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Abstract. Several examples in western Europe have shown
that, at least for deep-seated rotational slides, reactivation
of formerly slipped masses is a more frequent phenomenon
than the occurrence of new landslides, therefore representing
a higher hazard. We selected a study area comprised of 13
landslides located in the Flemish Ardennes (West Belgium)
and predicted the hazard related to scarp retreat. The scarp
reactivations were identified from the comparison of DTMs
produced for 1952 and 1996. Robust results were obtained
with the Gamma operator of a fuzzy set approach and a com-
bination of geomorphic, topographic and land use data. We
built first a prediction model from the relations linking the
1952–1996 retreat events to the conditioning parameters of
1952. The prediction rate of the resulting susceptibility map
is estimated by a cross-validation procedure. We then applied
the statistics of this model to the data of 1996 in order to pro-
duce a susceptibility map responding to the present-day con-
ditions. Finally, we estimated the conditional probabilities of
occurrence of future reactivations for the period 1996–2036.

1 Introduction

An important part of the landslide literature focuses on pre-
dicting and mapping where, sometimes also when, new land-
slides will occur within a landslide-prone area (Carrara et al.,
1991; Soeters and van Westen, 1996; Guzzetti et al., 1999;
Glade and Crozier, 2005). In other words, many maps try to
localise future landslide occurrences. However, several ex-
amples, notably in Europe, show that reactivation of formerly
slipped masses is a more frequent phenomenon, therefore
representing a higher hazard (Ardizzone et al., 2005; Catani
et al., 2005; Reichenbach et al., 2005). Yet, very few studies
have yielded prediction maps of landslide reactivation hazard
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(Lee et al., 1998, 2001; Barredo et al., 2000; Vaunat and Ler-
oueil, 2002; Chung and Glade, 2004). Moreover, they gen-
erally distinguish only active and inactive landslides without
separating the hazards of reactivating either the headscarp
or the landslide body itself. Based on the combination of
stereophotogrammetric estimates of recent scarp movements
and GIS-supported simulations using various sets of poten-
tial causal variables, the aim of our research is to propose
a new approach to locate the parts of pre-existing landslide
scarps most susceptible to reactivation. Strictly speaking, our
study area corresponds thus to the main scarps of the land-
slides and the reactivated zones are those scarp parts under-
going renewed collapse. The prediction model proposed here
refers to the “favourability function” approach proposed by
Chung and Fabbri (1993). This probabilistic approach re-
quires two assumptions: (1) the reactivation can be charac-
terized by topographical, geological and environmental spa-
tial data and (2) the future events will occur under the same
circumstances similar to the past ones.

2 Study area

The study area belongs to the so-called Flemish Ardennes,
a region extending over∼430 km2 in western Belgium and
affected by 135 big deep-seated past landslides (Fig. 1) (Ost
et al., 2003, Van Den Eeckhaut et al., 2005). In the absence
of any dating, Van Den Eeckhaut et al. (2005) assume that,
because no recent written document describing the initiation
of one of these large landslides has been found, they are at
least 100 years old. Moreover, the study of similar ancient
landslides located in eastern Belgium, in the Pays de Herve,
pointed to a first episode of motion at 150±80 A.D. (De-
moulin et al., 2003). As in the Pays de Herve, the origin of
the Flemish Ardennes landslides results probably from the
combination of a seismic event occurring during a period of
heavy rainfall (Demoulin et al., 2003; Ost et al., 2003).
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Fig. 1. Location map of the Flemish Ardennes and the study area.

Whereas no new deep-seated landslide is known to have
occurred for decades, several reactivation episodes have been
recently observed in this area (Ost et al., 2003; Dewitte and
Demoulin, 2005; Van Den Eeckhaut et al., 2005). This is
obviously due to the destructuring of slipped material and the
presence of pre-existing shear surfaces, which considerably
lower the shear strength of ancient landslides with respect to
that of the original landslide-free slopes. In addition, it could
be that the hierarchy of environmental factors determining
a reactivation is somewhat different from that controlling a
new slope failure.

To predict the hazard related to main scarp retreat, we se-
lected a test area containing 13 landslides (Figs. 2 and 3).
These landslides developed on two hills culminating between
75 and 85 m a.s.l. and situated along the river Schelde close
to the town of Oudenaarde. In the north, the Leupegem hill
is affected by 3 landslides. To the south, 10 landslides devel-
oped on the slopes of the Rotelenberg hill. The morphomet-
ric parameters of these landslides are presented in Table 1.

The landslides are developed in subhorizontal (dip to the
north<1◦) Eocene sediments composed of alternating clays
and clayey sands on which a perched water table can develop.
Within these formations, the Aalbeke Member consists of
10-m-thick homogeneous blue massive clays, and has been
recognized as the layer most sensitive to landsliding (Fig. 2).

One of the presently most active and damaging reactivated
landslides of the Flemish Ardennes (landslide 1, Figs. 2 and
3b) was reactivated in February 1995 after a period of heavy
rainfall in December 1994 and January 1995. Indeed, this is

presently demonstrated to trigger reactivations of old deep-
seated rotational landslides developed in clayey sediments
(Corominas and Moya, 1999; Polemio and Sdao, 1999; Fio-
rillo, 2003; Demoulin and Glade, 2004). This reactivation
event, with a horizontal scarp retreat of up to 19 m, was par-
ticularly important for the area. However, several morpho-
logical features like fresh scarps and tilted trees bear witness
to recent reactivation of other landslides too (Dewitte, 2006).

3 Data used in the modelling

The first step in our data collection was to localise the re-
activated parts of the 13 main scarps. To do this, DTMs
(Digital Terrain Models) of the Leupegem and Rotelenberg
hills (Fig. 2) were generated in the form of a 2 m×2 m grid
for 1952 and 1996 by digital stereophotogrammetry using
aerial photographs (Dewitte and Demoulin, 2005). From the
comparison of these DTMs for the two epochs, we identified
14 areas of scarp retreat exceeding 2 m (Fig. 4). This value
of lateral displacement defines the 95% confidence level de-
rived from the interval∼0.5 m RMS error on the DTMs (De-
witte and Demoulin, 2005). In consideration to the recent ob-
served main scarp reactivations (after 1996), the reactivated
parts were manually divided into 26 scarp segments of sim-
ilar length (about 30 m) which we consider to correspond to
the unit length of a reactivation event (i.e. an occurrence).

Because of the alteration of the data due to the conver-
sion of the scarp lines (i.e. the top line of the main scarp) to
the raster format, these lines of pixels were not used as such
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Table 1. Morphometric parameters of the 13 deep-seated rotational landslides considered in the study.

Fig. 2. Location of the two hills of the study area with the lithological setting and the boundaries (scars) and the main scarps of the 13
landslides considered in the analysis. The quadrangles I and II locate the two DTMs used in the prediction.
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Fig. 3. Examples of main scarps.(A) View towards the SE of the landslide 5 main scarp (Fig. 2) (Rotelenberg hill, April 2004). The red
dashed line shows the main scarp which has been stable since 1952.(B) View towards the SE of the February 1995 reactivated main scarp
of the Hekkebrugstraat landslide (landslide 1 in Fig. 2) (Leupegem hill, February 2003). The 9-m-height fresh scarp (red arrows) indicates
that the head of this landslide has been still active since 1995.

Fig. 4. Study area with the 14 areas of scarp retreat (reactivated areas) between 1952 and 1996.

Fig. 5. Empirical frequency distribution functions of the slope an-
gles within reactivated and non-reactivated pixel population.

in the prediction. We chose to define the study area as the
first lines of pixels downslope of the top of the scarps and
located on the visible part of the surface of rupture, which
corresponds fairly well to the real scarp area. The 26 reac-

tivated scarp segments were used as the dependent variable
in the modelling. In total, the study area covers 6293 pixels
with 2 m resolution of which 1268 have been reactivated. We
also considered 13 independent variables as potential condi-
tioning parameters in the modelling, all of them taken at the
same resolution (2 m) (Table 2).

Before modelling, a qualitative evaluation of the contribu-
tion of each quantitative (or continuous) variable to landslide
reactivation was performed by comparing two empirical dis-
tribution functions (EDFs), respectively for the reactivated
(EDF-R) and non-reactivated (EDF-NR) pixels as shown in
Fig. 5 for the slope angle data layer. The same evaluation
was carried out for the two qualitative (or thematic) variables
(land use and lithology) by comparing a pair of frequency ta-
bles. Based on this analysis, the data layers slope angle, slope
aspect and elevation seem to best explain the main scarp re-
activation (Dewitte, 2006).

The computed values of the EDFs and the thematic fre-
quencies will yield the favourability values necessary to the
prediction.
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Table 2. Description of the 13 input data layers used as conditioning parameters in the modelling.

4 Methodology

Different modelling strategies based on the empirical fre-
quency distribution functions and the thematic frequencies
referred in Sect. 3 have been tested using the Spatial Predic-
tion Modeling System Mapping software (SPMS, 2003): the
fuzzy set, the likelihood ratio, the linear and logistic regres-
sion and the Bayesian predictive discriminant models. The
results of the different models rely on various sets of se-
lected geomorphic, topographic and land use data presented
in Table 2. Considering prediction-rate curves to measure
the model performance, empirical handlings of the variables
revealed that combinations of four or five data layers were
generally most appropriate to the prediction. Moreover, as al-
ready shown for the qualitative evaluation of the EDFs, these
handlings stressed the significant role of the slope aspect in

the reactivation process (Dewitte, 2006). We decided there-
fore not consider the linear and logistic regression and the
Bayesian predictive discriminant models because they do not
allow the use of circular data layers such as the slope aspect
(SPMS, 2003; Chung and Fabbri, 2005).

Two robust and reliable predictions were obtained with the
fuzzy set approach using the fuzzy Gamma operator. The
fuzzy set prediction model combines the favourability val-
ues by using the fuzzy set theory of Zadeh (1965, 1968,
1978). Numerous studies have used GIS and statistics for
landslide susceptibility and hazard mapping, but mapping at-
tempts using fuzzy set approaches are few (e.g., Binaghi et
al., 1998; Chung et Fabbri, 2001; Chi et al., 2002; Ercanoglu
and Gokceoglu, 2004; Tangestani, 2004).

The idea behind fuzzy logic, which was firstly introduced
by Zadeh (1965), is to consider how much a spatial object
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belongs to a set. Fuzzy set theory can thus be considered as
an extension of ordinary set theory (based on crisp sets). In
classical set theory, an object belongs or does not belong to
a set which contains only 0 and 1 values as degrees of mem-
bership. In fuzzy set theory, membership can take on any
continuous value in the real number interval [0, 1], reflecting
the degree of membership. When the degree of membership
reaches 1, the element completely belongs to the set. Lower
degrees express a partial membership to the set, down to the
value of 0 which indicates no-belonging. A fuzzy set can thus
be explained as a set containing elements that have varying
degrees of membership in the set (Zimmermann, 1991; Klir
and Yuan, 1995).

In this landslide reactivation susceptibility mapping, mem-
bership values (i.e. favourability values) ranging from 0 to 1
are to be given to each pixel of each input data layer. To
do this, we have computed a membership functionµ (x) for
each input data layer as follow:

µ (x) =
EDF-R

EDF-R+ EDF-NR
(1)

where EDF-R is the empirical distribution function of the
reactivated areas andEDF-NR is the empirical distribution
function of the non-reactivated areas. When there are two or
more maps with fuzzy membership functions for the same
set, as currently, a variety of operators can be employed to
combine the membership values (An et al., 1991; Zimmer-
mann, 1991; Bonham-Carter, 1994; Moon 1998).

Following Chung and Fabbri (2001), Chi et al. (2002) and
Tangestani (2004), we used here the fuzzy Gamma operator
which was defined by Zimmermann and Zysno (1980) as a
combination of the fuzzy algebraic product and the fuzzy al-
gebraic sum. The joint membership functionµS (x) of the
fuzzy set S for a particular pixel x is defined as:

µS (x) =
[
µSproduct(x)

]1−γ
× [µSsum(x)]γ (2)

whereγ is a parameter chosen in the range [0, 1], and the
fuzzy algebraic product and fuzzy algebraic sum are calcu-
lated using Eqs. (3) and (4), respectively:

µSproduct(x) =

[
m∏

j=1

µSj
(x)

]
(3)

µSsum(x) =

[
1 −

m∏
j=1

(
1 − µSj

(x)
)]

(4)

whereµSj
(x) is the fuzzy membership function for thej -th

map, andj=1, 2, . . . , m are the maps that have to be com-
bined. The Gamma operator is a useful tool for calculating
a range of values going from a minimum, corresponding to
the algebraic product (γ =0), to a maximum, corresponding
to the algebraic sum (γ =1). Though it has been shown that
fuzzy operators depend very much on the type of spatial data
(Moon, 1998; Chi et al., 2002), we decided to use here only

the Gamma operator withγ =0.5. This choice ofγ value en-
sures a compromise between the “decreasing” effects of the
fuzzy algebraic product and the “increasing” effects of the
fuzzy algebraic sum.

5 Results

The first model we obtained with this Gamma operator (here-
after called APIF) combines 4 data layers: slope Aspect,
Planform curvature, Vegetation index and Focal flow. The
second one (ASEPV) was built from five layers: slope As-
pect, Slope angle, Elevation, Planform curvature and Dis-
tance from cultivation. The first model results from an empir-
ical selection of the variables considering the prediction rate
of each data layer individually, whereas the second model is
a more heuristic combination based on the geomorphological
expertise and the qualitative analysis of the empirical distri-
bution functions. With respect to their prediction-rate curve,
the first model appears to be the most appropriate one to pre-
dict the main scarp reactivation (Fig. 7). A three-step proce-
dure has been used to obtain the prediction maps of the APIF
model that we present hereafter.

5.1 Step 1: landslide susceptibility mapping on the basis of
the 1952 data

In landslide hazard studies, the prediction is generally made
from past occurrences and conditioning parameters related
to a more recent epoch. These data do not represent exactly
the conditions that prevailed before the landslide occurred.
Consequently, the results might involve factors closer to con-
sequences than causes of the movements. In this research,
we built the prediction model from the relations linking the
1952–1996 scarp retreat events to the conditioning parame-
ters of 1952. We took thus the causal factors which existed
before the reactivations, i.e. the parameters which were con-
nected to the causes and not the consequences of the reacti-
vations. The computed values of reactivation susceptibility,
which may range from 0 to 1, were sorted in decreasing order
and grouped into 200 classes, so that each class covers 0.5%
of the total study area (thus contains 0.5% of the total num-
ber of pixels in the study area) (Fig. 6). The class numbered
200 corresponds to the 0.5% highest scores, i.e. to the 0.5%
most hazardous area.

In prediction modelling, the cross-validation of the results
is a mandatory step to assess the accuracy and the reliabil-
ity of the model. As stressed by Chung and Fabbri (2003),
to validate a prediction image for future events, time parti-
tioning is the most natural and convincing strategy. In our
case, because there is only one time interval of past occur-
rences, a sequential spatial partitioning of the occurrences
was performed. The prediction rate of the resulting suscep-
tibility map was estimated by a spatial cross-validation pro-
cedure sequentially excluding 2 of the 26 reactivated scarp
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Fig. 6. Susceptibility map of the landslide reactivation hazard obtained from the 1952 data layers: slope Aspect, Planform curvature,
Vegetation index and Focal flow (APIF). The class 200 corresponds to the 0.5% most hazardous area.

segments (Fig. 7). This experiment was repeated 13 times
in order to consider only once each of these 26 occurrences.
For this validation, we decided that, for a prediction to be
considered successful, at least 25% of each occurrence (i.e.
25% of its pixels) not used to predict, had to lie within a pre-
dicted reactivation-prone area. We then obtained, for each
of the occurrences, the portion of the study area necessary
to be selected to predict it. The prediction-rate curves pre-
sented in Fig. 7 were plotted from these 26 values. For each
curve, the smallest portion was first placed on the x-axis with
its corresponding reactivated area on the y-axis. Afterwards,
the second smallest portion value was plotted on the graph.
The second Y value associated with this portion is the sum
of the two first reactivated scarp areas. The same operation
was performed with the third smallest portion, etc.

5.2 Step 2: modelling on the basis of 1996 data

Because we were interested in predicting future occurrences
of reactivation, we needed to build our model on the current
(i.e., 1996) state of the conditioning variables.

We applied the statistics of the model computed in Step 1
to the data of 1996 (which include significant changes in
land use) to produce a susceptibility map responding to the
present-day conditions (Fig. 8). The susceptibility scores
presented were computed similarly to what was done in
Step 1.

Of course, we had no means to validate this second map
owing to the fact that no quantitative information on reacti-
vations developed after 1996 was available. However, as the
study area of 1996 is very similar to the one of 1952, the re-
liability of the 1996 prediction should be approximately the
same as that of 1952.

Fig. 7. Prediction-rate curves obtained by cross-validation. For the
APIF model, the highest hazardous 20% of the study area contain
65% of the predicted reactivations (point A).

5.3 Step 3: probability of occurrence of future reactivations

Finally, we estimated the conditional probabilities of oc-
currence of future reactivations for the period 1996–2036
(Fig. 9) by using the prediction-rate table of the model ob-
tained from Step 1. The probability that a pixel, x, in a given
hazard class, will be affected by a future scarp retreat is esti-
mated by the following equation as discussed in Chung and
Fabbri (2005) and Chung (2006):

P̂ x = 1 − [1 − ph]
nr
nh (5)

With nh = the cumulative number of pixels in the hazard
classes whose levels are higher or equal to the class; nr =
the number of pixels in the expected future reactivations; and
ph the cumulative portion of reactivations of the validation
group in the hazard classes whose levels are higher or equal
to the class, obtained from the prediction-rate presented in
Fig. 7. To calculate the conditional probabilities of the sce-
nario 1996–2036 (Fig. 9), we supposed that the scarps were
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Fig. 8. Susceptibility map of the landslide reactivation hazard obtained with the statistics of the 1952 APIF model and the 4 following 1996
layers: slope Aspect, Planform curvature, Vegetation index and Focal flow (APIF). The class 200 corresponds to the 0.5% most hazardous
area.

Fig. 9. Map of the conditional probabilities of occurrence of future reactivations for the period 1996–2036 (APIF model).

retreating at a constant mean rate and thus the same area
(nr∼1200 pixels) as that observed from 1952 to 1996 would
be affected by reactivation during the next 40 years.

According to the definition notably used by Soeters and
van Westen (1996) and initially proposed by Varnes (1984)
who defined the landslide hazard as “the probability of occur-
rence of a potentially damaging phenomenon within a spec-
ified period of time and within a given area”, this probabil-
ity map showing the occurrence of future reactivations rep-
resents a hazard map. Nevertheless, we remain conscious
that our map does not correspond to the amended definition
of Guzzetti et al. (1999) which include the magnitude of the
event.

6 Discussion

Considering the prediction-rate curves, the two models pre-
sented here (APIF and ASEPV) are only marginally different
(Fig. 7). Basically, the validation provides an estimate of the
ability of a model to predict correctly the spatial occurrence
of new reactivations but it does not say anything on how re-
alistic the model is, so that there is no way to choose be-
tween various models other than to invoke heuristic reasons
(Oreskes et al., 1994).

Both models include the slope aspect layer depicted here
as one of the most important parameter associated with the
main scarp reactivation. The major role of this variable had to
be understood as the effects it exerts over the rainfall amounts
brought by dominant winds and to a lesser extent the solar
radiation which influences soil humidity.
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From the geomorphological point of view, the APIF model
(Figs. 6, 8 and 9) may appear more realistic than the ASEPV
model. Indeed, it not only highlights the significant role
played by the flow concentration, which is the major cause of
the reactivations observed notably in landslide 1, but it also
stresses the importance of the cultivated areas located up-
stream of the headscarp in increasing the runoff towards the
landslide crown. Field observations also confirm that some
of the reactivation movements are clearly related to the de-
velopment of cultivated areas upstream of the main scarp.
Mainly in winter, the bare soils favour flow concentration to-
ward the landslides. Moreover, the “slope angle” variable,
which does not appear as such in the model, is taken into
account indirectly by the variable “focal flow” that evaluates
the eight immediate neighbours of each pixel (Table 2).

As for the ASEPV model, it includes explicitly the slope
angle variable and the influence of cultivated areas upstream
of the scarp (V: distance from cultivation). Its comparative
theoretical weakness lies probably in the much more remote
account it takes of the flow concentration, through the use
of P, the planform curvature variable. It should however be
noted that ascribing a prominent role to the flow concentra-
tion variable F amounts to assuming that runoff prevails over
percolation in triggering headscarp retreat, which is proba-
bly true only when bare (cultivated) soils undergoing winter
rainfall are located in direct contact with the scarp.

In summary, although the observed reactivations in land-
slide 1 from 1996 to the present time have been better pre-
dicted by the APIF model, we remain cautious in stating that
one model is closer to the geomorphological reality than the
other. The different sets of selected variables could as well
result from a marginal precedence between more or less re-
dundant variables.

7 Conclusions

This study demonstrates the feasibility of assessing the land-
slide reactivation hazard in a robust and reliable way. A set of
26 main scarp reactivation events covering∼1300 pixels was
used to fit the model with 4 variables: slope aspect, planform
curvature, vegetation index and focal flow. The prediction-
rate curve (Fig. 7) shows that if we select 20% of the most
hazardous areas, we predict about 65% of the future landslide
reactivations.

The next step in the research will be to extend this ap-
proach to a larger area, working then at a coarser resolution,
and looking at whether the various variables will keep the
same relative importance in the landslide reactivation predic-
tion.

We have focused here only on the headscarps without tak-
ing into account the existing kinematic data of the whole
mass of the landslides (Dewitte and Demoulin, 2005). It
could be interesting to use the latter information to weight
in some way the scarp retreat data, and especially to see

whether the parameters controlling the movements of the
landslide body are the same as those controlling the scarp
reactivation.
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