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Abstract. Debris flows consist of a mixture of water and sed-
iments of various sizes. Apart from few exceptions, the water
is usually contributed directly from precipitation. In a high
mountain environment like the Alps, it appears necessary to
consider infiltration of water into the ground during rainfall
events, the runoff characteristics and the potential supply of
sediment as a function of a multitude of climatic and hydro-
geological factors. This paper outlines several new processes
– either linked to ice formation in the ground before an event,
or to the presence of snow avalanche deposits – that change
the probability of observing an event.

These processes were identified during field observations
connected with extreme weather events that occurred re-
cently in the Valais Alps (south-western Switzerland): they
can be seen as factors either amplifying or reducing the po-
tential of slope instability caused by the precipitation event.
An intense freezing of the ground during the week preceding
the exceptional rainfall event in mid-October 2000 amplified
the probability of triggering debris flows between roughly
1800 and 2300 m asl. Both growth of ice needles and super-
ficial ground freezing destroyed soil aggregates (increasing
the availability of sediments) and/or, a deeper ground freez-
ing resulted in decreased infiltration rate (increased runoff)
during the first hours of heavy rainfall. The presence of snow
avalanche deposits in a gully could be simultaneously an am-
plifying factor (the snow deposits increase the base flow and
create a sliding plane for the sediments, mainly at the time of
summer storms) or a reducing factor (reduction in the impact
energy of the raindrops, mainly at the time of winter storms)
of the risk of triggering debris flows.

If it is not currently possible to establish rainfall thresh-
old values for debris flow triggering, the knowledge and the
implementation of these processes in the analysis of the po-
tential triggering (for example by comparing the catchment
hypsometric curve with the meteo-climatic situation) would
nevertheless make the analysis of debris flows and forecast-
ing more efficient.

Correspondence to:E. Bardou
(mail@quanterra.org)

1 Introduction

The complex processes which lead to the mobilization of a
mixture of water and rocky materials of heterogeneous grain-
sizes in the form of a debris flow are very difficult to study
in situ. From general point of view, two distinct mechanisms
can occur during the initiation phase of a debris flow: the
diffuse erosion within the catchment drainage network (also
known as the runoff-dominated erosion) or localized lique-
faction of an earth mass (also known as the infiltration trig-
gered soil slip). These two mechanisms are not necessarily
concomitant. In the case of diffuse erosion, our field obser-
vations coincide with those of other researchers (e.g. Meu-
nier, 1991; Cannon et al., 2001) indicate that the paths left
by debris flow sometimes gradually disappear with distance
up the torrent gully. The exact initiation zone for the de-
bris flow is then difficult to locate. This process is prevalent
in areas impacted by forest fires (Cannon et al., 2001), but
is also observed in alpine environment (e.g. Gostner et al.,
2003). The mechanism of mobilization of an earth mass into
a debris flow is described by several field studies (e.g. Ellen
and Fleming, 1987; Jakob et al., 1997). In these cases, the
mechanism is linked with the increase of the interstitial pore
pressure. Laboratory experiments show that it is the rate of
increase of the pore pressure that mainly influences the mobi-
lization (Klubertanz et al., 2000). However, due to the diffi-
culty in locating the potential failures before an event, only a
few detailed studies have been successfully undertaken (e.g.
Anderson and Sitar, 1995; Springman and Teysseire, 2001;
Montgomery et al., 1997). Indeed, the precise mechanism
leading to the initiation of debris flows still remain little stud-
ied in the field for a given event.

For both types of debris flow initiation processes, the sup-
ply of water is the principal driving factor. During a rainfall
episode, both the moment and quantity of the water supply
into the ground depend not only on the duration and inten-
sity of the precipitation but also on hydrogeological factors
on the elevation of the snowfall limit. Hungr et al. (1984)
demonstrated the difficulty in envisaging the triggering of de-
bris flows on the basis of rainfall alone, due to the extent that
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Fig. 1. Debris flow that occurred during sunny weather in June 1997
on the Karakoram Highway, Pakistan. This debris flow lasted ap-
proximately 2 h in the early afternoon and included several surges.
The lack of rainfall allows us to suppose that this event was trig-
gered by intense snowmelt.

hydrogeological variability can distort such analysis. Several
studies undertaken in the Himalayan range also demonstrated
that debris flows can be produced even without simultane-
ous rainfall (Wei and Gao, 1992; Jishan and Tianchi, 2001,
author’s observations, Fig. 1). In these cases, an intense
snowmelt in the early summer that enhances both superficial
and subsurface runoff provided the trigger for debris flow ini-
tiation. In glaciated mountain areas, the outburst of glacial
or proglacial lakes, a hazard well known for instance in the
Himalayan range (Mool et al., 2001), the Peruvian Andes
(e.g. Reynolds, 1992), as well as, but more rarely, in the Alps
(e.g. Haeberli et al., 2001; Huggel et al., 2003), is another
mode for triggering debris flows not directly linked to rain-
fall. Other authors describe debris flow occurences in high
mountain environments at a time when no rain was recorded
(e.g. Zimmermann et al., 1997). Such events usually initi-
ate from historical moraine deposits and could be related to
the unusual behaviour of the glacial/proglacial hydrological
system, but also, perhaps, to little known processes in per-
mafrost areas (e.g. Lugon et al., 2000). Further huge rock-
wall/glacier collapses such as on Nevado Huascaràn, Peru-
vian Andes, in 1970 (Pfalker et al., 1971) or above Kolka
Glacier (Caucasus) in 2002 (Kääb et al., 2003) or the sud-
den activity of a snow or ice covered volcano (Waitt et al.,
1983; Fazel, 1991; Gomez et al., 2002) can be the cause of
exceptional catastrophic events.

Since the end of the 1980’s, several extreme rainfall events
have affected the Central European Alps (CEA), most of
them in late summer and autumn. The event analysis per-
formed on these debris flows was based only on the rain-
fall and the temperature (Zimmermann, 1990; OFEE, 1991;
Grebner, 1994; Tropeano et al., 2000; BWG, 2002). In

these studies, temperature information defines only an al-
titudinal threshold for the transition between the solid and
liquid phases of precipitation. However, apparent anoma-
lies in debris-flow activity, for example magnitudes lower
than those expected for an intense meteorological episode are
recorded in one or the other of these events. This difference
between observations and expected catchment behaviour mo-
tivated us to extend the usual “temperature-precipitation-
debris flow triggering” field of investigation to consider the
effects of other parameters such as previous ground freezing
or snow avalanche deposits on debris-flow initiation area.

The goal of this paper is to describe observations from
the Valais Alps, which permit the range of the parameters
that lead and measurement to the triggering of debris flows
in an alpine (often periglacial) environment during a rain-
fall episode to be enlarged. These observations should be
seen as a first description of potential phenomena. Additional
measurements should be undertaken before being able to es-
timate the thresholds usable for catchment monitoring and
debris-flow activity/magnitude forecasting. Without calling
into question the obvious relationship between precipitation
and the triggering of debris flows, the new elements that are
discussed in this paper will make a better analysis of the com-
plex water, sediments and slope system possible, which will
thereafter imply a better capacity to forecast such events.
Three situations are described in the following. Each case
begins with a description of the observations and then with
the hypothesis which could explain the observations.

2 Previous ground freezing on triggering debris flows

During the extreme rainfall event which affected a large part
of the CEA in October 2000, several watersheds presented
unexpected sedimentary dynamics: torrents1 known to be
prone to debris flows presented only a low intensity reaction
(relatively scaled to the reported events) and others, consid-
ered less likely to produce significant debris flows, suffered
flooding on the fan or in area where the section is restricted
by bridges and where no obvious clues of such events are
observable.

Some field observations and measurements during the
week before the event suggest possible causes for the re-
sponse of certain torrents. They do not claim to explain all
the apparent anomalies in the initiation of debris flows dur-
ing this climatic event, but indicate directions that might be
followed for future analyse. The observations come from a
number of different sites and allow complementary explana-
tions to the analyses published by the governmental services
concerning the relationship between precipitation and debris
flows (BWG, 2002).

1In Europe, torrent is the term used for stream that develops in
mountain area with a mean slope exceeding 6 to 10%, with perma-
nent discharge.
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Fig. 2. The area most impacted by the extreme rainfall event of 2000
is shown black on the map. The detail depicts the Valais region,
which is also used in the map in Fig. 4.

2.1 Observations

Exceptionally high quantities of precipitation were recorded
between 13 and 17 October 2000 in most of the Valais Alps
(BWG, 2002). Many catastrophic sedimentary events took
place between 14 and 15 October, but not necessary in all tor-
rents prone to debris-flow activity. An analysis of the mete-
orological conditions from the beginning of the month show
that during the first week of October, mild weather was ob-
served, with some precipitation and with the snow line vary-
ing between 2400 and 3000 m asl. A dramatic decrease in
temperature took place from the afternoon of 6 October (cf.
Fig. 4). The 0◦C isotherm fell to about 1500 m asl. Then,
the weather remained relatively cold until 12 October with
new snowfalls above about 2200 m asl on 9 October. Dur-
ing the period between 7 and 12 October the mean air tem-
perature was−2◦C at 2500 m asl at Lapires (western Valais
Alps). At the same time, the mean 0◦C isotherm laid at about
1900–2000 m asl (for instance,−0.2◦C on Moĺeson summit
at 1972 m asl on northern side of the Alps; MeteoSwiss data).
At the beginning of the extreme rainfall event on 13 Octo-
ber the snow line is estimated to have been at about 2200–
2400 m asl (own observation). Above this elevation the snow
cover reached 10–50 cm depth at that time.

At Lapires (2500 m asl), positive air temperatures were
recorded from the 12th in the afternoon (cf. Fig. 4). The max-
imum temperature (+5◦C) was observed on the 14th in the
morning and was followed by an increase in precipitation in
this western part of the Valais Alps. Precipitation increased
from 10 mm/6 h in the morning of the 14th to∼25 mm/6 h

Fig. 3. Pipkrakes (ice needles) observed at 1800 m asl on 8 October
2000. The site of observation is indicated on Fig. 4.

from the 14th in the afternoon till the end of the 15th (with a
peak of 40 mm/6 h on the 15th in the morning) (BWG, 2002).
No negative temperatures were recorded at 2500 m asl before
the night of 16 to 17 October (cf. Fig. 4). Many streams suf-
fered from debris flows and bed load events. Most of the
dramatic cases occurred in the eastern part of Valais where
exceptional precipitations were rather recorded on 13 and 14
October. In the western part, the most significant one, with
a volume of about 15 000 m3, seems to have been the debris
flow in the St-Jean torrent, near Martigny, that occurred on
15 October in the morning. Its starting zones were situated
between 1800–2000 m asl on a north aspect slope: they were
affected by freezing conditions during the week prior to the
triggering of the event (cf. Sect. 2.2).

Near 2000 m asl (Fig. 3), ice needles (also called pip-
krakes) were observed on 8 October 2000 (see Fig. 4 for lo-
cation), one week before the rainfall event. Their formation
accompanied rapid decrease in air temperature that occurred
from 6 October and was accompanied by two nights of clear
sky permitting the ground surface to cool rapidly. Accord-
ing to snow conditions and air temperature, ice needles were
likely to form especially between about 1500 (perhaps lower)
and 2500 m asl at that time (own observation).

2.2 Possible mechanisms

2.2.1 Modification of soil structure by pipkrakes

We suggest the possibility that compression resulting from
the increase in volume of water at the time of its
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Fig. 4. Evolution of the temperature during the beginning of October 2000 in the air and at depth of 0.1 and 0.6 m in a borehole located at
2500 m asl, 17 km south-east from the site where ice-needles were observed. A is the date when the picture (Fig. 3) was taken and B is the
start of most of the catastrophes.

transformation into ice, soil aggregates (here taken as a re-
golith or a young pedological formation as often found on
alpine talus slopes) can be redistributed during the freezing
process. Moreover the aggregates are ruptured when the wa-
ter trapped in the microporosity of the latter starts to freeze
and also while the pipkrakes are growing (Gatto et al., 2001).
In this frozen state, the ground still conserves a certain de-
gree of cohesion due to the ice cementing the particles, but
aggregates and pieces of aggregates are redistributed (mainly
towards the surface). Once the ice thaws, if such formations
were not covered by snow, erosion rates can increase signif-
icantly (Haupts, 1967). The rate of erosion increases at the
time of the beginning of the runoff because of the exposure of
loose pieces of aggregates laying on the surface. Thereafter,
a decrease occurs once the stock of removable soil particles
is exhausted (Abrahams et al., 1995). The increase of fine
particles in runoff thus enhances the propensity for coarser
sediment to be entrained by runoff and later form debris flow.

The increase in erosion potential of the ground surface
is particularly pronounced when freezing has only recently
taken place (Van Klaveren and McCool, 1998), which was
the case at the beginning of autumn 2000. It was also wet
(30 mm of precipitation had already fallen between 1 and 5
October 2000). One can suppose that the quantity of eas-
ily removable material is dependent on the strength of the ice
needles. The temperature curves of Fig. 5 show that this early
frost was particularly intense, inducing a significant temper-
ature gradient in the ground, which, as a consequence on the
wet ground, supported the formation of ice needles (Coutard

et al., 1988). The observation of ice needles in different sites
and the favourable conditions for their formation seems to
show that they probably developed throughout most of the
zone affected by the extreme weather event, at an elevation
of between approximately 1500 m asl and 2200–2400 m asl
(snow line). This is the fringe where most of the debris flows
started during this period. As a consequence, one can sup-
pose that diffuse erosion was favoured at that time.

2.2.2 Frozen layer beneath the ground surface

The analysis of the subsurface ground temperature in a bore-
hole drilled in the Lapires talus slope (2500 m asl, north-
eastern oriented) shows, despite the presence of snow cover
since 9 October, that the ground froze deeply (to at least
0.6 m depth) during the week preceding the rainfall event –
which began on 13 October 2000 (Fig. 4). During the pe-
riod of precipitation, the temperature never rose above 0◦C
at a depth of 0.6 m. This indicates that in depth the ground
remained frozen during the whole event.

Infiltration being strongly reduced by the frozen state of
the ground (Gatto et al., 2001), runoff was concentrated at
the surface during at least the first part of the precipitation
period. Consequently, jointly with the effects of the ice nee-
dles on the soil erosion, the quantity of sediment mobilized
may have been larger than for an identical precipitation fallen
on unfrozen ground.



E. Bardou and R. Delaloye: Effects of ground freezing and snow avalanche deposits 523

Salantin

Lapires

pipkrakes

Illgraben

Ritigraben

Chalcheri

1'500-1'900 masl

1'900-2'300 masl

0 10 20 30 405
Kilometers

Fig. 5. Location of the four catchments investigated. See Fig. 2 for regional localization of the area.

2.3 Discussion

Four catchments, were analyzed in more detail to assess the
relative effects of the amplification of erosion consecutive to
the soil destructuring by ice needles and a runoff increase
caused by the frozen state of the sub-surface ground reduc-
ing the water infiltration rate. For each case, the hypsometric
curve of the basin was calculated. On these curves, the alti-
tude section where the torrent crosses zones of easily remov-
able material (determined by direct field observation) was
mapped (thick line in Fig. 6). It is important to note that, due
to cold air temperatures – particularly on 7, 8 and 11 October
– and to the absence of snow cover beneath 2200–2400 m asl,
relatively deep ground freezing (about 0.1–1 m) was efficient
until at least as low as 2000 m asl, and even lower in shad-
owed locations.

– The Illgraben stream is generally very active (Bardou et
al., 2003) and we expected it to react strongly to the
meteorological conditions. The zones potentially af-
fected by pipkrakes formation and ground freezing did
not practically affect the production areas of the torrent,
which could explain the weaker than that expected re-
sponse.

– The gully of Chalcheri is a small gully with an
ephemeral stream. It produced a large debris flow leav-
ing deposit more than 1 m thick during the October 2000
event. The entire zone where sediments were easily
available is located at elevations where ground freezing
processes were active during the preceding week, pos-
sibly amplifying the erosion of the ground surface and,
hence, the debris-flow size.

– Salantin produced a debris flow in a gully which was
not known for this kind of event, but rather for snow
avalanches. The low elevation of the zone where there
was removable material seems to indicate that, in this
case, only the extreme quantities of rain are at cause.

– The Ritigraben torrent has a peculiar characteristic in
the sense that two triggering zones exist. The prin-
cipal one developed between 2400 and 2600 m asl in
a sector collecting the water infiltrated in the upper-
most periglacial (permafrost) area of the slope (2600–
3000 m asl). The second zone of erosion lies below
1360 m asl. Ritigraben is prone for debris flows and
during the last 15 years, major events easily reach
15 000 m3 and more of deposited material. In October
2000, no debris flow was triggered from the upper zone.
Only 2500 m3 of materials apparently coming from the
lower erosion section reached the road crossing the tor-
rent channel at the foot of the slope. It can be assumed
that the major triggering zone was previously covered
by snow (as well as the upper collecting zone). This
certainly did not avoid the deep freezing of the ground
(the snow cover was generally not thick enough to com-
pletely insulate the blocky ground surface from an in-
tense cooling) but prevented the growth of pipkrakes on
fine soil portions. All these processes, combined to the
probable low rate of infiltration in the upper collecting
zone (frozen ground and precipitation mostly as snow),
did not conduct to the triggering of a debris flow in the
upper section of the Ritigraben. The only inferior trig-
gering zone underwent significant erosion (explaining
the low magnitude of the debris flow event on the lower
road).
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Fig. 6. Hypsometrical curves for 4 catchments with temperature bands where the different reported mechanisms occurred and the location
where there is abundant material available for entrainment (heavy black line).

The analysis of the debris flows linked to the extreme
weather event in October 2000 indicates that the phenom-
ena of freezing-thawing related to the previous moisture of
the ground and to the evolution of both air and ground tem-
peratures before the event could amplify or prevent the ero-
sion phenomena depending on elevation. Field observations
were not sufficient to determine if this factor only is respon-
sible for triggering certain debris flows. Indeed, the weather
conditions during the period were extreme and many debris
flows would have surely occurred even without the previous
intense freeze/thaw cycles occurring within the surface and
uppermost layers of the ground. However the relationship
between thawing conditions in the ground and precipitation
had already been indexed as a critical condition for the trig-
gering of debris flows (Church and Miles, 1987).

For the low altitude catchments (especially in the western
part of the studied area, cf. also Sect. 4), the influence of the
freezing-thawing process can be considered as negligible as
the air temperature remained higher than 0◦C for the whole
of the relatively cold week preceding the bad weather event.

3 The “preparing effect” of the avalanches

The quantities of water necessary to form debris flows come
either from direct rainfall and underground (taken in a wide
sense). The correspondence of some debris flow gullies and
avalanche corridors and observations (during flow as well as
in the triggering zone) let us think that there is a link between
the two phenomena.

3.1 Observations

During winter 1998/99 several major avalanches occurred in
the ECA. During the two following summers, great quanti-
ties of snow deposits were observed even at low altitude (cf.
Fig. 7). Meanwhile, ten monitored streams showed an up-
surge in debris flow activity. That pushed us to investigate
the role played by the avalanches in the generation of sedi-
ment – laden flow.

Several observations of flow containing a significant quan-
tity of sediment were made in clear weather in gullies known
to be prone to debris flows (often during the hot and sunny
days of July and August). Conjointly to these observations,
the presence of avalanche deposit was evident on the bed of
many gullies in the Valais Alps as exemplified in Fig. 8).



E. Bardou and R. Delaloye: Effects of ground freezing and snow avalanche deposits 525

Fig. 7. (a) Snow covered by rocky debris deposited in the gully
where debris flows are usually triggered (summer 1999);(b) Gully
still mantled by avalanche deposits in summer 2000 (i.e. two sum-
mer after the fatal winter of 1999).

3.2 Possible mechanism

The role of these deposits could be twofold. First, the quan-
tity of snow represents a non-flowing water storage during
the winter. This water is released when the temperature in-
creases and is added to the base flow. During rainfall (not
necessarily intense) the runoff quantity could thus be enough
to trigger a debris flow. Several authors described a simi-
lar situation when an intense temperature increase intervenes
after a very wet spring (e.g. Baur et al., 1992).

Secondly, in the zones active geologically, the avalanche
deposits are frequently covered by sediments during the fol-
lowing spring. As the summer rise in temperatures, the up-
per zone of the subjacent snow deposits softens, forming a
very efficient sliding plane for the sediments. These small
slips contribute to fill gullies with highly mobile sediment
(cf. Fig. 9). It is reasonable to suppose that consequent de-
bris flows can result simply from the alternation of melting
and these sedimentary contributions (cf. Fig. 1).

Fig. 8. During the particularly hot summer 2003 (e.g. Schär et al.,
2004), a gully in the Baltschieder valley after a debris flow trig-
gered by rainfall: note the bed covered by snow avalanche deposit
(courtesy of M. Sartori).

3.3 Discussion

In order to evaluate the effect of the avalanches on triggering
debris flows, we tried to characterize the avalanche activity
level of a given year and a given gully. For that two proxies
were available. The first one, available over the period 1937–
1987 consists with the analysis of the number of fatalities due
to avalanches on roads and in buildings (corrected linearly to
take account of protection work, mainly committed since the
winter 1951–1952). Each year with more than 10 deaths is
defined as a year of remarkable avalanche activity.

The second proxy which is more precise spatially, has been
available since 1987. It uses the danger level used in the Na-
tional avalanche bulletin (it thus truly qualifies the avalanche
activity). When more than 2 days are classified as danger
level 5 (the maximum on the European danger scale), or more
than 10 days are classified as danger level 4, the year is clas-
sified as a year of remarkable activity. Information on the
avalanche activity and that on the debris flows is not given
with the same spatial resolution. The avalanche activity is
estimated at a regional scale whereas the debris flows relate
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Fig. 9. Snow covered by debris and the consecutive small slided pack of debris prefiguring a debris flow that slide on snow deposit near the
pass of La Croix de la Cha in summer 2003.

Fig. 10. Event distribution according to years with and without noticeable avalanche activity.

to a unique gully. However, due to the landscape disposition,
the avalanche corridors match up with the gullies prone to
debris flows. It is thus reasonable to think that the avalanche
activity of the region applies to the selected gullies.

The years thus selected are compared with the records
of debris-flow events available. As our field observations
show, the deposits of major avalanches can be preserved at
low altitude at least during the two consecutive summers (cf.
Fig. 7). This is why we compared the avalanche activity
with the number of debris flows which have occurred over
a period of two years. To estimate the importance of this
process, the same treatment was applied to the debris flows
which occurred in the years considered as not having a strong
avalanche activity.

Table 1 synthesizes that generally in winters with remark-
able avalanche activity, the number of debris flows seem to be
more significant during the two summers following a given

winter. If we account this to the fact that the presence of
avalanche deposits is an aggravating factor for the trigger-
ing of debris flows amongst others, the relationship is partic-
ularly obvious for the Dorfbach and Schipfenbach streams,
and less marked for the Batsoule stream (cf. Fig. 10).

Apparently the result is reversed for the Illgraben and
Fouly streams. The detailed analysis of the events, which
have occurred in these two torrents, indicates that other
preparatory and/or amplifying phenomena can completely
mask the effect of the avalanches alone. In the case of the
Illgraben stream, a Bergsturtz (5×106 m3) filled the valley
over more than 1 km forming a huge natural dam. The latter
broke in June 1961. It is reasonable to think that the 15 de-
bris flows, which occurred during the 3 following years, are
the consequence of this availability of material (own obser-
vations).
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Table 1. Mean debris flow numbers over two consecutive summers for year with and without noticeable avalanche activity.

Dorfbach Schipfenbach Batsoule Illgraben Fouly

year with high avalanche activity 0.44 1.67 0.56 1.25 0.56
year without noticeable avalanche activity 0.20 0.11 0.56 1.89 1.57

In the case of the Fouly stream, one can see that in fact it
is the events which occurred in 1987 that influence the mean
(cf. Table 1). The historical chronicles tell us that during
this summer, rainfall was particularly intense all over Europe
(Guzzetti et al., 1992; Rickenmann and Zimmermann, 1993).
It seems plausible that over the summer of 1987 rains deeply
destabilized the gullies, which in turn predisposed the gullies
to lead to the 7 consecutive events. One can suppose again
that the availability of sediment masks the preparatory effect
of the avalanches.

One shortcoming of this approach is the fact that debris
flow triggering is a very complex phenomenon driven by in
situ material properties, water storage in the ground, quantity
of rainfall, temperature, etc. It could not be said from our
data which combination of the above processes is responsible
for the triggering of one precise debris flow, but our results
show a trend that should be investigated.

It should be noted that the summer immediately follow-
ing a winter with remarkable avalanche activity generally
does not experience any, or little, debris flow events. This
could be attributed to the fact that these deposits of very
dense snow form an effective protection for the gully bed
(cf. Sect. 4.1) and/or that the sedimentary refill which occurs
in spring forms a mass of highly mobile sediment (e.g. at the
time of the freeze-thaw periods).

4 The limiting effect of avalanches

Unlike the above presented process, the snow cover could
obviously act as a shield against the rainfall. This protecting
effect could in turn limit the triggering of sediment transfer
in alpine torrents.

4.1 Observations

During a period of warmer temperatures in January 2004,
rain fell at high altitude onto a snow-covered territory. Sev-
eral events implying sediment took place. Again the interest
of the analysis lies in the comparison between the sedimen-
tary responses of different streams. More precisely, on mon-
itored streams which did not react as expected.

Before the rainfall the snow cover extended down to about
1000–1200 m asl. Then during the event, warm air masses
and rainfalls made the snow disappear below about 1900–
2000 m asl (depending on the slope aspect). However, in
avalanche corridors, the snow deposits could be found lo-
cally down to about 1200–1500 m asl. The map in Fig. 11

Fig. 11. Area surveyed during the meteorological event of 14 Jan-
uary 2004 with indication of the maximal elevation where the snow
cover completely melted and the type of catchment reactions. Cf.
Fig. 2 for regional localization.

qualitatively shows the spatial relationship between the max-
imal elevation where the snow cover completely melted (set
at 2000 m asl) and the catchments surveyed.

4.2 Possible mechanisms

The following mechanisms can be suspected in presence of a
snow cover. Firstly, the effect of the direct impact of the rain-
drops, the splash effect which makes particles capable of be-
ing detached, is completely annihilated (Gatto et al., 2001).
Secondly, the additional normal stress (unit weight of snow
is between 500 and 600 kg/m3) increases the cohesion of the
sediments thus protecting them from the effect of the runoff
which appears at the bed-deposit interface.
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Fig. 12. Analysis of the sedimentary reaction of some gullies with respect to the presence of avalanche deposits. Observed values are
qualitative (i.e. the relative size of the bars on the graphs). They mean “presence/absence” for avalanches and “no/very little/intense activity”
for sediment transfer. The catchment class is defined on the basis of the surface area and Strahler’s order.

4.3 Discussion

The state of the gully was observed during the events and
any traces of sedimentary activity (debris flows or bed load)
were noted. When the starting zones (globally known as a
preliminary) were not visible from the outlet of the system,
additional visits were carried out. Figure 11 depicts the ex-
tent of this survey. The observations showed that the streams
which had no or a weak response than the one expected (i.e.
a mild sedimentary activity) had the upper part of their basin
(therefore a part of their starting zones) coated with deposits
of wet snow (thus of very dense snow). The map of Fig. 11
shows that a majority of catchments with a consequent part
of their reception surface above 2000 m asl reacted little. The
catchments in zones of lower altitudes had a more intense
sedimentary reaction. This could be linked with the increase
in their base flow due to a fast melting of the snow cover and
the lack of protection of their gullies by avalanche deposits.
Moreover, below the surface, the ground could have been
frozen at some places in the catchments (especially where
snow was thin or lacking prior to the rainfall episode) what
in turn, at least temporarily, could have increased the surface
runoff (cf. Sect. 2.1).

The graphs on the Fig. 12 show that in the majority of
the cases, the intensity of the sedimentary response is influ-
enced by the presence of avalanche deposits. As for other ob-
servations concerning natural phenomena, some exceptions
remain. For the two obvious ones, the Merdenson and St-

Barthelemy streams, where an intense sedimentary activity
was concomitant with avalanche deposits (on the right of the
graph on Fig. 12), the following explanation can be given.

Sedimentary activity in mountain watersheds is a complex
geomorphological system that implies either the drainage
basin and/or channel processes. Thus, mountain watershed
could be subdivided into many subsystems accounting for
erosion or storage of sediments. It appeared that basin com-
parisons from downstream do not guarantee a good charac-
terization of the whole system (Bogen, 1995). To allow ad-
equate comparisons, we worked out a catchment classifica-
tion function of their size and of their hydrological behaviour
(Stahler’s order is used as a proxy). On this basis one can see
that the two exceptions are of order 3 (either>3 km2 and/or
Strahler’s order>3). The complex system formed by such
basins lets suppose that the transfer of sediment can occur in
the subsystem, downstream of the upper starting zones influ-
enced by snow.

5 General discussion

The altitude of the snowfall limit during a precipitation
episode plays a major role on the debris-flow activity. Never-
theless, other climatic-physical processes related to the phase
of water (solid or liquid) appears to have an influence on
the triggering of debris flows in particular and on the trans-
fer of sediment in general. The presence of snow covering
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the ground surface, the previous destructuration of the soil
caused by freezing (e.g. pipkrakes growth), the decrease in
infiltration rate consecutive to the frozen state of the ground
or the ambivalent effect of (late-laying) snow avalanche de-
posits accumulated in gullies are factors that can modulate
during one single precipitation episode, the quantity of wa-
ter and loose sediments available for the formation of de-
bris flows. Snow cover, avalanche deposits and water frozen
within the ground can also be considered as storage of pre-
cipitation (generally over a few days, but up to a number of
years) that may affect water supply, which increases the base
flow.

These phenomena located at or near the soil surface may
be responsible, sometimes in a dominating way, for the mo-
bilization of sediments. However, the impact of raindrops
and the runoff (due only to rainfall) can already set sediments
moving. This is why the results of the observations presented
here only show a tendency. The quantitative importance of
the amplifying (or protecting) effect of the involved factors
is difficult to evaluate. These effects are perhaps entirely
responsible for some debris flow (non-)events and they are
to be blamed, as an additional factor, in a more significant
number of (non-)events. If it is difficult to currently give
a threshold for forecasts, the knowledge of these potential
triggering mechanisms can already be integrated with benefit
into a watershed monitoring system. Furthermore, previous
survey and analysis of the catchment functioning (e.g. with
hypsometrical curves) could be a valuable tool to inspect the
potentiality of debris flow outbreak.

In addition to the uncertain measurement of these mech-
anisms which are sometime diffuse, some difficulties were
encountered with the data-collection. Among others, the sur-
vey of a vast region having undergone an extreme weather
event is relatively badly formalized in the point of view of the
“lesson(s) learned”. The attention generally goes to the most
serious cases, omitting the evidence coming from gullies and
torrents which could have reacted, but where the traces are
not well visible. On the only basis of the observations of
streams having overflowed, it is very difficult to make com-
parisons in time helpful for a better understanding of debris
flow initiation. Consequently, evaluating the effect of differ-
ent factors on the characteristics of the sedimentary events
is not obvious. This is what pushed us to differentiate the
catchments into several classes (cf. Sect. 4.2). This classifi-
cation, still in development and tested here for the first time,
allows to perform more effective comparisons ensuring that
they are statistically representative.

The classification of the catchments, as well as an ad-
equate methodology of regional surveys when extreme
weather episodes are occurring (e.g. cartographic differenti-
ation between the unsurveyed zones and surveyed zones but
without visible phenomenon) are tracks to follow in the fu-
ture. This could help to improve the data acquisition relating
to this kind of events.

If the climatic-physical processes described in this paper
are not the cause of the majority of events, they may directly
or indirectly influence the triggering of a considerable part of

debris flows. However, these processes, related to slope de-
posits, are little known (Caballero et al., 2002). A better un-
derstanding would make it possible to improve the forecast-
ing of mass movement events. Moreover, if further measure-
ments could be done to better specify the influence of these
processes, our monitoring capabilities will be enhanced.
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Skeidaŕarsandur, southeast Iceland, The extrems of the extremes:
Extraordinary Floods, IAHS, Reykjavik, 217–221, 2002.

Gostner, W., Bezzola, G. R., Schatzmann, M., and Minor, H. E.: In-
tegral analysis of debris flow in an Alpine torrent - the case study
of Tschengls, in: Rickenmann, D. and Cheng-lung, C. (eds), 3rd
Int. Conf. on Debris-Flow Hazards Mitigation, Mechanics, Pre-
diction and Assessment, Davos, 2003.

Grebner, D.: Meteorologische Analyse des Unwetters von Brig und
Saas Almagell vom 24. September 1993, Wasser, Energie, Luft,
86(1/2), 41–44 (in German), 1994.

Guzzetti, F., Crosta, G., and Marchetti, M.: Debris flows triggerred
by the July 17–19 storm in the Valtellina area (Northern Italy),
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