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2Dipartimento di Ingegneria Civile, Università degli Studi di Roma “Tor Vergata”, Via del Politecnico 1, 00133 Roma, Italy
3Registro Italiano Dighe, Ufficio Geologia Applicata, Via Curtatone 3, 00185 Rome, Italy
4Registro Italiano Dighe, Ufficio Idraulica, Via Curtatone 3, 00185 Rome, Italy

Received: 1 March 2005 – Revised: 1 September 2005 – Accepted: 2 September 2005 – Published: 30 September 2005

Part of Special Issue “Tsunami hazard from slope instability”

Abstract. The empirical formulations to forecast landslide
generated water waves, recently defined in the framework of
a research program funded by the Italian National Dam Of-
fice RID (Registro Italiano Dighe), are here used to study
three real cases of subaerial landslides which fell down ital-
ian artificial reservoirs. It is well known that impulse water
waves generated by landslides constitute a very dangerous
menace for human communities living in the shoreline of the
artificial basin or downstream the dam. In 1963, the menace
became tragedy, when a 270 millions m3 landslide fell down
the Vajont reservoir (Italy), generated an impulse wave which
destroyed the city of Longarone, and killed 2000 people.

The paper is aimed at presenting the very satisfactorily re-
production of the events at hand by using forecasting formu-
lations.

1 Introduction

The evaluation of impulsive waves triggered by landslides in
artificial reservoirs is of the utmost importance in the plan-
ning and the management of the dam and the artificial reser-
voir. In artificial basin where landslide risk exists, the water
is kept well below the maximum level, thus avoiding the dam
overtopping and the runup on the shorelines of the potential
impulse wave.

These waves are a particular type of tsunamis water waves,
and have been studied in the past using mathematical theo-
ries (Stoker, 1957; Prins, 1958; Kranzer and Keller, 1960;
Le Méhaut́e and Wang, 1996), physical model experiments
(Wiegel, 1955; Wiegel et al., 1970; Kamphuis and Bowering,
1972; Huber and Hager, 1997; Watts, 1997; Walder et al.,
2003; Fritz et al., 2004) and numerical simulations (Heinrich,
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1992; Watts, 1997; Monaghan and Kos, 2000; Watts et al.,
2005). Despite this body of works, the topic still requires
researches, and the presence of many studies from last three
years testifies that scientists’ endeavors are directed toward
the definition of even more accurate forecasting models.

In the above introduced context, the Italian dam register
RID (Registro Italiano Dighe) funded a research program,
based on experimental, numerical and mathematical stud-
ies, aimed at forecasting the principal parameters of land-
slide generated waves as a function of assumed parameters of
the falling landslide and the water body. One of the carried
out experimental studies defined empirical formulations fore-
casting the principal features of impulse water waves prop-
agating in a three dimensional water body (Panizzo, 2004).
At the same time, an experiment carried out in a two dimen-
sional wave flume was used to define the impulse wave runup
on plane slopes (Di Risio and De Girolamo, 2004; Di Ri-
sio, 2005). Results from these experiments have been here
used to characterize the principal features of subaerial land-
slide generated waves observed during three very famous and
tragic events occurred in 1959 at the Pontesei (Italy) artificial
reservoir, and in 1960 and 1963 at the Vajont (Italy) artificial
reservoir.

The paper is organized as follows: the second section in-
troduces a decription of the carried out experimental stud-
ies and presents obtained formulations. The third section
presents the landslide event occurred at the Pontesei reservoir
the 22 March 1959, focusing on the characterization of both
the kinematic of the landslide movement and the features of
the impulse generated waves. Similar studies are presented
for the landslide events occurred at the Vajont reservoir the 4
November 1960 and 9 October 1963, which are reported in
the fourth section. Finally, conclusions are drawn in the fifth
section.
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Fig. 1. Sketch of the experiment on the study of landslide generated
impulse waves propagating in a three dimensional water body.

Fig. 2. Pictures from the three dimensional physical model. On
the left, solid block landslide model and wave tank. On the right,
impact of the landslide model with water.

2 Experimental formulation to forecast landslide gener-
ated waves

The studies on both the three dimensional physical model
and the wave runup on plane slopes were carried out in
the Laboratory of Environmental and Maritime Hydraulic
LIAM (Laboratorio di Idraulica Ambientale e Marittima) of
L’Aquila University. The studies were targeted at defining
empirical formulations able to correlate the main parameters
of impulse generated water waves to those of the landslide
movement and the reservoir. The landslides were modelled
as solid blocks with zero porosity. Complete descriptions of
the carried out experimental activities and defined formula-
tions are reported in the works ofPanizzo(2004), Panizzo
et al.(2005), Di Risio and De Girolamo(2004) andDi Risio
(2005). Here only a brief description on both the performed
experiments and defined formulations will be provided.

As far as the three dimensional physical model is con-
cerned, Fig.1 reports a sketch of it, while Fig.2 shows
two pictures of the experimental wave tank and the landslide
physical model (left panel) and of one of the performed ex-
periments (right panel). With reference to Fig.1 the landslide
heighth, widthw, impact velocityv, the ramp inclination an-
gleα and the local water depthd, and the time of underwater
landslide motion were considered as variable input parame-
ters of the study. The maximum wave heightHmax and its
wave periodTmax have been referred to as parameters char-
acterizing the water motion.Hmax andTmax were considered

Table 1. Experimental variables to study landslide generated water
waves propagating in a three dimensional water body.

h (m) w (m) v (m/s) α (rad) d (m) r (m) θ (rad)

0.09 0.30 2.8 0.279 0.4 1.05 0.0

0.18 0.60 3.7 0.453 0.8 2.05 π/6

4.4 0.628 3.05 π/3

4.55 π/2

6.05

Table 2. Ranges of the selected non dimensional parameters.

wh/d2 v/
√

gd cos(θ) sin(α) r/d t∗s

0.042 0.999 0.0 0.276 1.312 0.39

0.675 2.221 1.0 0.588 15.125 5.112

in a system of polar coordinatesr and θ , being r the dis-
tance from the landslide impact point andθ the angle from
the landslide velocity vector.

On the basis of results from past studies (Kamphuis and
Bowering, 1972; Huber and Hager, 1997) the physical vari-
ables were assumed in the experimental ranges defined in Ta-
ble 1, and the non dimensional groups have been defined
considering the local water depthd as the length scaling
parameter. A particular importance has been given to the
time of underwater landslide motion, as pointed out byWatts
(1998) and Walder et al.(2003). Indeed, a monoaxial ac-
celerometer was placed on the back of the landslide model,
and the landslide velocity and displacement time series have
been obtained by integration. As far as the non dimensional
time of underwater landslide motion is concerned, defined as

t∗s =ts

√
g
/
d, it can be expressed as:

t∗s = 0.43

(
wh

d2

)−0.27(
v

√
gd

)−0.66

(sinα)−1.32 (1)

The landslide geometry has been summarized considering
the non dimensional parameterA∗

w=wh
/
d2. Table2 reports

the ranges of non dimensional parameters of the performed
experimental study. Since each test was repeated twice in or-
der to reduce experimental errors, 288 tests were carried out,
producing a database of 2880 wave records from a system of
10 wave gauges set in the used wave tank.

The analysis of experimental data was carried out taking
into account results from the works ofKamphuis and Bower-
ing (1972) andHuber and Hager(1997) and the scaling anal-
ysis approach presented byWatts (1998) andWalder et al.
(2003). All these experimental studies presented empirical
formulations able to characterize the features of the gener-
ated impulse waves as a function of a certain number of in-
volved physical parameters. ConsideringA∗

w as the main pa-
rameter in the fitting procedure, and using the Gauss–Newton
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Table 3. Experimental program of the study of impulse generated
waves runup.

d (m) γ (rad) Lp (m)

0.06 0.384 0.85

0.10 0.645 1.30

0.18 1.466 1.85

optimization approach of the experimental data, a new for-
mulation for the maximum generated wave heightHmax has
been defined inPanizzo et al.(2005), which reads:

Hmax
/
d = 0.07 ·

(
t∗s

/
A∗

w

)−0.45
(sinα)−0.88

·

exp(0.6 cosθ)
(
r
/
d
)−0.44 (2)

and presents a mean error equal to 0.0002 from experimental
data, and a correlation parameterR2

=0.79. As one would
expect,Hmax/d increases with the landslide front surface,
while decreases whenr/d or t∗s increases. The directional
distribution presents a maximum atθ=0.0, as expected. The
parameterl/d has been neglected, as it doesn’t improve the
correlation with experimental data.

The formulation forecasting the wave period of the wave
presenting the maximum height has been defined as:

Tmax

√
g
/
d = 2.50 · t∗−0.22

s (sinα)−0.25 (
r
/
d
)0.17 (3)

Equation (3) presents a mean error equal to 0.22 and a
correlation parameterR2

=0.64 with the experimental data.
As far as the experimental study on the runup of impulse

water waves on plane slopes is concerned, Fig.3 shows the
sketch of the realized physical model and the assumed land-
slide mechanism, which is the well known “Scott Russell
Wave Generator”. The slope inclination angleγ , the dis-
tance of the slope from the impact pointLp, the local water
depthd were considered the experimental parameters influ-
encing the observed runupru. Table3 reports the values of
γ , Lp andd assumed in the experimental study (27 tests re-
peated twice). It is to be noticed that parameterLp no longer
appears in the forecasting formulation as its variability was
used to change the incident perturbation features at the beach
toe, i.e. the incident wave heightH and wave periodT . The
non dimensional incident wave height ranged in (0.18; 0.70)
and non dimensional incident wave period ranged in (7.48;
15.60), hence the following empirical formulation is valid
for a wide range of wave type, such as solitary, cnoidal and
linear waves. The analysis of the observed wave runup on
the sloped plane has been carried out by digital analysis of
the recorded movies of the water oscillations, as showed by
Fig. 4. On the basis of the experimental results, the follow-
ing formula forecasting the value of the impulse water waves
runup has been defined:

ru

d
= 1.37

(
Hmax

d

)1.51(
Tmax

√
g

d

)0.47

(sinγ )0.26 (4)

Fig. 3. Sketch of the physical model used to study the runup of
landslide generated water waves on plane slopes.

Fig. 4. Images from one of the performed experiments on the runup
of landslide generated water waves.

The proposed empirical formulation presents a mean error
to the observed values equal to 0.11 and a correlation param-
eterR2 equal to 0.96. Although several empirical formulas
forecastingru have been presented in the past (Synolakis,
1987; Tadepalli and Synolakis, 1994; Muller, 1995), for the
first time the periodT of the incident impulse water wave has
been considered as influencing factor. In the present study,
the formulation forecasting the wave runup (Eq.4) has been
applied considering the height and period of the maximum
generated wave.

3 1959 event at the Pontesei reservoir

On 22 March 1959, at the Pontesei artificial basin, an impulse
wave was generated by the falling of a 5 million m3 landslide
into the water. A man, who was riding a bike along the street
on the opposite side of the basin, was killed by the water
wave runup. The event is described in the work ofSemenza
(2002). Figure5 shows a picture of the dam and the artificial
reservoir as it is today, where the 1959 landslide is visible on
the upper part of the figure.

The 1959 event didn’t cause damages to the dam, but re-
duced the basin capacity of about the 50%. At that time
the dam was (and still is) 93 m high, the basin capacity was
equal to 9.09 million m3 before the 1959 landslide, while
now it is equal to 5.8 million m3. On 22 March 1959 the
basin contained about 6.10 million m3 of water. Considering
the descriptions in the works ofSemenza(2002) andCaratto
et al. (2002), it is possible to make reasonable assumptions
about the values of the principal landslide and basin param-
eters involved in the event at hand. Firstly, the slope incli-
nation angle of the landslide rupture surface (parameterα)
can be assumed equal to 5◦. Referring to the work ofSe-
menza(2002), the landslide front widthw and heighth were
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Fig. 5. Picture of the Pontesei dam and artificial reservoir as it ap-
pears today. The 1959 landslide is clearly visible in the upper part
of the picture.

400 m and 47 m, respectively. About thish, the landslide
sliding bed was defined by means of soil drillings carried
out by ENEL (the national society for electricity supply in
Italy) in 1969. From the manuscript ofCaratto et al.(2002)
it can be assumed that the entire landslide movement took
about 3–5 min to fully develop, covering a distance equal
to 120 m. Assuming a given uncertainty on the time of un-
derwater landslide motion, we can refer to a slow landslide
with ts of about 1 min. The value of the local water depth
d can be evaluated by considering that the water surface, at
the moment the landslide fell down into the water, was 787 m
above the m.s.l., while the bottom of the reservoir was 740 m
above the m.s.l. The application of the formulation forecast-
ing the maximum wave height is here carried out considering
θ=0.0◦, as it is known for sure that the generated impulse
wave reached the street which was on the opposite side of
the basin, right in front of the landslide, at a distance from
the impact point equal to 175.0 m. The inclination angle of
the opposite slopeγ is assumed equal to 40.0◦.

Considering the above introduced values of the principal
parameters involved in the phenomenon, Fig.6 shows re-
sults obtained applying the forecasting formulations with a
given uncertainty on the time of underwater landslide mo-
tion, which is variable in (60.0; 80.0) s. The thin black line
reports the values of the estimated maximum generated wave
heightHmax, while the thick line reports the values of the
estimatedru. Results showsru variable in the range (17.0;
20.0) m, while the vertical distance between the street and
the water surface was equal to 18.0 m at the moment the land-
slide fell down. It is to be considered that the water not only
reached the street, but also killed a man who was riding a
bike. We believe the occurredru had a value very close to
20.0 m.
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Fig. 6. Estimated maximum wave heightHmax and runupru gener-
ated by the landslide event of 22 March 1959, at the Pontesei reser-
voir. The secondary y-axis refers to levels above the m.s.l.

4 1960 and 1963 events at the Vajont reservoir

The construction of the artificial reservoir in the Vajont valley
triggered the instability of the slopes, and consequently two
huge rock landslides which fell into the water on 4 November
1960 and on 9 October 1963.

The first event occurred at the Vajont reservoir while the
artificial basin was filling up for the very first time. On
4 November 1960 a rock landslide, with a volume equal
to 700 000 m3, fell into the water causing an impulse wa-
ter wave which was 2.0 m high and generated a 10 m wave
runup on the dam (Semenza, 2002). Figure7 reports a pic-
ture of the Vajont valley just after the 1960 landslide. At that
moment, the reservoir surface was at 652 m over the m.s.l.,
the basin had a mean water depth equal to 160 m, and con-
tained 40 000 000 m3 of water. In the left panel of Fig.8
it is possible to identify the section of the 1960 slide, along
with its sliding surface, and it is possible to evaluate that the
landslide front height was approximately equal to 10 m. It is
possible to assume that the slope inclination angle with the
horizontalα was equal to 35◦. Referring to the work of Se-
menza (2002), the analysis of the maps indicates a landslide
width equal to 250 m. As it was a very fast movement (Se-
menza, 2002), it is possible to assume an impact velocity of
about 5–10 m/s, and a time of underwater landslide motion
equal to 10–20 s. The value of the observed maximum wave
height, equal to 2.0 m, is to be intended close to the dam: for
this reason, an anomalyθ=90◦ and a distancer=480.0 m are
considered. These values have been defined analyzing the
map of the Vajont valley reported in Semenza (2002). About
the 1960 event, no observations of wave runup are reported,
and for this reason only the characterization of the maximum
wave height generated by the landslide is here carried out.
The values of the forecasted parameterHmax are plotted in
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Fig. 7. Picture of the Vajont valley after the 1960 landslide event
(picture taken from Semenza, 2002).

Fig. 9 considering a given uncertainty on the landslide time
of underwater motion, assumed variable in the range (10.0;
20.0) m/s. It can be noticed that the maximum generated
wave height is estimated to be satisfactorily close to the value
of 2.0 m reported by Semenza (2002).

The event occurred on 9 October 1963 is one of the
most catastrophic ever documented phenomenon of subaerial
landslide generated waves. A 270 million m3 landslide de-
tached from the Toc mountain and fell into the Vajont arti-
ficial reservoir, which had been filled up during the previ-
ous years. The presence of a very slow, ancient landslide
movement in the Toc mountain was well known to every-
body, and the word “Toc” meanspiece of rockin the local
slang. The mountain was indeed affected by a paleo-slide
(see Fig.8). It is clear that the landslide movement was ac-
celerated by the presence of water, which had been filled up
in the artificial basin in a short amount of time (about 3 years)
preceding the 1963 event. During those years, some geolo-
gists studied the landslide and realized that it was a giant M-
shaped mechanism (Fig.10). On 9 October 1963 the basin
surface was at 700.42 m over the m.s.l., corresponding to a
mean water depth equal to 200 m, and contained about 120

Fig. 8. Sections of the Vajont valley before and after 9 October
1963, landslide. The presence of paleo-slide at the Toc mountain
is visible in both the panels, presenting a rupture surface very close
to the rupture surface of the 1963 slide. A section of the landslide
occurred in 1960 is also visible in the left panel (picture taken from
Semenza, 2002).
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Fig. 9. Estimated maximum wave heightHmax generated by the
landslide event of 4 November 1960 occurred at the Vajont reser-
voir. The secondary y-axis refers to levels above the m.s.l.

millions m3 of water. The landslide generated a high im-
pulse wave which flooded the opposite slope, reaching the
height of 235 m above the basin water surface, right close
to the city of Casso, propagated upstream the Vajont valley,
and downstream, overtopping the dam and then destroying
the city of Longarone. Figures11 and12 present two pic-
tures of the Vajont valley just after 9 October 1963 land-
slide. Bearing in mind the aim of applying the experimental
formulations to characterize the generated impulse waves, it
is to be stressed that the considered event presented values
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Fig. 10.Picture of the Toc mountain, taken by E. Semenza in 1959,
reporting the first hypothesis about dimensions and shape of the
landslide mechanism interesting the Vajont reservoir (picture taken
from Semenza, 2002).

of physical parameters well outside the experimental ranges.
However, we believe that the application of the forecasting
formulation can still provide useful and reliable information
about the generated impulse wave.

It is well known that the landslide mechanism was 2000 m
wide: this value is also confirmed by the recent work ofDatei
(2003). As far as the landslide front height is concerned, a
reasonable assumption is to consider a value of about 140 m,
as it can be deduced by the analysis of the geological sections
presented by Semenza (2002), two of them being reported in
Fig. 8. The seismic waves time series recorded at the Pieve
di Cadore measuring station, which is reported in Fig.13,
demonstrates that the landslide mechanism took about 20.0–
25.0 s to fall into the water. Assuming this hypothesis, the
landslide impact velocity can be taken in the range (20.0;
25.0) m/s, as proposed also byDatei(2003). About the slope
of the rupture surface of the landslide, Fig.8 shows a low
slope inclination angle close to the water, while it increases
uphill. For this reason, the value ofα is assumed variable
in the range (6.0◦; 10.0◦). As far as the maximum generated
wave is concerned,Semenza(2002) reports a runup value
of 235.5 m in correspondence of the dam, which can be as-
sumed to be atθ=0.0◦ and r=280.0 m from the landslide
impact point. This assumption can be also testified by the
damages on vegetation in the opposite slope, right close to
the village of Casso, which is 964.0 m above the m.s.l., as it
is visible in Fig.11. About the inclination angle of this slope,
a value ofγ=25◦ was assumed.

With these hypotheses, the application of the forecasting
formulations gives the estimates ofHmax and ru reported
in Fig. 14. It can be deduced that, even if the considered
values are pretty outside the experimental ranges, reason-
able assumptions give consistence toHmax andru estimates,
which are in a very satisfactorily agreement with the value of
210.0 m reported bySemenza(2002).

5 Conclusions

A research program on landslide generated water waves is
currently being carried out at the Laboratory of Environmen-
tal and Maritime Hydraulic LIAM (Laboratorio di Idraulica
Ambientale e Marittima) of L’Aquila University, funded
by the Italian National Dam Office RID (Registro Italiano
Dighe).

Table 4. Values of the non dimensional parameters calculated for
the three considered real cases.

Pontesei 1959 Vajont 1960 Vajont 1963

wh/d2 9.05 0.09 7.0

v/
√

gd 0.02 0.19 0.50

cos(θ) 1.0 0.0 1.0

sin(α) 0.08 0.57 0.13

r/d 4.04 3.0 1.4

t∗s 32.0 3.71 4.98

γ (rad) 0.69 0.43

Part of the results obtained within the research program
were used to define empirical formulation to forecast the
principal features of the impulse generated waves as a func-
tion of the landslide mechanism. These formulations have
been here applied in the study of three famous and tragic
events of landslide generated waves occurred in two Italian
artificial basins, which are the Pontesei and the Vajont reser-
voirs. In particular, the event occurred on 9 October 1963 at
the Vajont reservoir is one of the most tragic every reported,
due to the great loss of human lives.

It is clear that the study and the full understanding of a real
case landslide generated waves event which presents com-
plicated geometries and many physical parameters involved
should be carried out using a dedicated experiment, as in
the works ofDavidson and McCartney(1975), Mader(1999)
andFritz et al.(2001), or a specifically implemented numer-
ical model. The experimental study carried out within our
research project aimed at the definition of empirical formu-
lation which could be used to forecast the general features
of the generated water waves in many real cases. Usually,
when a landslide is expected to fall into a reservoir or in the
open sea, there is no time to build physical models and per-
form experiment, or either to run numerical simulations, and
is of the utmost importance having an order of magnitude of
the expected phenomenon. The study presented in this paper
showed that even though the selected real cases presented
values of the involved parameters outside the experimented
ranges, it is still possible to get useful information about the
generated impulse waves by using the set of empirical for-
mulations defined by the carried out experimental studies.
Table4 reports the values of the non dimensional parameters
for the real cases considered in the present study. Values out-
side the ranges tested in the experimental study are reported
in bold.

Introduced results showed that the considered empirical
formulations well estimate the values of both the maximum
generated wave heightHmax and the wave runupru, in the
considered three real cases occurred in the Pontesei and
the Vajont artificial reservoirs. The comparison of results
with the values deduced from the literature showed good
satisfactorily agreement.
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Fig. 11. Picture of the Vajont valley after 9 October 1963 landslide. On the right part of the picture the village of Casso is visible, while a
white line reports the maximum runup level of the generated impulse wave.

Fig. 12. The Vajont valley just after 9 October 1963, landslide
event. In the left part of the picture it is possible to see the Va-
jont dam, as it is now, which was not damaged by the overtopping
water.

Fig. 13. Seismic wave record from the Pieve di Cadore measuring
station showing the time the 1963 landslide mechanism took to fall
into water, equal to 20.0–25.0 s.
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