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Abstract. We applied the Multifractal Detrended Fluctuation
Analysis (MF-DFA), which allows to detect multifractality
in nonstationary signals, to the hourly means of local geo-
magnetic field recorded at Mt. Etna volcano (southern Italy).
We studied the signal measured at one geomagnetic station,
installed at the summit of volcano, which was characterized
by a strong eruption on 27 October 2002. We analyzed two
frames of signals, one measured before the eruption and the
other after, in order to evaluate dynamical changes induced
by the eruptive event. Our findings show that: i) the geo-
magnetic time series is multifractal; ii) the multifractal de-
gree of the signal decreases after the occurrence of eruption.
This study aims to propose another approach to investigate
the complex dynamics of volcano-related geomagnetic field.

1 Introduction

Volcanoes are complex dynamical systems controlled by in-
teractions of many processes, of whom the most spectacular
effects have been observed near eruptive events. There are
many uncertainties in the controlling parameters. However,
intensive monitoring of recent eruptions of Kilauea, Mount
Etna, Mount Unzen, and Montserrat has generated integrated
time series of data, which have advanced understanding of
volcanic processes. Contemporary methodologies, able to
detect timescale structures in observational time series, have
been particularly useful to obtain information on the features
and on the causes of variation at the different timescales.
In particular, time-scaling analysis techniques, developed to
draw qualitative and quantitative information from time se-
ries, have been applied recently to the study of a large vari-
ety of irregular, erratic signals and by now have proved to be
very valuable to detect deep dynamical features.
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At Mount Etna it has already been found that the dynamics
of volcano is characterized by scaling respect to several fea-
tures. In particular the sequence of eruptive events shows
time-scaling over a relatively wide range of timescales,
pointing to the presence of correlated structures in the point
process, which models the sequence of eruptions (Telesca
et al., 2002). Also the seismicity of Mt. Etna shows time-
scaling behavior. Vinciguerra and Barbano (2000), analyz-
ing the box-counting time fractal dimension of the seismic-
ity, found a non random distribution over time of the earth-
quakes. Furthermore, variation of the time-fractal dimension
was detected at different timescales. Variations from short
to mid term scales (order of days) in correspondence to the
onset of eruptions (in which sharp decrease of the dimen-
sion was followed by sharp increase) can be related to rock
fracturing processes induced by the penetration of magma
into shallow layers, or by fracture systems opening linked
to early stages of the eruption. The deep earthquakes show
approximately two time-fractal trends: sharp variation of the
clustering at the onset of the eruption, probably due to overall
volcano edifice responding to the final phases of the magma
rise; the other is a relative lowering of the fractal dimension
during and between the eruptive cycle (order of years).

In the recent past the magnetic monitoring at Mt. Etna
has proved its ability to detect significant time variations in
the local magnetic field linked to volcanic activity (Del Ne-
gro et al., 1997; Del Negro et al., 1998). Detection of mag-
netic anomalies has often been proposed for monitoring the
modifications in the stress field or the thermodynamic state
within the volcanic edifice and providing a tool to forecast
eruptions.

Magnetic anomalies attributable to the dynamics of vol-
cano show several temporal scales, which reflect the su-
perposition of different processes. At least variations
at three different timescales can be considered. Long-
term trend (months to years) are probably associated with
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Fig. 1 Fig. 1. Schematic map showing the area covered by the lava flows
from 2001 and 2002 Etna eruptions. Locations of magnetic stations
are shown as well.

demagnetization/remagnetization of rocks due to thermal
process inside the volcano. The amount of these variations
can reach several tens nanoteslas depending on the rocks
magnetization (Yukutake et al., 1990). Mid-term trend sig-
nals (weeks to months), with amplitude of about few nan-
oteslas, include near-surface thermal demagnetization ef-
fects, stress field induced changes, and effects from rota-
tion/displacement of magnetized material (Zlotnicki et al.,
1993). Short-term variations (seconds to days) could re-
sult from instantaneous variations of rocks magnetization in-
duced by local stress redistribution and from fluid flow cur-
rent through fissures within the volcanic edifice accompany-
ing fault ruptures and fracture opening (Mueller and John-
ston, 1998; Sasai et al., 2002). Thus, the characterization
of the volcanomagnetic signals, which seem to depend on
the structural heterogeneity and the dynamics of the plumb-
ing system of each volcanic edifice, can be a useful instru-
ment both for improving the monitoring of active volcanoes
as well as developing a greater understanding of the pre-
eruptive mechanisms which produce them.

To quantitatively characterize geomagnetic dynamics, we
need to use robust methodologies in order to extract fea-
tures hidden in their complex fluctuations. Fractality is one
of the features of such complexity. Fractal processes are
characterized by scaling behaviour, which leads naturally
to power-law statistics (Thurner et al., 1997 and references
therein). Several methods can be applied to reveal the frac-
tality of a signal, such as the most standard technique of the
power spectral density, or the more robust Higuchi method
(Higuchi, 1988; 1990), or the Detrended Fluctuation Analy-
sis (Peng et al., 1995), which allows the detecting of scaling
behaviours in experimental time series, very often affected
by trends and nonstationarities, which cause spurious detec-
tion of correlations.

But all these techniques are monofractal, and not sufficient
to describe the overall scaling behaviour of a signal, which
could be multifractal.

What does multifractality mean? A multifractal is an ob-
ject which needs many exponents to characterize its scaling
properties. It can be decomposed into many sub-sets char-
acterized by different scaling exponents. Thus multifrac-
tals are intrinsically more complex and inhomogeneous than
monofractals, and characterize systems featured by irregular
dynamics, with sudden bursts of high frequency fluctuations.

The aim of the present paper is the dynamical investigation
of a geomagnetic field at Mt. Etna volcano in southern Italy,
in order to characterize the multifractality of such time series
and reveal dynamical change induced by eruptions.

2 Data

Detection of clear magnetic signals associated with the re-
newal of the volcanic activity led to an intensification of the
magnetic monitoring of Mt. Etna. Since the end of 1998 a
permanent magnetic network equipped with Overhauser ef-
fect magnetometers has been set up (Del Negro et al., 2002).
The present network consists of five stations placed on the
volcanic edifice (CST, BVD, BCN, PDN, and DGL), flanked
by a sixth external reference station (CSR) installed fur-
ther west (about 50 km) on the Nebrodi Mountains (Fig. 1).
Stations on Etna are located at elevations ranging between
2350 and 3000 m above sea level along a North-South pro-
file crossing the summit craters. This layout is symmetrical
with respect to the central craters and should allow continu-
ous prospecting of the geomagnetic field along this section
of the volcano. The sites were carefully tested before the sta-
tions were installed and the inspection revealed the presence
of low magnetic gradient (less than 50 nT/m) and low back-
ground noise level. To avoid large effects due to strong local
static magnetic anomalies, the sensor is fixed at the top of a
4 m high pole. All sites sample synchronously every 10 s and
transmit data via mobile phone to the INGV-Catania Section
where these data are processed and analyzed.

In the present paper we analyze the hourly time-variability
of the geomagnetic signals measured at PDN site two months
before and two after the strong eruption occurrring on 27 Oc-
tober 2002 at Mt. Etna volcano. The geomagnetic field vari-
ations attributable to the dynamics of volcano can be use-
ful indicators of the modifications of the stress field or of
the thermodynamic state within the volcanic edifice. How-
ever, the volcanic geomagnetic field varies with amplitudes
of 1∼10 nT in most cases, while changes up to a few hun-
dreds nT are caused by ionospheric and magnetospheric cur-
rents, and secular variations. Therefore, it is necessary to re-
move these variations in order to highlight an on-going phys-
ical process inside a volcano. Simple differences in the total
intensity with respect to the simultaneous value at the CSR
remote reference (located at a magnetically quiet site) are
used to reduce secular variations and external geomagnetic
disturbances (these contributions can be considered spatially
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uniform on the scale of the volcano). In Fig. 2a the to-
tal intensity variations observed at PDN relative to CSR are
shown; there are some gaps due to equipment drawbacks.
Nevertheless, very much larger time variations, with peri-
ods from minutes to years, are present in these differences.
For example, also in the absence of any volcanic activity,
some of the time changes can occur because of secondary
fields induced in the crustal rocks by external current sys-
tems. At different positions this disturbance appears with
different properties and characteristics because of its inter-
action with the local environment (Davis et al., 1981), but it
should be predictable, because the variations at the different
stations are correlated by their electromagnetic impedances.
Therefore, a predictive filtering could be used to further re-
duce the changes in the difference fields due to contrasting
responses at magnetometer sites, with the filters giving the
relative responses between sites. The predictive filtering es-
timates the variations that are common to different sites, and
the filter output is a prediction of the signal based on observa-
tions in other sites. The residual field (the difference between
the observed values and the predicted values) contains only
the effects that are spatially local. This one represents the
signal to be analyzed. It is worth noting that total field dif-
ferences are also dependent on the direction of the disturbing
field (Davis et al., 1981). The directional effect has meant
that vector information as well as that from total fields must
be used as input to the filter to take this into account. In our
case, the vector magnetic field data from L’Aquila Geomag-
netic Observatory, which is the closest vector magnetometer,
are utilized. Because of the nonstationarities of the geomag-
netic signal, we propose an adaptive filter which estimates
and updates the filter parameters continuously by means of
the new observations, so that predictions closely match the
observed data. In this case, the three component fields of the
vector magnetometer at L’Aquila (X, Y, Z) and the total field
at CSR reference station (of Etna array) represent inputs to
the adaptive filter, and the estimated signaly(t) at PDN is the
output, as reported below:

ŷ(t) =

m1∑
i=0

a1i (t) X (t−i)+

m2∑
i=0

a2i (t) Y (t−i)

+

m3∑
i=0

a3i (t) Z (t−i)+

m4∑
i=0

a4i (t) CSR (t−i) (1)

whereaij are the time-varying parameters,n andm1,. . . m4
predictors.

The adaptive filter is effective enough and the changes in
October 2002 are the only significant ones observed during
the analyzed period (Fig. 2b). After differential magnetic
field measurements were filtered from the external noise by
using adaptive filters, we recognized two stages in the to-
tal intensity changes, which are closely related to different
volcanic events: (a) a sudden drop of about 4–5 nT associ-
ated with 26 October seismic swarm recorded beneath the
summit craters; and (b) step-like variations of 9-10 nT co-
incident with 27 October eruptive fissures opening up in the
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Fig. 2 Fig. 2. Time variation of the geomagnetic signal measured at PDN
station referred to CSR(a) and after removal of external effects by
adaptive filtering(b); the arrow indicates the time of occurrence of
the strong eruption on 27 October 2002

north flank (Del Negro et al., 2004). Until 26 October no
significant changes were observed at PDN magnetic station.
Therefore, we split the signal into two frames, before and af-
ter the 2002 eruption, two months long each. We analyzed
the multifractal properties of both frames, in order to evi-
dence possible dynamical changes, induced by the eruption.

3 Methods and data analysis

Observational data often present clear irregular dynamics,
characterized by sudden bursts of high frequency fluctua-
tions, which suggest performing a multifractal analysis ev-
idencing the presence of different scaling behaviours for dif-
ferent intensities of fluctuations. Furthermore, the signal may
appear nonstationary.

The Multifractal Detrended Fluctuation Analysis (MF-
DFA) (Kantelhardt et al., 2002) is a useful tool to charac-
terize multifractality in nonstationary data.
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Fig. 3 
Fig. 3. h(q)∼q relation for the geomagnetic PDN time series.

The method is based on the conventional detrended fluc-
tuation analysis (Peng et al., 1995). It operates on the time
series x(i), where i=1,2,...,N and N is the length of the se-
ries. With xave the mean value is indicated. Assume that x(i)
are increments of a random walk process around the average
xave, the “trajectory” or “profile” is given by the integration
of the signal

y(i) =

i∑
k=1

[x(k) − xave]. (2)

Next, the integrated time series is divided into NS=int(N/s)
no overlapping segments of equal length s. Since the length
N of the series is often not a multiple of the considered time
scale s, a short part at the end of the profile y(i) may remain.
In order not to disregard this part of the series, the same pro-
cedure is repeated starting from the opposite end. Thereby,
2NS segments are obtained altogether. Then the local trend
for each of the 2NS segments is calculated by a least square
fit of the series. Then one calculates the variance

F 2(s, ν) =
1

s

s∑
i=1

{y [(ν − 1) s + i] − yν(i)}
2 (3)

for each segmentν, ν=1,..,NS and

F 2(s, ν) =
1

s

s∑
i=1

{y [N − (ν − NS) s + i] − yν(i)}
2 (4)

for ν=NS+1,..,2NS . Here, yν(i) is the fitting line in segment
ν. Then, an average over all segments is performed to obtain
the q-th order fluctuation function

Fq(s) =

{
1

2NS

2NS∑
ν=1

[
F 2 (s, ν)

] q
2

} 1
q

(5)

where, in general, the index variable q can take any real value
except zero.
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Fig. 4. Singularity spectra of the geomagnetic PDN time series.

Repeating the procedure described above, for several time
scales s, Fq (s) will increase with increasing s. Then ana-
lyzing log-log plots Fq (s) versus s for each value of q, the
scaling behaviour of the fluctuation functions can be deter-
mined. If the series xi is long-range power-law correlated,
Fq (s) increases for large values of s as a power-law

Fq(s) ∝ sh(q). (6)

The value h(0) corresponds to the limit h(q) for q→0, and
cannot be determined directly using the averaging procedure
of Eq. (5) because of the diverging exponent. Instead, a log-
arithmic averaging procedure has to be employed,

F0(s) ≡ exp

{
1

4NS

2NS∑
ν=1

ln
[
F 2 (s, ν)

]}
≈ sh(0). (7)

In general the exponent h(q) will depend on q. In partic-
ular for monofractal series it is independent of q. For sta-
tionary time series, h(q) is the well-defined Hurts exponent
H (Feder, 1988). Thus, we call h(q) the generalized Hurst
exponent. The different scaling of small and large fluctua-
tions will yield a significant dependence of h(q) on q. For
positive q, the segmentsν with large variance (i.e. large de-
viation from the corresponding fit) will dominate the average
Fq (s). Therefore, if q is positive, h(q) describes the scaling
behaviour of the segments with large fluctuations; and gen-
erally, large fluctuations are characterized by a smaller scal-
ing exponent h(q) for multifractal time series. For negative q,
the segmentsν with small variance will dominate the average
Fq (s). Thus, for negative q values, the scaling exponent h(q)
describes the scaling behaviour of segments with small fluc-
tuations, usually characterized by larger scaling exponents.

Figure 3 shows the q-dependence of the generalized Hurst
exponent h(q) determined by fits in the regime 10 h<s<N/4,
where N indicates the length of the series and for q ranging
between−5 and 5 with 0.5 step. In the plot the h(q)∼q re-
lation is represented for both the signal frames. We observe
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that before the eruption the signal is characterized by a vari-
ability of the generalized Hurst exponents larger than after
the eruption.

The multifractal scaling exponents h(q) are directly re-
lated to the scaling exponentsτ (q) defined by the standard
partition function multifractal formalism (Kantelhardt et al.,
2002)

τ(q) = qh(q) − 1. (8)

The singularity spectrum f(α) is related toτ (q) by means
of the Legendre transform (Parisi and Frish, 1985),

α =
dτ

dq
(9)

f (α) = qα − τ(q),

whereα is the Ḧolder exponent and f(α) indicates the di-
mension of the subset of the series that is characterized by
α. The singularity spectrum quantifies in details the long-
range correlation properties of a time series. Figure 4 shows
the multifractal spectrum f(α) for both the signal frames; the
multifractal spectrum of the signal frame before the eruption
is much larger than that after the event.

4 Conclusions

The geophysical phenomenon underlying the geomagnetic
activity connected to volcanic dynamics is rather complex.
The multifractal analysis could drive a better understanding
of such complexity. The MF-DFA, by means of the calcu-
lation of the generalized Hurst exponents and the singularity
spectra, has revealed that the volcano-magnetic signal is mul-
tifractal. But, the occurrence of an eruptive event changes
such multifractality, which is reduced after the eruption. The
decrease of the multifractal degree (measured by the range of
the Hurst exponents or, equivalently, by the width of the mul-
tifractal spectrum) after the eruption indicates a loss of het-
erogeneity. The corresponding contraction of the singularity
spectrum indeed means a transition from heterogeneous to
homogeneous patterns (Ida et al., 2005).

Thus, the characterization of the volcanomagnetic signals,
which seem to depend on the structural heterogeneity and
the dynamics of the plumbing system of each volcanic
edifice, can be a useful instrument both for improving the
monitoring of active volcanoes as well as developing a
greater understanding of the pre-eruptive mechanisms which
produce them.
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