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Abstract. Low and non-metallic landmines are one of the ferent varieties of landmines can be found depending on the
most difficult subsurface targets to be detected using severalasing materials (metallic or plastic), the landmine size and
geophysical techniques. Ground penetrating radar (GPRYhe purpose of using (antipersonnel or antitank) (Daniels,
performance at different field sites shows great success i2004; Van Dam et al., 2005). In practice landmine fields
detecting metallic landmines. However significant limita- are generally designed to be very complex. The military en-
tions are taking place in the case of low and non-metallicgineers are eagerly integrating natural difficulties beside dif-
landmines. Electrical resistivity imaging (ERI) technique ferent mine types and shapes that make the detections are not
is tested to be an alternative or confirmation technique foreasily process. Such varieties in landmine shapes, materials
detecting the metallic and non-metallic landmines in suspi-as well as the nature of the hosting environments make no
cious cleared areas. The electrical resistivity responses usingingle detection technique can be operating effectively in all
forward modeling for metallic and non-metallic landmines environments and for all landmine types. The combination
buried in dry and wet environments utilizing the common and integration between different techniques increases the
electrode configurations have been achieved. Roughly all theate of detection and consequently decrease the false alarm
utilized electrode arrays can establish the buried metallic andates. Egypt is one of the most contaminated landmine coun-
plastic mines correctly in dry and wet soil. The accuracy tries. The problem of landmines in Egypt stared up since the
differs from one array to the other based on the relative re-World Ware 1l in the northern part of western desert. The
sistivity contrast to the host soil and the subsurface distribu-military operations carried out by the Allied Forces and the
tion of current and potential lines as well as the amplitudeAxis Power from 1941-1943 left varieties of about 22 Mil-

of the noises in the data. The ERI technique proved to bdion landmines and UXO in western desert nearly along the
fast and effective tool for detecting the non-metallic mines coast of Mediterranean sea. Not only thousands of civilians
especially in the conductive environment whereas the perkilled and injured each year, but also the social, economics
formances of the other metal detector (MD) and GPR tech-and environmental impacts of those mines are disgraceful
niques show great limitation. (NCHR, 2005).

The current conventional deminer tools include in princi-
ple metal detector (MD), mechanical prods (like steel prod or
screw diver) and sometimes well trained doges (MacDonald
et al., 2003). However, the MD technique does not entirely

Landmines are type of weapons which are placed onto offétect low and non-metaliic landmines moreover the limi-

into the ground and explode when triggered by a vehicle of&tion is significant in the_ hlghly ferruginous soil environ-

a person. Currently more than 70 countries have been corfnent (Lopera and Milisavljevic, 2007). Recently, there are a

taminated by around 80 to 110 Millions of different land- NuUMber of noninvasive geophysical techniques have been in-
mines and Unexploded Ordinances (UXO), (S1). The eﬁortsf:IUded in the Iandmme.detectlons. Among_the;e technlques
to establish mono (single) or dual (combined) techniques for'S the ground penetrating radar (GPR) which is potentially

landmine detections are growing since the World War I1. Dif- Promising in locating metallic, low and non-metallic mines
at different host soil (MacDonald et al., 2003). The success

Correspondence tavl. Metwaly of GPR performance is remarkably whereas there is a consid-
(mmetwaly70@yahoo.com) erable contrast in dielectric properties between the landmine
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756 M. Metwaly: Detection of metallic and plastic landmines

2 The field model

In order to simulate the actual field conditions and the land-
mine types in the northern part of the Egyptian Western
Desert, a small test site with the dimensions of>&% m

has been constructed. The host materials have been replaced
(up to 1.0 m depth) by homogenous sand (Fig. 1a). Sets of
metallic, low metallic and non-metallic (plastic) landmines-
like objects have been buried at different depths along two
profiles, (Figs. 1 and 2). The large metallic objects are similar
to the metallic antitank mine (T-80) while most of plastic ob-
jects are comparable to antipersonnel mine (Ts-50), (Fig. 1c
and e). The shapes, buried depths, dimensions and type of
each object are shown in Fig. 2.

3 GPR field test

The GPR data have been acquired using SIR 20 system
(from GSSI) operating with 400, 900 and 1500 MHz an-
tennae towed with constant speed along the surface of the
test site (Fig. 1a). The system was calibrated to acquire 32
scans/sec whereas the sampling rate was 512 samples/scan.
The acquired GPR profiles using three different frequencies
Fig. 1. (a)MetaIIic Iand_mine obj_ect(,b) Real metallic anti_tank mine (400, 900 and 1500 MHz) along the center of buried metal-
T-80, (c) Different plastic landmine objectéd) Real plastic antiper- i 41 plastic landmine-like objects are shown in Figs. 3
isrg:ngilinn;'23r;lt—:;ﬁ’q:gé)ogvﬁf\:f;&c;?&t?;?;?éea showing the and 4. The commercial REFLEX software has been used
' ' for processing and displaying the GPR data. Background
removals followed by band pass filter have been applied to

and the host soil (Chen et al., 2001; Daniels, 2004). How-€mphasis the buried bodies reflections and suppress the other
ever, this performance is getting to be poor in conductiveN0ise signals. GPR technique has a great success in detect-
soil (Miller et al., 2004; Van Dam et al., 2005) and when N9 the metallic !andm_lnes because thgy are_typlca!ly conduc-
there are some shallow subsurface inhomogeneities and clufors and have dielectric constant relatively high (Miller et al.,
ters. Another promising technique is the electrical resistivity 2004). On the GPR profile, metallic landmines cause perfect
imaging (ERI) which can be effectively in locating metallic reflected signals whatever the soil conditions are (Metwaly,
and non-metallic landmines in conductive soils like wet en-2007). Strong reflected signals from the top of all metallic
vironments, beach and marshes areas (Chruch et al., 200g)°dies can be observed in the form of different hyperbolae
Nevertheless, like the other geophysical methods, there ar@/ith some specific details about the shapes of each body in-
some limitations to apply this technique alone in demining dividually (marked with 1 to 5, Fig. 3). The strong reflected
activities especially when there is either excessive dryness ati9nals below 11ns (marked with litter C) are due to the
the surface or there are electrical noises close to the surveyd@etallic sheet in the vicinity of the test site while the base
site. of the test site (marked with litter G) is detected around 10 ns
Therefore, the motivations of this paper include; study- (Fig. 3). As the_ antenna frequency increase the resolutiqn c_)f
ing the ability of GPR technique to get significant signa- _the reerct_ed signal increase ar_1d consequently some signif-
tures from different metallic, low metallic and non-metallic icant details about each metallic body character can be ob-
(plastic) landmine-like objects buried at different depths in S€"ved, (Fig. 3c). Bodies’ numbers (1 f’:\nd_ 2) haye simple and
sand soil similar to that are dominant at the western desert gfMooth reflected hyperbolae and their dimensions are com-
Egypt. The limitation of the GPR techniques in locating the parable with the buned_ body’s_dlameters._ Bodies’ numbers
non-metallic mines will be primarily prevailed using the 2-D (4 and 5) are shown with relatively complicated shapes due

modeling of the ERI technique utilizing most of the common to the interference of the reflected signals from the body’s
electrode arrays. sides. Moreover, the reflected signals of the bar body (No. 5)

are wide and flat on the top.

Low and non-metallic landmines are one of the subsur-
face targets that can not be easily detected using either con-
ventional metal detectors or even GPR techniques (Van Dam
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Fig. 2. Shapes, geometries and buried depths for landmine-like objegtdetallic objects(b) low metallic content and plastic objects, AP
= antipersonnel mine, AT = antitank mine, UXO = Unexploded ordinance.
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Fig. 3. Typical processed GPR profiles for different metallic Fig. 4. Typical processed GPR profiles for different plastic and low
landmine-like objects. Numbers referred to the metallic objects inmetallic content landmine-like objects. Numbers referred to the ob-
Fig. 2a, C: is reflected signals from metal plate close to the test sitejects in Fig. 2b, C and G: as in Fig. &) using 400 MHz(b) using

G: is reflected signals from test site bage) using 400 MHz,(b) 900 MHz,(c) using 1500 MHz.

using 900 MHz(c) using 1500 MHz.

like objects using three different frequencies (400, 900 and
et al., 2005). This refers to the fact that the reflected GPRL500 MHz) are presented in Fig. 4. The recorded signals
signals from the plastic mine are quite weak due to its nonusing 400 MHz frequency show only three distinctive hy-
significant dielectric constant contrast with the surroundingperbolae (No. 7, 8 and 9) comparable with the three low
medium (Miller et al., 2004). The GPR profiles for the ac- metallic objects, (Fig. 4a). The other received signals from
quired data along the buried low and non-metallic landmine-the completely plastic objects (No. 6 and 10) are hardly to
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Fig. 5. Common arrays used in electrical resistivty imaging, black dotes represent the electrode locations, C1 and C2 are the current
electrodes, P1 and P2 are the potential electradissthe electrode spacing;is the dipole spacing factor.

be recognized. Increasing the applied frequency slightlymodeling and the subsequent inversion is performed using
enhances the reflected signals particularly from the nonthe commercial RES2DMOD/INV software.

metallic objects (No. 6 and 10), (Fig. 4b and c). However, the

attenuation of radar wave propagation increases with increast.1  Landmine and host soil modeling

ing the utilized radar frequency. The reflected signals from

body number (6) are rather attenuated and concealed undgthe forward calculations are used for determining the appar-
the other background signals that are relatively enhanced. ent resistivity pesudosections applying seven different elec-
trode configurations (Fig. 5), running over the center of pro-
posed buried landmine targets. The host sand resistivity set
4 Electrical Resistivity Modeling to be 1000 and 10 Ohmm for dry and wet host sand. The
landmine resistivities were set to be 0.2 and 100 Ohmm to
Generally electrical resistivity technique is one of the widely represent metallic antitank and non-metallic antipersonnel
used geophysical tools for fast subsurface evaluation. Théandmines respectively placed horizontally at depths 0.1 and
ease of using the technique makes it effectively applies for0-2cm (Fig. 6a and i). The electrode spacinyié ranging
different engineering, hydrology, and environmental inves-from 0.05 to 1.5 m for all electrode configurations anylié
tigations (Ogilvy et al., 1999; Slater et al., 2000; Marescot Set to one (Fig. 5). The profile length is 4.5 m which requires
et al., 2004). The applications of the electrical resistivity to maximum 90 electrodes to cover the proposed profile. The
technique in the field of landmine detection are very lim- two dimensional model involves a finite element calculation
ited. This is due to the though that laying out the electrodegnesh which divides the subsurface into a number of rectan-
might be detonate the mines. However the recent technicagular blocks, (Dey and Morrison, 1979b). Then the inverse
improvements in the technique using the advanced contincalculations have been carried out using least square sense
uous profiling (dynamic system) make the system applica-using Marquardt’s algorithm (Loke and Barker, 1996a) to at-
ble for landmine detections as at least confirmation tool fortain the physical models that are consistent with the forward
the suspicious cleaned regions (El-Qady and Ushijima, 2005¢alculations. The better forward calculating model is the bet-
Chruch et al., 2006). The coupling in the dynamic systemter fitting can be achieved during the inversion process (Nyari
can be achieved through capacitive electrodes coupled cand Kanli, 2007). The pseudosection gives approximate pic-
pet pulling on the ground surface without any needs to inserture of the subsurface resistivity distributions because it de-
the electrodes into the ground (Gerard and Tabbagh, 1991pends principally on the type of the electrode arrays rather
Shima et al., 1996; Panissod et al., 1998). Landmine dethan on the subsurface resistivity. For that the inverted resis-
tection using electrical resistivity imaging technique is basedtivity sections will be considered only in the following dis-
on detections the perturbations in subsurface conductivitie§ussions.
caused by buried landmines at shallow depths. Consequently Figure 6 shows the inverted models for plastic and metal-
especial attentions will be suited for non-metallic mines de-lic mine-like objects buried in dry and wet sand respec-
tection in dry and wet environments while other GPR andtively. Like GPR and MD techniques, the ERI can detect
MD techniques might be confounded. The 2-D resistivity the metallic mine buried either in dry or wet environments.
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Fig. 6. Inverted ERI models using robust inversion for plastic and metallic objects buried in dry (left) and wet (right) soils.
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However the plastic mine shows significant electrical resis-
tivity anomalies with different accuracy differs from one ar-
ray to the other based on the subsurface distributions of the
current and potential lines.

In dry condition the electrical resistivity contrast between
the plastic mine and host soil is 1:10, while this contrast
is 1:5000 for the metallic one. The metallic mine shows
some evidences of distorted anomaly using the seven elec-
trode configurations. The lower boundary of the mine can not
be detected effectively (Fig. 6b—h). This is not a big landmine
detection problem as the metallic mine buried in dry soil is
the favorite target for the other metal detector and GPR tech-
nigues. The interesting point is the detection of plastic mine
in dry environment. All the seven electrode configurations
are effectively detecting this small (15cm x 20cm) plastic
mine in the dry conditions (Fig. 6b—h). Dipole dipole config-
uration shows the highest resistivity resolution and relatively
undistorted signals (Fig. 6g), although it has a relatively high
RMS error (Fig. 7a).

In the wet soil, the resistivity contrast between the host
soil and the plastic and metallic mines decreased to be 10:1
and 1:50 respectively. This consequently decreases the RMS
errors by factor of about 1/3 for all electrode configurations
relative to the dry soil condition, (Fig. 7b). Figure 6j—p shows
the results of inverted data sets using different iteration num-
bers which reach to 8 to achieve reasonable RMS values and
consistent resistivity images with the original models. The
wet and conductive environments like beaches, rice paddy
fields, marshes and swamps, which are considered harsh en-
vironments for conducting the GPR and MD techniques are
the best conditions for performing ERI. Such conductive en-
vironments ensure a good electrical coupling with the ground
and consequently provide efficient resistivity data. The reso-
lution of the inverted resistivity images for the metallic mine
in wet environment are better than that are in the dry environ-
ment. Almost all electrode arrays except the Wenner alpha
successfully detect the mine body (Fig. 6j—p). However, the
bottom of the mine is not defined well. Likely, the plastic
mine in the wet soil can be detected using almost the utilized
electrode arrays (Fig. 6j—p). However, Wenner alpha is the
relatively poor performing configuration while Dipole dipole
array is the robust one (Fig. 60).

4.2 Noise effects

Adding of Gaussian random noise (Press et al., 1992) with
10% amplitude to the apparent resistivity data makes it sim-
ilar to that is acquired at many different areas. The inverted
data (Fig. 8) is relatively distorted in comparisons with the
noise free data sets (Fig. 6). This is evident with inspec-
tion the shifted up RMS values relative to the dry and wet

Fig. 7. The RMS errors versus the number of iterations for utilized soils (Fig. 7c and d). The inverted resistivity images for

electrode arrays(a) dry soil, (b) wet soil, (c) dry soil with 10%

noise,(d) wet soil with 10% noise.

Nat. Hazards Earth Syst. Sci., 7, 7983 2007

metallic mine in dry soil are slightly distorted and the com-
plete configure of the body can’t be detected using any of
the utilized electrode arrays (Fig. 8b—h). Although, detect-
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Fig. 8. Inverted ERI models with 10% amplitude of random noise using robust inversion for plastic and metallic objects buried in dry (left)

and wet (right) soils.
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ing the metallic body in wet environment shows subtle en-another based on the electrode configuration and the amount
hancements (Fig. 8j—p). The detection of the plastic mineof noise in the data.
either in dry or wet noisy soil using the resistivity imaging
technique is efficient. Almost all the electrode arrays exceptAcknowledgementThe author would like to thank A. Abbas and
pole-pole and equatorial dipole efficiently detected the plas-G- El-Qady for their help in conducting the GPR field measure-
tic mine in dry soil (Fig. 8b—h). The Wenner gamma, Dipole ments. This \_/vork was suppor?ed by ppstdoctoral fellowship of
dipole and Pole dipole arrays are shown the robust inversioﬁ]apanese Society of the Promotion of Science (JSPS).
results for resolving the plastic mine in wet soil (Fig. 8l, o, Edited by: M. Keiler, S. Fuchs, and T. Glade
and p). The other electrode arrays show the location of th&eyiewed by: z. Nyari and A. Kanli
plastic mine with different inversion smearing and artifacts
due to the noise effects in the resistivity data.
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