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Abstract. Although there is an accumulated charge of theo-1 Introduction

retical, computational, and numerical work, like catastrophe

theory, bifurcation theory, stochastic and deterministic chaosPrediction of natural phenomena has always been a well-
theory, there is an important feeling that these matters dgondered problem. In physics, the predictability degree of
not completely cover the physics of real catastrophic eventsa phenomenon is often measured by how well we understand
Recent studies have suggested that a large variety of conit. Despite the large amount of experimental data and the
plex processes, including earthquakes, heartbeats, and necensiderable effort that has been undertaken by the material
ronal dynamics, exhibits statistical similarities. Here we arescientists, many questions about the fracture remain stand-
studying in terms of complexity and non linear techniquesing.

whether isomorphic signatures emerged indicating the tran- When a heterogeneous material is strained, its evolution
sition from the normal state to the both geological and bi-toward breaking is characterized by the nucleation and co-
ological shocks. In the last 15 years, the study of Com-alescence of micro-cracks before the final break-up. Both
plex Systems has emerged as a recognized field in its owacoustic as well as electromagnetic (EM) emission in a
right, although a good definition of what a complex systemwide frequency spectrum ranging from very low frequen-
is, actually is eluded. A basic reason for our interest in com-cies (VLF) to very high frequencies (VHF), is produced
plexity is the striking similarity in behaviour close to irre- by micro-cracks, which can be considered as the so-called
versible phase transitions among systems that are otherwigerecursors of general fracture. These precursors are de-
quite different in nature. It is by now recognized that the tectable both at a laboratory and a geological scale. Sev-
pre-seismic electromagnetic time-series contain valuable ineral experimental results, which illustrate the connection
formation about the earthquake preparation process, whiclhetween anomalous VLF-VHF electromagnetic phenomena
cannot be extracted without the use of important computa-and acoustic phenomena with earthquake preparation, were
tional power, probably in connection with computer Algebra presented in a rather comprehensive collection of papers
techniques. This paper presents an analysis, the aim of whicbdited by Hayakawa and Fujinawd 994 Hayakawa1999

is to indicate the approach of the global instability in the pre- Hayakawa and Molchang2002.

focal area. Non-linear characteristics are studied by apply- Aiming at recording VLF-VHF electromagnetic precur-
ing two techniques, namely the Correlation Dimension Esti-sors, since 1994 a station was installed at a mountainous
mation and the Approximate Entropy. These two non-linearsjte of Zante island (37.78\—20.76 E) in western Greece
techniques present coherent conclusions, and could coopefFig. 1).

ate with an independent fractal spectral analysis to provide a An important earthquake (Ms=5.9) occurred on 7 Septem-
detection concerning the emergence of the nucleation phasger 1999 at 11:56 GMT at a distance of about 20 km from the
of the impending catastrophic event. In the context of similarcenter of the city of Athens, the capital of Greece. Very clear
mathematical background, it would be interesting to augmeng|ectromagnetic anomalies have been detected in the VLF
this description of pre-seismic electromagnetic anomalies imhand (Fig.2), i.e. at 3kHz and 10kHz, before the Athens
order to cover biological crises, namely, epileptic seizure andeQ (Eftaxias et al.200Q 2001). The whole EM precursors
heart failure. were emerged from 31 August to 7 September 1999 @ig.

It is characterized by an accelerating emission rate @ig.
while, this radiation is embedded in a long duration quies-
Correspondence tK. A. Eftaxias cence period concerning the detection of EM disturbances
(ceftax@phys.uoa.gr) at the VLF frequency band. These emissions have a rather
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Fig. 1. The map demonstrates the location of the Zante RF stallrad the epicentres of the Athens and Kozani-Grevena earthquakes

(@)

long duration, (the data were sampled at 1 Hz), and thus iR.1 The Delay Times Method
provides sufficient data for statistical analysis.

Recently, in a series of papeisfiaxias et al.2001, 200 _ . . . .
Y papetsit l ! 2 The Delay Times method is an important tool in non-linear

Kapiris et al, 2003 2004ha; Eftaxias et al. 2004, we at- ; _ o -
tempt to establish the hypothesis that the pre-seismic elec@nalysis and gives both a qualitative and quantitative mea-

tromagnetic emissions offer a potential window for a Ste|osure of the complexity of the time-series under examination.

by step monitoring of the last stages of earthquake preparal-t was first established by3rassberger and Procaccl#83

tion processes. However, it is difficult to prove association a”O_' IS pased on the Takens Theordikens 1.98])' At|me-_
between any two events (possible precursor and earthquak ries is constructed from a set of successive and experimen-

separated in times. As a major result, the present study ingita!ly derived values, . Fromht.h(re] erg;]r}al time-series we thdenf
cates that it seems useful to combine various computationa‘fc’nStrUCt a new seres, which In this case is composed 0
ectors. For the construction of each of the vectors the es-

methods to enhance the association of the pre-seismic El\%f i £t " th bedding di .
phenomena with micro-fracturing in the pre-focal area. The m;:ﬁn f_ W(I) parameters, de eTmh et' mg? |mensmn,t
achievement of converging estimations would definitely im- and the ime lagr, 1S required. € time 1ag represents

prove the chances for an understanding of the physics behinﬁ]e window that is used fpr th? computation of the coo@-
the generation of earthquakes nates of these vectors. It is estimated from the decorrelation

time, which is the window beyond which the signal ceases
to present periodicities. The decorrelation time is calculated
2 Background information either from the first zero-value of the autocorrelation func-
tion, or from the first value of the mutual information func-
In this section, we briefly describe the algorithms that weretion (Farmer and Swinneyl986 that is close to zero. The
used and compared in this study. Their main characteristicsnutual information function is a widely accepted method that
as well as the reasons they were chosen are discussed.  computes non-linear and linear correlation of a signal. The
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Fig. 2. Time-series of the 10kHz (E-W) magnetic field strength between 4 July 1999 and 11 September 1999 in arbitrary units. The
precursory accelerating emission is embedded in a long duration of quiescence period. The star indicate the time of the Athens earthquake

occurrence.

parameter is assigned increasing integer values, in a rangeCorrelation DimensionD», represents the independent de-
that satisfies both the Takens criterion and the maximum adgrees of freedom that are required for the proper description
mitted window length, according to basic non-linear dynam-of a system or for the construction of its model.

ics theory. Appendix A includes analytical information on

these parameters, as well as a detailed description of the e@-2 The Approximate Entropy

tire Delay Times method. ) o )
There are various definitions of entropy, most of which usu-

Once the above is completed, the correlation integral,ally arise from entropy computation such as the Shannon
C(r), is computed for increasing values xf This integral ~ entropy or the Kolmogorov-Sinai entropy. From all known
basically computes how many of the above vectors have amethods, Approximate Entropyp En) is chosen, since it
distance between them less tharwherer is a ray in the  has been introduced as a quantification of regularity in data
vector space. We are then able to plaidinvs. In(r), where  and as the natural information parameter for an approximat-
In is the natural logarithm function. From this plot, we se- ing Markov Chain to a proces®incus 1991).
lect a scaling region and compute the slope of the curve in Given the original time-serieX (¢), we construct a series
that region. This process is repeated for increasing values obf vectors, and then we find the heuristic estimation of an in-
the embedding dimensiom,, and if the values of the slopes teger parameter;z, which in this case represents a window
converge, then we have found the Correlation Dimenglgn  size. We then, one again, heuristically estimate a thresh-
of the time-series( (¢). The convergence value of the slope old, », which arises from the product of the standard devi-
is an estimation of the Correlation Dimension. A time-seriesation of the time series and an arbitrary constant form 0 to
that results from a complex non-linear dynamic system yieldsl, which is kept the same for all time-series. We then ap-
a larger value for the Correlation Dimension, as opposed to gly an iterative procedure which finally produces an approx-
time-series which results from a regular and linear dynamicimation of Ap En(m, r). Generally, random time-series pro-
system, lower Correlation Dimension values. Generally, theduce increasing values dfp En(m, r), compared to regular
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Fig. 3. View of the time-series of 10kHz E-W. The four epochs in which the calculation are made are depicted.

time-series, a property which we exploit here. More detailstransform. In a Ir§(f)— In(f) representation the power
as well as a more analytical description of the method arespectrum is a line with linear spectral sloge The linear

included in Appendix B. correlation coefficient;, is a measure of the goodness of fit
to the power law Eq.1).
2.3 The fractal spectral analysis Our approach is to calculate the fractal paramgtemd

the linear correlation coefficient of the power law fit di-

The concept of fractal is most often associated with irregularyiding the signal into successive segments of 1024 samples
geometric objects that display self-similarity. Fractal forms each, in order to study not only the presence of a power law
are composed of subunits (and sub-sub-units, etc.) that reg( £y~ £—# put, mainly, the temporal evolution of the asso-
semble the structure of the overall object. The fractal analy-cjated parameters andr. The Continuous Wavelet Trans-
sis can be applied not just in irregular geometric forms thatform (CWT), using Morlet wavelet, is applied to compute the
lack a characteristic (single) scale of length, but also to cerpower spectrum, since being superior to the Fourier spectral
tain complex processes that generate irregular fluctuationgnalysis providing excellent decompositions within the max-

across multiple time scales, analogous to scale-invariant obimum admitted window lengthK@aiser, 1994).
jects that have a branching or wrinkly structure across mul-

tiple length scales. Earthquakes happen in self-organizing

complex systems consisting of many non linear interacting3 Methods — Results

units, namely opening micro-cracks. Self-organized com-

plexity manifests itself in linkages between space and timeA convenient way to examine transient phenomena is to di-
producing fractal processes and structures. Herein, we coride the measurements in time windows and analyze these
centrate on the question whether distinctive alterations in aswindows. [f this analysis yields different results for some
sociated scaling parameters emerge as earthquakes are @secursory time intervals (epochs), then a transient behaviour

proaching. can be extracted. We apply this technique for each of the
We focus on the statistics of the detected electromagnetignethods used below. _ ' .
fluctuations with respect to their amplitude, let's ség;). We discriminate four epochs in the EM time series under

We attempt to investigate autocorrelation structures in thesgtudy (Fig. 3). The first epoch refers to the electromagnet-
time-series. Any time series may exhibit a variety of autocor-ically quiescent period preceding the emergence of the EM
relation structures; successive terms may show strong (browanomaly. The second and third epochs include the precur-
noise), moderate (pink noise) or no (white noise) correlationsory (possibly seismogenic) EM activity. We separate two
with previous terms. The strength of these correlations protime intervals during the detection of this EM anomaly, be-
vides useful information about the inherent “memory” of the cause we mainly search for the appearance of transient phe-
system. The power spectrussy,f), which measures the rela- nomena during the last preparation stage of the main shock.
tive frequency content of a signal, is probably the most com-Finally, the fourth epoch refers to the period after the abrupt
monly used technique to detect structure in time-series. Itermination of the recorded EM anomaly.

the time-serieg\(1;) is a fractal time series that series cannot o ]

have a characteristic time scale. But a fractal time series can3-1  Application of the Delay Times method

not have any characteristic frequency either. The only pos-_l_h h th fth lat q ling
sibility is then that the power spectruf(f) has a scaling . roug t e use of the autocorre at'|on an m“‘“.a informa-
form: tion functions, a value was determined for the time lag,

that is most suitable for this study and that was7. The di-
S(f)~ P (1) mensions chosen for the phase space reconstruction started

at m=3 and went tom=20. Bothm and r values were
where the power spectrufi{ /) quantifies the correlations at based on the fact that after several trials these values yield
the time scale~1/f and f is the frequency of the Fourier the best reconstruction and thus lead to more accurate results
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Fig. 4. We first estimate the Correlation Dimensidby, in consecutive segments of 3000 samples each. Then, we trace the distribution of
theseD5-values for four consecutive epochs. The four epochs are depicted i8. Hige epochs 1 and 4 correspond to the EM quiescence

that precedes and follows respectively the EM precursory activity. The allmost similar distributions in the epochs 1 and 4 characterize
the EM background (noise). In epoch 2, the little deformation of the distribution to the left side in respect to the distribution of the pure
noise indicates that the initial part of the precursory emission is characterized by a little reduction of the complexity in respect to the high
complexity of the pure noise. The right lobe that appears in the period 3 corresponds to the EM background, while the left lobe corresponds
to the EM precursory activity. We observe a dramatic shift of the distribution obthealues in epoch 3. This evidence indicates a strong
reduction of complexity during the emergence of the two strong EM bursts in the tail of the precursory emission.
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Fig. 5. We first estimate the Approximate Entropyp En, in consecutive segments of 3000 samples each. Then, we trace the distribution of
theseA p En-values for four consecutive epochs that correspond exactly to the four epochs4flRithe epoch 2, we observe an important

shift of Ap En-values to lower values. This indicates that the emerged EM emission has a behavior far from this of the EM background. The
right lobe that appears in epoch 3 corresponds to the EM background, while the left lobe corresponds to the EM precursory activity. We
observe a dramatic reduction of complexity during the emergence of the two strong EM bursts in the tail of the precursory emission.

and subject discrimination. The correlation integral was thenplexity in the background noise of the EM time series. The

calculated for an extended rangerdiup to 1%, experimen-  associated predominand&-values, from 7 up to 10, indi-

tally determined). cate a strong complexity and non linearity. Notice, that a
We calculate the correlation dimensiof,, associated elevantlobe remains in the distributions/j-values in the

with successive segments of 3000 samples each and studigcond and third time interval, as it was expected.

the distributions of correlation dimensiab, in four con- Now, we focus on the second and third time intervals,
secutive time intervals (Fig). We recall that the recorded namely during the emergence of the precursory emission.
VLF EM anomaly of gradual increasing activity has been Ve observe a significant decrease of tgvalues as we
launched through a long duration kilohertz EM quiescencemove from the second to the third time window. The ob-
while they ceased a few hours before the Athens earthquaké&€rved significant decrease of the-values signals a strong
The first time interval corresponds to the quiescence EM peloss of complexity in the underlying fracto-electromagnetic
riod preceding the EM anomaly. The second and third timeMechanism during the launching of the two strong EM bursts
intervals correspond to the period of the recorded precursong1 the tail of the precursory emission. This evidence might
anomaly; the third time interval includes the two strong im- P€ indicated by the appearance of a new phase in the tail of
pulsive bursts in the tail of the precursory emission. Thethe earthquake preparation process, which is characterized by

fourth time interval refers to the quiescence period after the? higher order of organization. Sufficient experimental evi-
cessation of the precursory emission. dence seems to support the association of the aforementioned

two EM bursts with the nucleation phase of the impending

We underline the similarity of the distributions of tii®- earthquakeRftaxias et al. 200, Kapiris et al, 2004

values in the first and fourth time intervals (Fi). This
allmost common distribution characterizes the order of com-
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Fig. 6. (a) We first estimate the exponefitin consecutive segments of 1024 samples each. Then, we trace the distribution gfladses

for four consecutive epochs. The four epochs are depicted ir8Rigd correspond exactly to the four epochs of Bignd Fig.5. Insets show
percentage of segments withk-0.85. It is evident that the closer the final stage of seismic process, the larger the percentage of segments
with r>0.85, and the larger shift ¢f to higher values. Notice that in epoch 3 the signal becomes persigigithe propability distributions

of linear coef.r beyond 0.85.

These findings suggest that there is important informa-observed considerable decrease of theEn-values in the
tion in terms of correlation dimension hidden in the hetero-third time interval reveals a strong loss of complexity in
geneities of the pre-seismic time series. The correlation dithe underlying mechano-electromagnetic transduction dur-
mensionD> in the sequence of the precursory EM pulsesing the launching of the two strong EM bursts in the tail
seems to measure the distance from the global instability: thef the precursory emission. In other words, the pre-focal
larger theD,-values the larger the distance from the critical area seems to be less responsive to the external stimuli when
point. the pre-seismic EM signals are characterized by AgwEn-

values.

3.2 Application of the Approximate Entropy method
In summary, in the pre-seismic EM time-series the values

The Approximate Entropy was computed for a variety-of  of the Correlation Dimension and Approximate Entropy are
values proposed by previous researchers and it was founteduced as the main event is approached. This evidence
that the optimum value yielding clearest discrimination wasindicates that the underlying fracto-electromagnetic mech-
the valuer=0.65ST D, whereST D is the standard deviation anism exhibits a strong complexity and non-linearity far
of the time-series. from the global failure. A significant loss of complexity and
We calculate the Approximate Entropy associated withnon-linearity is observed close to the global instability. This
successive segments of 3000 samples each and study the diansiderable alteration in both,-values andd p En-values
tributions of theAp En-values in four consecutive time in- might be considered as candidate precursor of the impending
tervals, as in the case of the study in terms of Correlationevent.
Dimension (Fig5).
We observe again the similarity of the distributions of the Remark
ApEn-values in the first and fourth time intervals: this all-
most common distribution refers to the background noise ofAccording to the appendixes, the method of Correla-
the EM time series. A relevant lobe remains in the distribu-tion Dimension (CorrDim) embeds the original time series
tions of theA p En-values in the second and third time inter- into a phase space of dimension 3 to 20, examining thus
val, as it was expected. the probability distribution of a norm defined in this phase
Now, we concentrate on the second and third time inter-space, contrary to the Approximate Entropy method which
vals, namely during the emergence of the precursory emisembeds the original time series in a 2-dimensional phase
sion. We observe a significant decrease ofAlpeEn-values  space only. As a result, the CorrDim method yields a more
as we move from the second to the third time window. Thedetailed description of a system’s complexity, comparing to
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the Ap En method, which focuses mainly to coarse grainedare distributed in the region from 1 to 3. This means that the
characteristics. When the examined time series is generateggbssible seismogenic EM activity follows the fBm model.

by a low dimensional process, it is better to use #)eFn We concentrate on the quiescent EM period (first epoch in
method. On the other hand, when the complexity of theFig. 3), preceding the emergence of the EM anomaly (sec-
examined time series increases, the CorrDim method i$nd and third epochs in Fig. 3). We observe that only a very
more suitable as it is more sensitive to high complexity. small number of segments, approximately 5%, follows the
In the cases of epochs 2 and 3 in Figs. 4 and 5, we argower law (1) (see inserts in Fig. 6). We can conclude that
able to observe the above mentioned property. Focusingluring the epoch 1 the associated time series do not behave
to epoch 2 in Fig. 5, the shift oApEn-values to lower as atemporal fractal. Moreover, if we concentrate on the 5%
values witnesses the reduction of complexity, and thus theof the segments, the associafgdalues range from 0 to 1,
emergence of the precursor. In epoch 3 the complexitynamely, this minority of segments may follow the fGn model.
has further been diminished. Thus thg@ En method is  We conclude that regime of the quiescent period is quite dif-
the proper one to describe the associated grouping activitferent from those of the possible seismogenic emission. The
of the structures. Indeed, we observe that the probabilitytransition to the fractal structure and fBm class further iden-
distributions of EQP, and Background?; values seem to tify the launch of the fracto-electromagnetic emission from
be similar (epoch 3 in Fig. 4), while in the case A4pEn the background (noise) of EM activity.

method, the probability of EQtpEn values is larger than The distribution of8-exponents is also shifted to higher

the Backgroundi p En-values. values (Fig6) during the precursory period.
The precursory shift of the distribution of bghexponent
3.3 Application of fractal-dynamics andr-coefficient to higher values reveals important features

of the underlying mechanism. The fractal-laws observed cor-

The spectral fractal analysis reveals that the pre-seismic eledoPorate to the existence of memory; the system refers to
tromagnetic fluctuations exhibit hidden scaling structure. Welts history in order to define its future. As tifeexponent
observe alterations in the associated dynamical parameter§creases the spatial correlation in the time-series also in-
which seem to uncover important features of the underlyingCréases. This behaviour signals the gradual increase of the
earthquake preparation proce@piris et al, 2002 Eftax- memory, and thus the gradual loss of complexlty in the pro-
ias et al, 2003 Kapiris et al, 2003 2004ha; Eftaxias et al. cess.Maslov et al.(1994 have formally established the re-
2004). lationship between spatial fractal behaviour and long-range
Figure6 exhibits the temporal evolution ofas the main temporal correlations for a broad range of critical phenom-

ovet s approacd. e observe a radualmrease of o, Y S e e coneiions B e e s
correlation coefficient with time: at the tail of the precursory y, they . b b 'y
described as different cuts in the same underlying fractal.

activity the fit to the power law is excellent. The fact that aboratory results support this hypothestanomarev et al
the data are well fitted by the power-law (1) suggests that th 1997 have reported in phase changes of the temporal and

pre-seismic EM activity could be ascribed to a multi-time- atial Hurst exponents during sample deformation in labo-
scale cooperative activity of numerous activated fundamental P2 u xp uring P lon |

units, namely, emitting-cracks, in which an individual unit's ratory acoustic emission experiments. Consequently, the ob-

behavior is dominated by its neighbours so that all units Si_served increase of the temporal correlation in the pre-seismic

multaneously alter their behavior to a common large scalet'me'serles may also reveal th"."t the opening-cracks are cor-
lated at larger scale length with time.

fractal pattern. On the other hand, the gradual increase olfeTh tollowing f he h t th b
r indicates that the clustering in more compact fractal struc- € following eature goes to the heart o t € prob-
lem: first, single isolated micro-cracks emerge which, subse-

tures of activated cracks is strengthened with time. . ; .
N ¢ the behavi CT | quently, grow and multiply. This leads to cooperative effects.
ow we focus on the behavior gtexponent. Two classes Finally, the main shock forms. The challenge is to determine

of signal have been widely used to model stochastic frac,o «critical time-window” during which the “short-range”

tal time series leneghan and McDarhy000: fractional correlations evolve into “long-range” ones. Fég indicates

Gaussian noise (fGn) and fractional Brownian motion (me_)' that the closer the global instability the larger the percent-

Thg se ar(;a,Brespgct|veIy,t_gene;arllllzatu:ns °ff"th'tet ?guﬁs'agges of segments with close to 1 and the larger the shift
noise and brownian motion. € nalure ot fractal behav- ¢ B-exponent to higher values; tifevalues are maximal at

for (i.e. fGn versus fBm) provides |nS|ght into the physical the tail of the pre-seismic state (Fé9). This behaviour may
mechanism that generates the correlations: the fBm repre

) . . _ reveal the “critical time-window”.
sents cumulative summation or integration of a fGn. A for- .

: L . ) The exponeng is related to the Hurst parametéf,, by
mal mathematical definition of continuous fBm was first of- the formula frurcotte 1992
fered by Mandelbrot and Nes4968.

For the case of the fBm model the scaling exporghés B=2H+1 with O<H<land1l<pB <3 2)

between 1 and 3, while, the rangeffrom —1 to 1 indicates
the regime of fGnldeneghan and McDarbR000. Fig. 6  for the fBm model landelbrot and Nes4968 Heneghan
reveals that during the epochs 2 and 3 (Fig. 3)ghealues  and McDarby 2000. Consequently, segments with Hurst-
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exponents estimated by the previous formula out of the rangenogeneous backbondsgpiris et al, 2004k Eftaxias et al.
0<H <1 do not follow the fBm model. 2004 Kapiris et al, 20043. This behaviour may witness that
The exponent H characterizes the persistent/anti- the system has been starting to self-organize by a positive
persistent properties of the signal according to the followingfeedback process, and thus, this acquires to a great degree
scheme. The range®<H <1 (2<B<3) suggests persis- the property of irreversibility. The concept that the launch
tence of the signal, i.e. if the amplitude of fluctuations of the persistence activity could give a significant hint of a
increases in a time interval it is likely to continue increasing considerable probability for a forthcoming global instability,
in the interval immediately following. The range<@ <0.5 namely, a significant event, can be accepted.
(1<B<2) suggests anti-persistence of the signal, i.e. if the We have paid attention to the following experimental ev-
fluctuations increase in a period, it is likely to continue idence: The accelerating EM precursor (R3y.ends in two
decreasing in the interval immediately following and vice clear persistent signals with an energy ratio (second to first
versa. H=05 (8=2) indicates no correlation between signal)~5. The radar interferometry analysis showed activa-
the process increments, that is the system is characterizetibn of two separate faults with corresponding energy release
by random fluctuations Mandelbrot and Ness1968 ratio (second to first signaly5 (Eftaxias et al.2001; Kapiris
Hristopulos 2003. Consequently, the particular valge=2 et al, 20043. This surprising correlation in the energy do-
takes on a special physical meaning: it signals the transitiormain enhances the consideration that the launch of persistent
from anti-persistent to persistent behaviour in the time seriesdynamics may signals the emergence of the nucleation stage
of earthquake preparation.
Remark It is worth mentioning that laboratory experiments by
means of acoustic and electromagnetic emission also show
As it was mentioned, the rangel<g<1 implies fGn that the main rupture occurs after the appearance of per-
behavior. For this model the exponefitis related to the sistence behaviourPponomarev et gl.1997 Alexeev and
Hurst parameter by the formulg=2H —1 (Heneghan and Egoroy, 1993 Alexeev et al.1993 in the time-series.
McDarby, 2000. Thus,H is also constrained to lie between  We conclude that the aforementioned three methods
0O and 1in epochs 1 and 4 (Fig. 6). present coherent results: they clearly and accurately identify
Physically, the Hurst exponent express the strength ofignificant alteration in terms ab,-values, Ap En-values,
the effect of excitation associated with the preceding eventand Hurst-values, between the initial and terminal phase of
on succeeding events, or equivalently, the degree of negahe pre-seismic EM emission. The coherent results signal
tive/positive feedback in the dynamics. The rangeH0<0.5 a significant loss of complexity in the tail of the precursory
(1<B<2) during the first period of the EM precursor in- EM activity, while the underlying fracto-electromagnetic
dicates a very large anti-persistency. This behaviour im-mechanism becomes persistent. The dynamical parameters,
plies a set of fluctuations tending to induce a greater stabil-Do, ApEn, and H, seems to represent a measure of the
ity in the system. The observed shift of loddtexponents distance of the system from the global instability. The lower
can be understood if we accept that the micro-heterogeneityhe D,-values, the lower thel p En-values, and the higher
of the system becomes less anti-correlated with time. Thehe Hurst-values, then, the smaller the distance of the system
anti-persistent properties during this period are consistenfrom the “critical point” (global instability).
with the existence of a non-linear feedback mechanism that
“kicks” the cracking rate in the pre-focal area away from ex- Remark
tremes. The systematic increase of fhexponent (or Hurst-
exponent) indicates that the fluctuations become less antiA fundamental characteristic of probable EM precur-
correlated with time, i.e. the nonlinear negative feedbackssors is their appearance in a wide frequency band, ranging
gradually lose their ability to kick the system away from ex- from DC-ULF, ELF, VLF, and LF to VHF. The time elapsed
tremes. In other words, the decrease of heterogeneity appeafi®m the detection of the DC-ULF pre-seismic EM activity
to lead to a decrease in the ability to drive the system awayto the occurrence of strong EQ/drotsos et al. 1996
from a persistent mode of opening-cracks evolution. It mightHayakawa et al.1999 200Q Telesca and Lapenn200%;
be argued that “the first anti-persistent part of the precursoryarotsos and Sarljs2002 Ramirez-Rojas et 3al.2004),
electromagnetic radiation is triggered by micro-fractures inis longer than the time for the VLF-VHF emissions e.g.
the disordered system that surrounds the, allmost, homogdGershenzon and Bambakidig001, Eftaxias et al. 2001,
neous backbones within the pre-focal area”. 2002. Therefore, we can accept the concept that pre-seismic
For times close to breakthrough, allmost homogeneousignals may arise from different mechanisms, which do not
backbones of high strength sustain the elastic strain energyie within the same time scales.
In the limit of a homogeneous system, once a crack nucle- Authors have studied pre-seismic ULF geo-magnetic
ates in the rock, the stress is enhanced at its tip and thereforglayakawa et al.1999 2000 and geo-electrical signals
the next micro-crack almost surely develops at the tip. The(Telesca and Lapenn2001) in terms of fractal spectral anal-
appearance of persistence properties within the two strongsis. Regarding the behavior of the spectgaéxponent
impulsive signals at the tail of the precursory time series isobserved, it seems that this is in contrast to the behavior
thought to be clue to the fracture of the high strength ho-observed during the present study. Characteristically, the
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B-values showed a tendency to gradually decrease during th£995 and references therein). A few years aBak et al.
process of the earthquake preparation. We think that thig1987 coined the term self-organized criticality (SOC) to
difference supports the hypothesis that the ULF signals ordescribe the phenomenon observed in a particular automa-
one hand and the VLF-VHF signals on the other hand mayton model, nowadays known as the sandpile-model. This
have originated on different mechanisms. Indeed, it has beesystem is critical in analogy with classical equilibrium criti-
suggested that the ULF geo-electical signals could be exeal phenomena, where neither characteristic time nor length
plained in these terms: (i) “Pressure Stimulated Currents’scales exist. In general, the strong analogies between the dy-
that are transient currents emitted from a solid containingnamics of the “self-organized-criticality” (SOC) model for
electric dipole upon a gradual variation of pressMa¢tsos  earthquakes and that of neurobiology have been realized by
and Alexopoulos1984ab; Varotsos et a).1996. (ii) The numerous of authordHppfield 1994, (Herz and Hopfield
electro-kinetic effect e.gMlizutani and Ishidp1976 Dobro- 1995 and references there in)Jgher et al. 1995, (Zhao
volsky et al, 1989 Gershenzon and Bambakig001). Be- and Chen2002 and references there inBéggs and Plenz
cause electro-kinetic effect is controlled by the diffusion of 2003.
water with the diffusion time comparable to the period of Complexity does not have a strict definition, but a lot of
ULF emissions, more energy is provided to the ULF rangework on complexity centers around statistical power laws,
(Gershenzon and Bambakid001). We note that recently, which describe the scaling properties of fractal processes and
(Surkov et al. 2002 have explained the logarithmic depen- structures that are common among systems that at least qual-
dence of electric field amplitud€ on the earthquake mag- itative are considered complex. The big question is whether
nitude M that is indicated by experimental result&fotsos  there is a unified theory for the ways in which elements of
etal, 1996. a system organize themselves to produce a behavior that is
followed by a large class of systeméd¢sek 2002.
The aforementioned concepts motivated us to investigate
4 From the normal state to the seismic shock or epilep- whether common precursory patterns are emerged during the
tic seizure in terms of complexity precursory stage of both epileptic seizure and earthguake (
et al, 2004.
The world is made of highly interconnected parts on many The brain possesses more than billions neurons and neu-
scales, the interactions of which results in a complex behavronal connections that generate complex patterns of be-
ior that requires separate interpretation of each level. Thehaviour. Electroencephalogram (EEG) provides a window,
laws that describe the behavior of a complex system are quakhrough which the dynamics of epilepsy preparation can be
itatively different from those that govern its units. New fea- investigated. Fig7 exhibits rat epileptic seizure.
tures emerge as one moves from one scale to another, so it As in the case of the pre-seismic EM emission, we moni-
follows that the science of complexity is about revealing thetor the evolution of fractal characteristics of pre-epileptic ac-
principles that govern the ways in which these new propertiesivities toward criticality in consecutive time windows. Our
appear. analysis reveals that numerous distinguishing features were
A basic reason for our interest in complexity is the striking emerged during the transition from normal states to epilep-
similarity in behaviour close to irreversible phase transitionstic seizures l(i et al., 2004: (i) appearance of long range
among systems that are otherwise quite different in naturgpower-law correlations, i.e. strong memory effects; (i) in-
(Stanley 1999 2000 Sornette 2002 Vicsek 2001 2002 crease of the spatial correlation in the time-series with time;
Turcotte and Rudle2002. Recent studies have demon- (jii) gradual enhancement of lower frequency fluctuations,
strated that a large variety of complex processes, includingvhich indicates that the electric events interact and coalesce
earthquakesBak and Tang1989 Bak, 1997, forest fires  to form larger fractal structures; (iv) decrease of the fractal
(Malamud et al.1998, heartbeats{eng et al.1999, human  dimension of the time series; (v) decrease with time of the
coordination Gilden et al, 1995, neuronal dynamics/or- anti-persistent behavior in the precursory electric time series;
rell et al, 2002, financial marketsNlantegna and Stanlgy  (vi) appearance of persistent properties in the tail of the pre-
1995 exhibits statistical similarities, most commonly power- epileptic period. Fig7 shows the aforementioned precursory
law scaling behaviour of a particular observablBtanley  behavior.
(2000 offer a brief and somewhat parochial overview of  Notice that the aforementioned candidate precursors of
some “exotic” statistical physics puzzles of possible interestthe impending epileptic seizure or earthquake are launched
to biophysicists, medical physicists, and econophysics. in a way striking similar to those occurring just before
Interestingly, authors have suggested that earthquake’s dythe “critical point” of phase transition in statistical physics.
namics and neurodynamics could be analyzed within similaBased on this similarity, it might be argued that the earth-
mathematical framework$Rk{indle et al.2002. Character- quake/epilepsy may be also viewed as “a generalized kind of
istically, slider block models are simple examples of driven phase transition"Kapiris et al, 2004h Contoyiannis et aJ.
non-equilibrium threshold systems on a lattice. It has beer2004).
noted that these models, in addition to simulating the as- Our results indicate that an individual firing neuron or an
pects of earthquakes and frictional sliding, may also repre-opening crack is dominated by its neighbours so that all acti-
sent the dynamics of neurological networl&uadle et al.  vated biological or geological units simultaneously alter their
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Fig. 7. A rat epileptic seizure (red signal) in EEG time-series (upper part). Two electrodes were placed in epidural space to record the EEG
signals from temporal lobe. EEG signals were recorded using an amplifier with band-pass filter setting of 0.5-100 Hz. The sampling rate
was 200 Hz. Bicuculline i.p injection was used to induce the rat epileptic seizure. The injection time is at 7:49 (m-s) and the seizure at 12:55
(m-s), respectively. This pre-seizure period is depicted by the yellow part of the EEG time series. We estimate the gxiporergecutive
segments of 1024 samples each. Then, we trace the distribution ofgthedees for four consecutive epochs (lower part). The four epochs

are depicted in the upper part with numbered dashed frames. Insets show percentage of segmen@sOxitiNotice that at the last stage

of the pre-ictal period (epoch 3) the signal emerges persistent behavior.

behavior to a common fractal pattern as the epileptic seizurdor similarities from the normal state to the seismic shock or
or the earthquake is approaching. Interestingly, common alheart-failure.
terations in the associated parameters are emerged indicating
the approach to the global instability in harmony with rele- 5.1  Similarities in terms of multifractality
vant theoretical suggestionddgpfield 1994 Herz and Hop-
field, 1995 Usher et al. 1995 Zhao and Cher2002 Run-  Mathematical analysis of both long-term heart-rate fluctua-
dle et al, 2002 Beggs and Plen2003. Consequently, the tions (vanov et al, 1999 Stanley et al.1999 Goldberger
present analysis seems to support the concept that, indeegt al, 2002 and pre-seismic EM emission&dpiris et al,
a unified theory may describe the ways in which elements2004L) show that they are members of a special class of com-
of a biological or geological system organize themselves toplex processes, termed multi-fractals, which require a large
produce a catastrophic event. number of exponents to characterize their scaling properties.
In general, the detection of multi-fractal scaling may indicate
that the underlying nonlinear mechanism regulating the sys-
5 From the normal state to the seismic shock or heart- tem might interact as part as a coupled cascade of feedback
failure in terms of Correlation Dimension, Approxi- loops in a system operating far from equilibriumMéneveau
mate Entropy and Multifractality and Sreenivasani987).
Monofractal signals can be indexed by a single global ex-
Recently,Fukuda et al(2003 have investigated similarities ponent, i.e. the Hurst exponeft (Hurst 1951). Multifrac-
between communication dynamics in the Internet and the autal signals, on the other hand, can be decomposed into many
tonomic nervous system. They found quantitative similari- subsets characterized by different local Hurst exponknts
ties between the statistical properties of (i) healthy heart ratevhich quantify the local singular behavior and thus relate
variability and non-congested Internet traffic, and (ii) dis- to the local scaling to the time series. Thus, multifractal
eased heart rate variability and congested Internet traffic. Theignals require many exponents to characterize their scal-
authors conclude that their finding suggest that the undering properties fully Yicsek 1993. The statistical proper-
standing of the mechanisms underlying the “human-made’ties of the different subsets characterized by these different
Internet could help to understand the “natural” network thatexponents: can be quantified by the functian(k) , where
controls the heart. In the sense of this approach, we searcP (ko) is the fractal dimension of the subset of the time series



S. Nikolopoulos et al.: A unified approach of catastrophic events 625

mV)
400t o Mwdeooooow . owdAt o 1
300] _
200 12-May-1995 11/ e 0.9
15:20 15:52 16:24 : : s
mv) _ , , , , , , , b IELITPNRTIEIEPRPIETY 0.80
400 1 : :
300 JilWATEY AL AL TR Rt T TRl S TV LT T e e 0.7
200 13-May-1995 - f f
. . . . . . . . . ' ' 0.6
06:40 07:12 07:44 0 0.1 0.2 0.3

Time (UT) h

Fig. 8. Two segments of the precursory 41MHz electromagnetic signal, recorded on 12 May 1995 (upper row) and 13 May 1995 (lower row)
before the Kozani-Grevena earthquake=6.6 on May 13, 1995 at 08:47:12.9 UTC. On the right part of the figure the corresponding fractal
dimensionsD (k) are presented.

characterized by the local Hurst exponégt Ivanov et al.  haviour compared to ones coming from healthy subjects. The
(1999 have uncovered a loss of multifractality, as well as correlation dimensions of healthy time series are aliput:
a loss of the anti-persistent behaviour, for a life-threateningd when the respective ones for the patients are aboet6
condition, congestive heart failure. Following the method of (Nikolopoulos et al.2003. Similarly, the meam p En value
multifractal analysis used byanov et al. (1999, we exam-  for the healthy time series was aboyt En~1.2 and for the
ined multi-fractal properties in the VHF time series, namely, patientsAp En~0.4 (Nikolopoulos et al. 2003. A simi-
the spectrum of the fractal dimensi@(#), as a candidate lar reduction of complexity for heart failures has been ob-
precursor of the Kozani-Grevena earthquakairis et al, served in terms of Block-Entropy by some of the present au-
2004h. Figure8 shows that as the main event approachesthors Karamanos et 3l2004). It is important to note that
the EM time series manifest: a significant loss of multi- the D»-values andA p En-values associated with the second
fractal complexity and reduction of non-linearities, display- time interval of the pre-seismic EM time series are close to
ing a narrow (red) multifractal spectrum, and their fluctua- the ones coming from healthy subjects, while, tevalues
tions become less anti-correlated, as the dominant local Hursind A p En-values associated with the third time interval are
exponents is shifted to higher values. These results refleatlose to the ones coming from patient subjects. Based on this
that for both the heart and pre-focal area at high risk theanalogy, we could say that the EM emissions in second and
multi-fractal organization allmost breaks down. third time interval implies a kind of “healthy” and “patient”

In summary, the multifractality of the heart-beat time se- pre-focal area correspondingly. We focus on this analogy.

ries a.nd pre-seismic EM time series further enables us 0 e recall that the EM time series in the second time inter-
quantify the greater c“omplexny_ of”the “h_e_alth;_/” dynamics .\ is characterized by strong anti-persistence and multifrac-
compared to those of “pathological” conditions in both hearttality. The multifractality indicates that the underlying non-
and pre-focal area. linear mechanism regulating the system might interact as part
as a coupled cascade of feedback loops in a system operat-
ing far from equilibrium Meneveau and Sreenivasd®87).

The anti-persistent properties during this period imply a set

Recently, we have studied several methods which have bee‘ﬁf fluctuations tending to induce a greater stability in the sys-

used for the categorization of two subjects groups, one whic em. T_hus, by the term h_ealt_hy pre-_focal area’, we mean
a candidate focal area, which is consistent with a non-linear

represents subjects with no prior occurrence of coronary dis- ) oo .
ease events and another group who have had a coronaRfgative feedback system that “kicks” the cracking rate away
om extremes.

disease eveniNikolopoulos et al.2003 Karamanos et al.
2004. It is worth mentioning that the Delay Times method By the term “patient pre-focal area”, we mean a pre-focal
and the computation of the Approximate Entropy present co-area in which the system has been starting to self-organize
herent results and succeed in clearly and accurately differby a non-linear positive feedback process, and thus, this
entiating healthy subject ECGs from those of unhealthy sub-acquires to a great degree the property of irreversibility. This
jects and coronary patients. behaviour may imply that the nucleation stage, the most in-

Heart Rate Variability (HRV) time series coming from teresting phase in the preparation process of the catastrophic
coronary patients exhibit more regular and periodical be-fracture, has already been emerged.

5.2 Similarities in terms of Correlation Dimension and Ap-
proximate entropy
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The study of pre-failure EM signals seems to provide aods indicates the necessity of further investigation, combined
way for observing the Earth’s crust ability to respond to use, and complementary application of different approaches.
stresses. Hallmarks of the “patient pre-focal area” are: the The performed analysis reveals that common precursory
persistence behavior, the low multifractality, the low Corre- signs emerge in terms of fractal dynamics as the epileptic
lation Dimension and the low Approximate Entropy. These seizure and earthquake are approaching: common distinc-
hallmarks characterize a life-threatening condition for thetive alterations in associated scaling dynamical parameters
human heart, too. Briefly, the “patient pre-focal area” andemerge as biomedical or geophysical shock is approaching.
the “patient human heart” are characterized by a low com-The experimental results verify relevant theoretical sugges-
plexity. On the other hand, signatures indicating the “healthytions that earthquake dynamics and neural seizure dynam-
pre-focal area” are: the anti-persistence behavior, the higlics should have many similar features and should be an-
multifractality, the high Correlation Dimension, and the high alyzed within similar mathematical frameworkdpfield,
Approximate Entropy. These signatures also characterizd 994 Herz and Hopfield1995 Usher et al.1995 Zhao and
healthy human heartbeat. Briefly, the “healthy pre-focal Chen 2002 Rundle et al.2002 Beggs and Plen2003.
area” and the healthy human heart are characterized by high In principle, it is difficult to prove associations between
complexity. events separated in time, such as EQs and their precursors.

In a geometrical sense, the dynamical paramgtspeci-  The present state of research in this area requires a refined
fies the strength of the signal’s irregularity as well. Qualita- a definition of a possible pre-seismic anomaly in the record
tively speaking, the irregularity of the signal decreases as th@f EM radiation, and also the development of more objec-
memory in the time-series increases. For the fBm model thdive methods of distinguishing seismogenic emissions from
fractal dimension/ is found from the relatio@d=(5—3)/2, non-seismic EM events. A study in terms of complexity
which, after considering the aforementioned shiftfobx-  would seem to be useful in this regard. EEG time-series
ponent to higher values, leads to a decrease of fractal diprovide a window through which the dynamics of biologi-
mension as the earthquake approaches. We recall the Wesgtal shock preparation can be investigated in the absence of
Goldberger hypothesis that a decrease in healthy variabilitynon-biological events. We observe that both kinds of catas-
of a physiological system is manifest in a decreasing fractakrophic events under investigation follow common behavior
dimension Goldberger et al2002 and references there in). in their pre-catastrophic stage. This evidence may support
Our results imply that this hypothesis could be extended tothe seismogenic origin of the detected EM anomaly.
geological systems as well. We find also quantitative similarities between the prop-

erties of (i) healthy heart rate variability and initial anti-

persistence part of the pre-seismic EM time series, and (ii)
6 Conclusions diseased heart rate variability and terminal persistence part

of the pre-seismic EM activity. These similarities have been
A method to asses the approach to the global instability hagmerged in terms of Correlation Dimension, Approximate
been applied in EM pre-seismic anomalies. The study ofentropy, and multifractal dynamics.
these pre-failure signals seems to provide a way for observ- Fukuda et al.(2003 recall that very simple models of
ing the Earth’s crust ability to respond to stresses. The Delayery complex systems in many cases provide deep insights.
Times method, the computation of the Approximate Entropy,For example the Ising model and its simple variants as the
and the monitoring of alteration of Fractal Spectral charac-Heisenberg model are sufficient to quantitatively describe a
teristics of pre-seismic EM activity toward global instability wealth of very complex systems in regions of their respective
in consecutive time windows, present coherent results anghhase diagrams where scale invariant is displayed. The prin-
succeed in a potential differentiation of the nucleation phaseciple of “universality” in chemistry and physics, whereby di-
from previous stages of the earthquake preparation processerse systems are described by the identical (simple) model,
More precisely, the emergence of long-range correlationsmay have its counterpart in physiologytanley 1999. Even
i.e. appearance of long memory effects, the increase of théhe numerical values of the critical-point exponents describ-
spatial correlation in the time series with time, the predom-ing the quantitative nature of the singularities are identical
inance of large events with time, as well as the gradual defor large groups of apparently diverse physical systems. It
crease of the anti-persistent behaviour may indicate the apaas found empirically that one could form an analog of the
proach to the nucleation phase of the impending catastrophiendeleev table if one partitions all critical systems into
event. The appearance of persistent properties in the tail ofuniversality classes”. Two systems with the same values
the precursory time series, the significant divergence of theof critical-point exponents and scaling functions are said to
energy release, the sharp significant decrease of the ApproXeelong to the same universality class. In the frame of this
imate Entropy, and the quick reduction of the Correlation Di- approach we have shown that the pre-seismic VHF emis-
mension as well, all these, may hints that a new phase, prolsion belongs to the 3D-Ising-transition clagdoftoyiannis
ably the nucleation phase of the earthquake, has been starteet al, 2004. Fukuda et al(2003 argue that their finding
This analysis may provide a useful way to the understandingsuggest that the understanding of the mechanism underly-
of the fracture in the disordered media. The agreement ofng the “human-made” internet could help to understand the
the “diagnostic” information given by each one of the meth- “natural” network that controls the heart. In this sense, it
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appears that the fracture in the disordered systems may pratructed space and retains only some of the propertiess of
vide another useful “model system” to investigate the mecha{not all). Essential to phase space reconstruction, especially
nism responsible for the dynamics of the autonomic nervoudor the Delay Times method, is the estimation of the time
system (ANS), which controls involuntary the heart or the lag, . There is a range of methods for estimatingthe
epilepsy generation. In terms of complexity, this possibility most popular being the calculation of the decorrelation time.

is not implausible. The decorrelation time is calculated either from the first
The science of complexity is in its infancy, and some re- zerg-value of the Autocorrelation function or from the first
search directions that today seem fruitful might eventually minimum value of the mutual information function. The Au-
prove to be academic cul-de-sa@ethna et al(200]) show  tocorrelation function has been described in the previous sec-
that the seemingly random, impulsive events by which manytjon. The mutual information method is widely accepted and
physical systems evolve exhibit universal, and , to some exjt computes the nonlinear and linear correlation of the Auto-
tend, predictable behavior. Nevertheless, it is reasonable tgqrelation function. Once the Autocorrelation function has
believe that the results of the present study indicate that iheen normalized, the decorrelation time is found from the
is useful to transfer knowledge from the domain of biomed- smgjlest time lag for which the function tends to zero. Simi-
ical shock preparation to the domain of earthquake generapyly, the decorrelation time can also be found from the small-

tion and vice versa. This work could serve as an invitationest time lag for which the mutual information function tends
to other specialists in these areas to transfer knowledge frorg, zerq.

the one field of research to the other. According toBroomhead and King1986; Albano et al.

(1988; Kugiumtzis (1996 the results of a time-series anal-
Appendix A Delay Times method ysis depends on the window leng#h—1)t, which incorpo-

rates both the embedding dimensianand the time lag.
Given a timeseriesX (¢), t is an integer € (1, N) andN Therefore, the constraint to the above methods is the limit
is the total number of timeseries points. The Delay Timeson the size of the windowgn—1)z. A proper value for the
method was first established IGrassberger and Procaccia window size provides good phase space reconstruction and
(1983 and based on the Takens Theorefalkens 1981). ensures that all the points of the reconstructed phase space
According to this method, the timeserieg) is a measure of come from the same trajectory. As mentioned above, the
a single coordinate of an-dimensional system’s underlying Takens theorem dictates that proper phase space reconstruc-
dynamics. Assuming m is the embedding dimension (the dition is achieved whem is greater thafi2mc+1]. This crite-
mension of space in which the assumed system’s trajectory igion is difficult to satisfy for increased values ofdue to the
unfolded) and: is the time lag, then phase space reconstruc-subsequently larger values @t —1)r. A consistent window
tion (described below) is performed with time delays and thearises from the decorrelation time, seen as the time needed
following m-dimensional vectors are constructed: for the first decay of the Autocorrelation function. A time

lag, 7, is chosen and the reconstructed dynamics are embed-
x(t) =[X(0), X(@t—r), X(1—=27),..., X(—(m—=D1)](Al)  ded in then-dimensional phase space.

In this way, using the original timeseries(z), we are able After the phase space reconstruction of the system’s as-
to construct a new vector timeseriagy), which represents Sumed dynamics, non-linear dynamics algorithms are de-
the trajectory frome (0) up to and includinge () within the veloped for the experimental analysis of a timeseries. The
reconstructed phase space. most popular algorithmic method is the Delay Times method,

These vectors are defined inardimensional phase space @S0 known as the Algorithm dBrassberger and Procaccia
and are used in constructing the trajectory of the signal dy(1983, which estimates the Correlation Dimension from the
namics to this space. If the original phase space of the dycomputation of the correlation integral.
namics produce the attractar, then the reconstruction of The Grassberger Procaccia AlgorithiBrassberger and
the phase space with the Delay Times method produces thBrocaccia 1983 assumes a time-serieX, (i), which is a
reconstructed attractod’. If the reconstruction is accurate, measure over timgof a parameter of am-dimensional dy-
then A’ is the topological conjugate of the original attractor, namic system, foi€[1, N]. The phase space reconstruc-
A. Consequently, all dynamic properties #fare projected tion of this system is done according to the Takens theo-
to A’. The criterion of the Takens Theorefakens 1981) rem. Once again, the vector coordinates are constructed
for a precise phase space reconstruction of an experimeras in Eq. (8) and it is assumed that this vector is the tra-
tal trajectory dictates that m must be greater tfemnc+1], jectory vector of thei-th time point of the reconstructed
wheremc is the estimated dimension of the attractor. phase space of the dynamic system. The whole trajectory

According to the Takens Theorem, this is efficient whenis x(1), x(2), ..., x(i), P...,x(p) where p=N—(m—1)t.
the number of points of the timeserig¥, is infinite, mean-  As mentioned and according to the Takens theordmis
ing that for an infinite number of pointgl and A’ have the  the attractor to the reconstructed system dynamics and the
same properties. However, for most experimental methodstopological conjugate to the original attractér Properties
N is a finite number and in many cases is confined to 3000-such as the Correlation Dimension are maintained after the
4000 points. Therefore, only’ is estimated in the recon- projection ofA to A’. The Correlation Dimension is defined
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as where, once again; is the a threshold and: the win-
_ log(C(m. 1. 7)) dow size. For example, ifr=2, C2(i) for i=1,...N
Do = Nlinook)gT (A2) is the probability that|X(i+1)—X(j+1)|<r given that

IX@—=X()l=r.

wherer is a distance radius in the reconstructed phase space. The sequence in Eq. (14) is used to constructter)
The index 2 inD» is used because the Correlation Dimension for eachi <N —m+1 as in

is a special case of the generalized dimengipnwhereq

integer. C(m, r, 7) is the correlation integral and is defined C;'(i) =

as [no.ofj < N—m + 1, suchthallx(i)—x(j)|| < r]
. (B2
2 N N N-m+1
Clm,r, 1) = N_-1 2; .21®[r —llxi —xjll].  (A3) o™ (r) is defined as
1=1j=i
v_vhe.rexl andx; are as in Eq. (8)@ is the Heavyside func " (1) = Z Inc™(r). (B3)
tion: N-m+1 !
; 1,ifi>=0 . : .
O34) = 0ifi<0 (A4) where In is the natural logarithm. Then Approximate Entropy
- is defined as
The Euclidean norm used in the above equation states that ) " _—
the difference between; andx ; is the maximum difference  ApEn(m,r) = N'[)noo[@ (r) — " (r)]. (B4)

among their coordinates:
. o . . 5 It is therefore found that Ap En=®"*1(r) — ®"(r) and
[lx; —x;ll = HX(I) — XD+ [XG+D-XG+D|+ s equal to the average oveof the natural log of the con-
1 ditional probability thatl X (j+m)— X (i+m)|<r, given that
X+ = D) = X+ (m — 1)1)12] 2 (AB)  IX(j+k)—X(i+k)|<r, fork=0,1,2, ... m—1.
Several trials of this algorithm were run on the HRV data
The formula Eq. (10) simply says: for specific r, 7 find  and it was adjusted accordingly in order to obtain a better
all pairs ofx; andx ; in the reconstructed time-serie¢) for  distinction between the two subject groups. The first step
which the distancéx; —x ;|| is smaller than. in computing the Approximate Entropy is finding the length

According to this algorithm th€'(m, r, 7) is computed for  vector form=2, which is[X (i), X (i+1)], denoted (i). All
increasing values of: and for a steady range of For each  vectors that are close te(), x(j))=[X(j), X(j+1)], are
log(C) versus logr) plot a scaling region is been selected jdentified. As has already been stated, the vestqi is
and the slope of the curve is calculated for this scaling regiorclose tox (i) if ||x(i), x(j)||<r. This, by definition, means
with a simple method (i.e. least squares). If the slope valueshat both| X (i)—X (j)|<r and| X (i+1)— X (j+1)|<r apply.
estimated for eacl converge in a steady value, then this A count of all the vectors:(j) close tox(i) is found and
steady value corresponds to the correlation dimension of thealled B. The next step is to compute the rest of #i¢) vec-
timeseries. tors for which| X (i4+-2)— X (j+2)|<r, and call itA. The ratio
of A/B represents the conditional probability thatj +2) is
close toX (i+2), given that the vectar () is close tax (i).

The above process is repeated for each length 2 vector
Given N data points, X (1), X(2), X(3), ..., X(N), the x (i), calculating t_he conditional probability. T_hepEn is
ApEn(m,r,N) is estimated, wherer is a threshold founc_i_by calculatln_g_the average of_ the Iogz?mthm of thes_e
and m a window size. The vector sequences neces-conditional probabilities and taking its negative (to make it

sary for phase space reconstructiarij), are constructed POSitive), as seen in Eq. (18)
with x(N—m-+1), defined by (V=[X (), ..., X(+m=D1. 0 wmit _ g
These vectors represemt consecutiveX values, using the PE =y r

Appendix B Approximate Entropy

i-th point as the starting point. The distan¢e(i), x(j)|| _ 1 N_ml L
is defined between the vectargi) andx(j) as the infinity [N —m 2; G, (l))]_
norm "
1 N—m+1 o
1X @) — XDl = max{IX () — X ()l [N—m ; In(c; (l))]
XG+D) - X+, Nom
X G +m =) =X +m =D} (B1) ~ >[I @) = In(cy ()]

4

3

=z

The probability that|X(i+m—1)—X(j+m—21)|<r given _}n 1.
that |X(@)—X(j)|<r and |X(+1)—X(j+1)|<r and _ 1 In(C" (1))

I X(i+2)—X(j+2)|<r and ... is true is termedC)" (i),  N-—m ~ In(Cm(i))

(BS)
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