26 December; for each
of this days significant seismic activity was also observed.
NOAA-16 seems to be more sensitive to September and Oc-
tober EQs while NOAA-15 and 17 are more sensitive during
the months of November and December. Due to the limited
coverage of each satellite, PB activity appears different from
the three considered databases; a sum of three PBs database
could be more appropriate and is plotted in logarithmic scale
plot in Fig. 6. We extend this analysis to long periods.

We considered all the EQs in the Indonesian region where
magnitude was larger or equal to 7.0; this includes about
35 EQs starting from 1998. The reason behind this was that
we started observing the first ever PBs on the occasion of
the great Sumatra EQ in 2004. However, we could not ob-
serve PBs in other strong events occurring in different re-
gions. So, because over the last decade Indonesian EQs have
been reported to be the world’s strongest and most frequent,
we decided to examine Indonesian events. For these EQs we
list in Table 1 the following quantities: magnitude, date and
time in universal time (UT), location and depth. A monthly
PBs average was defined as the PBs average number dur-
ing quiet solar periods in that month, it is also reported in
Table 1. Twelve EQs occurred in periods of not QDs and
they are labeled with one∗. Seven EQs occurred during
the solar maximum; during this period the number of PBs
was significantly lower. Three EQs on 26 December 2004,
M=7.5, on 12 September 2007, M=8.1 and on 13 September
2007, M=7.2, occurred after stronger initial seismic events
and are considered strong aftershocks. Five EQs were asso-
ciated with a number of PBs which was comparable to the
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  Fig. 6. The NOAA-15, 16 and 17 PB daily activities and their total sum compared with Ap and SID indexes (on the top) and global seismic
activity (on the bottom) over the same period of 1 September to 31 December 2004. Black PBs were selected on QDs. Seismic activity was
included when magnitude>5.
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Table 1. Strong earthquakes with magnitude M≥7.0 in the 10◦ N to 10◦ S and 90◦ E to 140◦ E region from 1 July 1998 to 30 June 2008.
(–) means the satellite was not active yet, (*) means non QD and only one (*) means three non QDs: the day before, the day of and the day
after the EQ.

M Date Latitude Longitude Depth Daily #PB NOAA-15 NOAA-16 NOAA-17 NOAA-18
(UT) (Km) Average #PB #PB #PB #PB

7.1 28/10/1998 16:25 0.84◦ N 125.97◦ E 33 5 *,*,3 – – –
7.0 09/11/1998 05:38 6.92◦ S 128.95◦ E 33 1 * – – –
8.3 29/11/1998 14:10 2.07◦ S 124.89◦ E 33 1 * – – –
7.1 04/03/1999 08:52 5.40◦ N 121.94◦ E 33 2 * – – –
7.6 04/05/2000 04:21 1.11◦ S 123.57◦ E 26 19 * – – –
8.3 04/06/2000 16:28 4.72◦ S 102.09◦ E 33 14 * – – –
7.1 28/08/2000 19:29 4.12◦ S 127.03◦ E 33 12 * – – –
7.5 01/01/2001 06:57 6.90◦ N 126.58◦ E 33 4 0,0,* – – –
7.4 13/02/2001 19:28 4.68◦ S 102.56◦ E 36 3 0,*,* 0,*,* – –
7.1 24/02/2001 07:23 1.27◦ N 126.25◦ E 35 3 0,0,3 2,0,1 – –
7.5 19/10/2001 03:28 4.10◦ S 123.91◦ E 33 4 *,*,0 *,*,0 – –
7.5 05/03/2002 21:16 6.03◦ N 124.24◦ E 31 3 0,*,* 1,*,* – –
7.7 10/10/2002 10:50 1.76◦ S 134.30◦ E 10 1 * * * –
7.6 02/11/2002 01:26 2.82◦ N 96.08◦ E 30 1 * * * –
7.1 26/05/2003 19:23 2.35◦ N 128.85◦ E 31 41 * * * –
7.1 05/02/2004 21:05 3.62◦ S 135.54◦ E 16 17 * * * –
7.5 07/02/2004 02:42 4.00◦ S 135.02◦ E 10 17 *,0,* *,0,* *,0,* –
7.3 25/07/2004 14:35 2.43◦ S 103.98◦ E 582 32 * * * –
7.5 11/11/2004 21:26 8.15◦ S 124.87◦ E 10 25 * * * –
7.1 26/11/2004 02:25 3.57◦ S 135.35◦ E 10 25 *, 26, 27 *, 23, 21 *, 14,5 –
9.1 26/12/2004 00:58 3.30◦ N 95.98◦ E 30 17 *, 78, * *, 20, * *, 53, * –
7.5 26/12/2004 04:21 6.91◦ N 92.96◦ E 39 17 *, 78, * *, 20, * *, 53, * –
7.1 05/02/2005 12:23 5.29◦ N 123.34◦ E 525 19 *, 22, * *, 22, * *, 8, * –
7.1 02/03/2005 10:42 6.53◦ S 129.93◦ E 201 12 22, 18, 10 18, 9, 4 33, 26, 24 –
8.6 28/03/2005 16:09 2.09◦ N 97.11◦ E 30 12 27, 8, 12 9, 1, 1 4, 11, 12 –
7.5 24/07/2005 15:42 7.92◦ N 92.19◦ E 16 84 57, 98, 128 25, 50, 76 73, 56, 69 35, 40, 140
7.6 27/01/2006 16:58 5.47◦ S 128.13◦ E 397 10 *, 2, 4 *, 3, 4 *, 17, 14 *, 2, 8
7.7 17/07/2006 08:19 9.28◦ S 107.42◦ E 20 72 102, 107, 13 79, 36, 15 61, 29, 30 98, 23, 23
7.5 21/01/2007 11:27 1.07◦ N 126.28◦ E 22 15 21, *, 12 34, *, 13 14, *, 3 43, *, 15
7.5 08/08/2007 17:05 5.86◦ S 107.42◦ E 280 46 *, 69, 141 *, 27, 126 *, 36, 15 *, 21, 7
8.5 12/09/2007 11:10 4.44◦ S 101.37◦ E 34 24 16, 21, 36 13, 23, 25 0, 14, 0 8, 22, 1
8.1 12/09/2007 23:49 2.62◦ S 100.84◦ E 35 24 16, 21, 36 13, 23, 25 0, 14, 0 8, 22, 1
7.2 13/09/2007 03:35 2.13◦ S 99.63◦ E 22 24 21, 36, 4 23, 25, 7 14, 0, 0 22, 1, 0
7.5 20/02/2008 08:08 2.77◦ S 95.96◦ E 26 25 108, 17, 2 69, 16, 3 23, 10, 10 23, 7, 3
7.3 25/02/2008 08:36 2.49◦ S 99.97◦ E 25 25 0, 0, 1 0, 0, 0 15, 1, 0 1, 0, 0

monthly PBs average during quiet solar periods. The 8 re-
maining EQs were associated with an exceptional number of
PBs for the period where they were recorded.

We also studied more in details the properties of of PBs
associated with EQs: intensity, geographic and temporal dis-
tributions, L-shell and pitch angle. For instance in Fig. 7 we
show the PBs detected in connection with two strong EQs in
the Sumatra region on 26 December 2004 and on 20 Febru-
ary 2008. In the first case cluster of PBs were recorded about
35 min, 12 and 17 h after the big quake; while their geo-
graphic position is consistent with eastward drifting precip-
itating electrons. This is due to the fact that SAA functions
like a drain pipe for precipitating particles in the atmosphere,

because it defines a cut on the geographical longitude which
captures electrons from the West and protons from the East.
The intensity distribution of these PBs is plotted in Fig. 7
on the right; we note that the detected PBs are belonging to
three distinct fluxes anomalies on an otherwise flat low rate
background. PBs that occurred in connection with the second
EQ made clusters recorded about 20, 17.5, 17 and 9 h before
the seismic event. Their geographic positions are also in this
case consistent with eastward drifting precipitating electrons.
The intensity distribution of these PBs is plotted on Fig. 8 on
the right. Here, one can note that the detected PBs form six
better distinct flux anomalies on an otherwise flat low rate
background.
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Fig. 7. The NOAA-15 orbits, PBs geographical distribution, PB times with respect to the Sumatra EQ times and fault positions (on the left),
and the NOAA-15 PB count dynamic (on the right) are shown in two cases. In the first case we can only observe post-seismic PBs while in
the second we can observe pre-seismic PBs. Bold lines define the selection of particle precipitation outside the SAA while the dotted lines
indicate the polar regions with L>2.2 and arrows define the direction of the satellite motion.

L-shell and pitch angle distributions in Fig. 8 are of the
same period as those distributions in Fig. 6 but here we plot-
ted only solar quiet periods for a better visualization. They
are not normalized by the time spent at the various L-shells.
We have observed that the PBs induced by solar activity have
a higher L-shell value than those observed in PBs near the
times of EQs. In fact, particle precipitation due to external in-
fluence propagates inside the Van Allen Belts leading to PBs
that fall from the top to the bottom of L-shell. PB L-shells
are concentrated in the 1.1–1.2 interval on 26 December, this
could be considered an index of internal influence on particle
precipitation. The pitch angle is in the 60–75◦ region, thus
confirming the particle precipitation hypothesis. PB L-shells
and pitch angles on 19 February 2008 are identical to those
on 26 December 2004.

Also PBs of NOAA-16 and 17, detected after the big
quake, were observed on geographical locations near the
SAA border. PBs studied above regard 0◦ electrons with en-
ergies between 30 KeV and 100 KeV, no exceptional number
of PBs were detected by the other channels of electrons, pro-
tons and omni-directional detectors.

6 Conclusions

We have studied for the first time the NOAA particle
database in connection with global seismic activity. Addi-
tionally, we have for the first time detected PBs using multi-
ple satellites with identical detectors.

We developed a selection algorithm for PBs suited for
NOAA data but different from that used in earlier studies
(Sgrigna et al., 2005). The statistical analysis used to iden-
tify PBs is made by an accurate method to calculate and in-
terpolate average CRs at every point of invariant space. This
method seems to work also in the SAA, polar and transitions
belts regions. This analysis could be used to study the pro-
cess that connects the different ionosphere zones with sun
activity, thunderstorms, cosmic rays and other phenomena,
by means of PB activity.

The ten years PB plot in Fig. 4 clearly shows anti-
correlation with respect to the 11 years solar cycle. The anti-
correlation is detectable both in the number of the PBs and
in the number of days they appear. However, we must re-
member that the number of days they appear are quiet so-
lar periods which are linked to the solar activity through the
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Fig. 8. L-shells and pitch anglesα of PBs from 1 September to 31 December 2004, on days with average Ap<16 and SID=0. Colors indicate
the number of PBs for every interval of considered variables. EQs with M≥6.5 are also indicated by vertical bands between L-shell andα

plots.

geomagnetic restrictions described in Sect. 5. PB activity
increases during the boreal summer at the minimum of the
solar cycle.

The analysis of the 0◦ electron channel with energy be-
tween 30 KeV and 100 KeV shows exceptional numbers of
PBs with respect to the monthly PB average during quiet so-
lar periods. This is in connection with the Sumatra EQ and
some of the largest (M>7) quakes that struck the Indonesian
region over the last ten years. The corresponding PBs are ob-
served near the SAA west boundary in the transition region
between the inner and outer radiation belts. PB intensities
were of the order of 10–100 particle counts every 8 s for L-
shell between 1.1 and 1.2 having a pitch angle of about 60 to
75◦, consistent with the precipitation hypothesis. The total
time length of continuous PB sequences was from about a
few seconds to a few minutes.

From this analysis it appears that there is a strong influ-
ence of the solar activity on the PB activity. A significant
improvement in this analysis should include a more accurate
usage of the detail time structure of both Ap and SID indexes.

Given the limited number of EQs examined here, further
research is needed to determine whether PBs are correlated
with EQs, in particular to verify if the definition of PB we
used is suitable to search for correlation with EQs.

Acknowledgements.We would like to thank S. Pulinets and
M. Casolino for their precious observations and corrections.
Additionally, we would also like to thank L. Conti for his valuable
input regarding particle precipitation. Finally, our thanks go to
G. Esposito, R. Gallaccio and P. Zuccon for their help pertaining
to hbook and UNILIB programming solutions. We also gratefully
recognise the grant from Consulta delle Fondazioni delle Casse
di Risparmio Umbre, which has been instrumental for the study
presented in this paper.

Edited by: P. F. Biagi
Reviewed by: M. Casolino and S. Pulinets

www.nat-hazards-earth-syst-sci.net/8/1277/2008/ Nat. Hazards Earth Syst. Sci., 8, 1277–1291, 2008



1290 C. Fidani and R. Battiston: NOAA particle data and seismic activity

References

Abel, B. and Thorne, R. M.: Electron scattering loss in Earths in-
ner magnetosphere 1, Dominant physical processes, J. Geophys.
Res., 103(A2), 2385–2396, 1998a.

Abel, B. and Thorne, R. M.: Electron scattering loss in Earths inner
magnetosphere 2, Sensitivity to model parameters, J. Geophys.
Res., 103(A2), 2397–2407, 1998b.

Aleksandrin, S., Yu, Galper, A. M., Grishantzeva, L. A., et al.:
High-energy charged particle bursts in the near-Earth space as
earthquake precursors, Ann. Geophys., 21, 597–602, 2003,
http://www.ann-geophys.net/21/597/2003/.

Asikainen, T. and Mursula, K.: Energetic electron flux be-
havior at low L-shells and its relation to the South At-
lantic Anomaly, J. Atmos. Sol.-Terr. Phys., 70, 532–538,
doi:10.1016/j.jastp.2007.08.061, 2008.

Bakaldin, A. V., Batishchev, A. G., Voronov, S. A., et al.: Satellite
Experiment ARINA for Studying Seismic Effects in the High-
Energy Particle Fluxes in the Earths Magnetosphere, Cosmic
Res., 45, 5, 445–448, 2007.

Baker, D. N.: Effects of the Sun on the Earth’s environment, J. At-
mos. Sol.-Terr. Phys., 62, PII: S1364-6826(00)00119-X, 1669–
1681, 2000.

Baker, D. N. and Kanekal, S. G.: Solar cycle changes, geo-
magnetic variations, and energetic particle properties in the in-
ner magnetosphere, J. Atmos. Sol.-Terr. Phys., 70, 195–206,
doi:10.1016/j.jastp.2007.08.031, 2008.

Balasis, G. and Mandea, M.: Can electromagnetic distur-
bances related to the recent great earthquakes be detected
by satellite magnetometers?, Tectonophysics, 431, 173–195,
doi:10.1016/j.tecto.2006.05.038, 2007.

Bortnik, J., Inan, U. S., and Bell, T. F.: Temporal signatures of radi-
ation belt electron precipitation induced by lightning-generated
MR whistler waves: 2. Global signatures, J. Geophys. Res., 111,
A02205, doi:10.1029/2005JA011398, 2006.

Brun, R., Rademakers, F., Canal, P., et al.: ROOT An Object Ori-
entable Data Analysis Framework User Guide 5.17, 469 pp., July
2007.

Casolino, M., De Simone, N., Di Felice, V., and Picozza, P.: De-
tection of the high energy component of Jovian electrons in Low
Earth Orbit with the PAMELA experiment, Adv. Space Res., 41,
168–173, doi:10.1016/j.asr.2007.07.024, 2008.

Couet, O. and Goossens, M.: HBOOK Statistical Analysis and His-
togramming Reference Manual, Information Technology Divi-
sion, CERN Geneva, Switzerland, 193 pp., 1998.

Cowan, G.: Statistical Data Analysis, Clarendon Press, Oxford, 128
pp., 1998.

Davis, G.: History of the NOAA satellite program, J. Appl. Remote
Sens., 1, 012504, doi:10.1117/1.2642347, 2007.

Esposito, G.: Studio della stabilità temporale delle fasce di
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