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Abstract. We present the analysis aimed at the estimation of
flood risks of Tisza River in Hungary on the basis of daily
river discharge data registered in the last 100 years. The
deseasonalised series has skewed and leptokurtic distribu-
tion and various methods suggest that it possesses substantial
long memory. This motivates the attempt to fit a fractional
ARIMA model with non-Gaussian innovations as a first step.
Synthetic streamflow series can then be generated from the
bootstrapped innovations. However, there remains a signifi-
cant difference between the empirical and the synthetic den-
sity functions as well as the quantiles. This brings attention
to the fact that the innovations are not independent, both their
squares and absolute values are autocorrelated. Furthermore,
the innovations display non-seasonal periods of high and low
variances. This behaviour is characteristic to generalised au-
toregressive conditional heteroscedastic (GARCH) models.
However, when innovations are simulated as GARCH pro-
cesses, the quantiles and extremes of the discharge series are
heavily overestimated. Therefore we suggest to fit a smooth
transition GARCH-process to the innovations. In a standard
GARCH model the dependence of the variance on the lagged
innovation is quadratic whereas in our proposed model it is a
bounded function. While preserving long memory and elim-
inating the correlation from both the generating noise and
from its square, the new model is superior to the previously
mentioned ones in approximating the probability density, the
high quantiles and the extremal behaviour of the empirical
river flows.

1 Introduction

River Tisza – the second largest in Hungary – has a long his-
tory of damaging floods even after the river was controlled in
the nineteenth century. The record water levels in years 2000
and 2001 drew again the attention to the question how high
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dams should be built in order to prevent a huge flood catastro-
phe in the Great Hungarian Plain. So the estimation of high
quantiles of the discharge series has again become crucial.
Beyond that, studying the behaviour of the whole process
is also important because the river provides irrigation water
for a large agricultural area in the Hungarian Plain. In the
past, the extremal analysis and the conventional time series
analysis for River Tisza were usually carried out in separate
studies. This paper attempts to incorporate both approaches:
the aim is to find a time series model which describes both
the regular and the extremal behaviour of the process.

The data we have at our disposal consists of daily wa-
ter discharges from 1901 to 2000 at six monitoring stations
along the river (Tivadar, V́aśarosnaḿeny, Źahony, Polǵar,
Szolnok and Szeged). To obtain a visual impression of the
data, we display on Fig. 1 the discharge series registered at
Váśarosnaḿeny station. It turns out that all six series exhibit
a substantial linear and seasonal trend both in their mean and
their variance. We used a classical approach to tackle this
problem: first a linear and a periodic trend component was
subtracted from the data at each station and then these mean-
corrected series were standardised by a periodic factor to
make the variance roughly constant over time. The periodic
components were estimated using the loess smoother proce-
dure proposed by Cleveland et al. (1990). The drawback of
this procedure is that the standardised series – although sta-
tionary in mean and variance – still exhibit seasonal change
in their probability density functions. We will see that this
problem can partly be resolved during simulations.

All six standardised series exhibit substantial long range
dependence as evidenced by various nonparametric estima-
tors (autocorrelation-based method, rescaled-range statistics,
aggregate variance method and Geweke-Porter-Hudak esti-
mator etc.). A usual way to model such series is to fit a frac-
tional ARIMA process which can then be used to simulate
synthetic streamflow series in a straightforward way. (The
detection of long range dependence (LRD) or long memory
in certain hydrologic time series dates back to the early works
of Hurst (1951) and since then a plenty of articles have dealt
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Fig. 1. Daily discharge series at V́aśarosnaḿeny (m3/s),
1901–2000.

with this phenomenon. For a recent example see Montanari
et al. (1997) and for a monograph see Beran (1994).)

Although this simulation method gives back the
autocorrelation-structure of the water discharge series
of River Tisza accurately, it is not suitable for flood risk
estimation because the high quantiles of the synthetic series
remain well below the empirical ones. The reason is that
the innovations of the fractional ARIMA model – which are
non-Gaussian – are uncorrelated but not independent. This
phenomenon is consistent with the fact that hydrologic time
series are highly nonlinear, so a linear model may not give
back the whole complexity of the process.

Innovations can be regarded as shocks to the linear system.
They are uncorrelated but their squares and absolute values
are autocorrelated and, additionally, they exhibit nonseasonal
periods of high and low variances with high variance gener-
ally occuring during unusual weather events. These proper-
ties suggest modelling the innovations with a variant of the
standard GARCH process. (GARCH processes were intro-
duced by Bollerslev in 1986 and since then have been widely
used especially in financial mathematics.) However, as hy-
drologic time series are less heavy-tailed than financial ones,
the models should differ as well. In a standard GARCH pro-
cess the dependence of the variance on the lagged innova-
tions is quadratic, whereas in our model it is a bounded func-
tion.

Our approach for simulation is thus the following: we
fit a GARCH-type model to the innovation series, estimate
the GARCH residuals and then use a resampling procedure
to simulate them. In doing so, we take into consideration
the seasonally changing shape of their probability density as
well. We then apply the GARCH model to get back the inno-
vations of the linear system. Finally we drive the fractional
ARIMA filter with the innovations and use the seasonal com-

Table 1. Results of fractional ARIMA fit

Monitoring station p q Hurst-parameter p-value

Tivadar 1 1 0.748 (0.022) 0.893

Váśarosnaḿeny 2 1 0.821 (0.014) 0.759

Záhony 2 1 0.804 (0.018) 0.738

Polǵar 2 1 0.794 (0.026) 0.451

Szolnok 2 3 0.752 (0.034) 0.051

Szeged 2 2 0.844 (0.030) 0.057

ponents to obtain synthetic streamflow series. This model, by
incorporating time-varying nonseasonal variance, estimates
the probability density and high quantiles of the observed se-
ries much better than a linear model. It brings us closer to
understanding the nonlinear nature of hydrologic time series.

2 Fitting a fractional ARIMA model

In view of the long memory property we first fitted the series
with a fractional ARIMA (FARIMA) processXt satisfying

8p(B)(1 − B)dXt = 9q(B)εt . (1)

HereB is the backward shift operator,d is the order of frac-
tional differencing,εt is the uncorrelated and zero-mean in-
novation (noise) sequence with varianceσ 2

ε , and, in the no-
tations of ARMA-methodology,

8p(B) = 1 −

p∑
j=1

φjB
j (2)

9q(B) = 1 +

q∑
j=1

ψjB
j . (3)

In cases of our interestd lies within 0 and 0.5. The Hurst-
parameter is thenH=d+1/2.

A FARIMA (p,d,q) model hasp+q+2 parameters:p+q

for the ARMA-coefficients, one for the fractional differenc-
ing parameter (these together are called the structural param-
eters) and one for the variance of the innovation process.
In the following, we denote the structural parameters byθ .
The parameters can be estimated by various methods, in-
cluding exact normal-based maximum likelihood procedure
or the Whittle-estimator. The latter, which we used, is essen-
tially an approximation of the log-likelihood function in the
spectral domain. According to Giraitis and Surgailis (1990),
the Whittle-estimator is consistent and asymptotically nor-
mal for linear processes with finite fourth moment. However,
these properties cease to hold for certain nonlinear processes,
see e.g. Giraitis and Taqqu (1999).

Goodness of fit of a FARIMA model can be tested with a
method based on the sum of squares of all autocorrelations
of the estimated innovation process (Beran, 1992). The test
statistic (under the condition of normal generating noise) is
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Fig. 2. Probability density of innovations at V́aśarosnaḿeny.

asymptotically normal and thus a p-value can easily be calcu-
lated. For model identification (i.e. choosing the appropriate
value ofp andq) we used a trial and error procedure and then
evaluated the different models by the p-value of the goodness
of fit statistics and by the significance level of the parameters.
Table 1 shows the most important features of the finally fitted
models at all sites. As the values with the standard errors (in
parentheses) show, the Hurst-parameters significantly exceed
0.5, implying long memory in all cases.

According to the p-values in the table, all six models are
acceptable at 5% significance level. (The lower p-values at
Szolnok and Szeged are most probably resulted from the fact
that reservoirs are operated just upstream of these stations.)
The good fit is also expressed by the uncorrelatedness of in-
novations at all stations. In other words, the linear model
fully describes the linear dependence structure, that is, the
autocovariances of the series. The innovations were obtained
using a finite approximation of the inverse of the estimated
FARIMA filter:

ε̃t = 9q(B)
−18p(B)(1 − B)dXt ≈

200∑
j=0

bjXt−j . (4)

3 Simulations from the fractional ARIMA model

Nevertheless, from the natural hazards (flood) perspective,
the main question is the linear model’s goodness of fit in
terms of distribution and high quantiles. To examine that, we
need to simulate water discharge series from the model. If
the independence of innovations is assumed, the simulation
can be carried out in the following straightforward way.

First, syntheticεt innovations are generated. As their dis-
tribution is highly non-Gaussian (see Fig. 2), a seasonal boot-
strap procedure is applied: a synthetic innovation in month A
is randomly selected from all observed innovations in the
same month of a possibly different year. This method (used
e.g. by Montanari et al., 1997) has the advantage of not mak-
ing any artificial distributional assumptions, but it has some
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Fig. 3. Probability density of observed (continuous line) and of lin-
early simulated (dashed line) discharge series (in m3/s) at different
stations.

serious drawbacks, being very sensitive to extreme observa-
tions.

In the second step,Xt is obtained fromεt using the moving
average representation of fractional ARIMA processes. In
practise, we used innovations up to lag 200:

Xt = (1 − B)−d8p(B)
−19q(B)εt ≈

200∑
j=0

ajεt−j . (5)

Finally, giving back the seasonal components (both in
mean and variance) toXt , synthetic water discharge series
are generated.

According to Montanari et al. (1997), this simulation
method provides a reasonably good approximation of the
sample density of daily inflows to Lake Maggiore in Italy.
However, in the case of River Tisza, we arrive at different
conclusions. Figure 3 shows the probability densities of the
observed and simulated water discharge series at all monitor-
ing stations. The goodness of fit is not appropriate at any sta-
tions, becoming even worse while getting downstream. Fig-
ure 4 shows the same: discharge quantiles (displayed at 90,
95, 99, 99.5, 99.9, 99.95% levels) and the 100–year maxi-
mum are seriously underestimated by the linear model. For
instance, when 100-year long synthetic series are generated
twenty times, the median value of their maxima is smaller
than the discharge 100-year maxima by 20–25% (depending
on which site is examined). Thus, we can conclude that as
far as sample densities and high quantiles are concerned, the
linear model is not appropriate for modelling water discharge
series of River Tisza.
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Fig. 4. Boxplots of quantiles, displayed at 90, 95, 99, 99.5, 99.9,
99.95% levels, and of sample maxima of 20 simulated series at each
site, compared to the observed values (circles). Boxplots contain the
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Fig. 5. Autocorrelation function of squared innovations at different
sites.

4 Incorporating the structure of innovations

The above described model has one point at which it fails:
it does not incorporate the nonlinear dependence structure of
the innovations. As evidenced by Figs. 5 and 6, the innova-
tions are dependent through their squares and their absolute
values. (The autocorrelatedness of the squared and the abso-
lute valued innovation series, respectively, can be proven by
a Ljung-Box-test at all reasonable significance levels.) Gen-
erating innovations by bootstrap procedure eliminates inter-
dependence, thus important information on higher order de-
pendence is lost.

Fig. 6. Autocorrelation function of absolute values of innovations
at different sites.

When taking a closer look at the structure of the innova-
tions, one can observe that it is a conditionally heteroscedas-
tic process: periods of high variance are followed irregularly
by less variable periods. This heteroscedasticity is beyond
seasonal variation because the latter was eliminated in the
standardization procedure. The phenomenon can be called
“variance clustering” because innovations with high absolute
values (i.e. with high conditional variance) tend to appear in
clusters. The clustering also explaines why the squared inno-
vation series is autocorrelated.

To demonstrate the clustering effect, we can estimate the
variance at timet by the method of moving averages, i.e.
by averaging the squared values of innovations from time
t−M/2 until timet+M/2 (here we use the fact that the mean
is close to zero):

V ar(ε)t =
1

M + 1

M/2∑
j=−M/2

ε2
t−j . (6)

When we take e.g.M=10 for a 10 years long subseries, as on
Fig. 7, the estimated variance process of the original innova-
tion series differs substantially in quantiles and in maximum
from that of an independent series obtained by reshuffling.
For instance, at V́aśarosnaḿeny, the maximum of the former
exceeds the maximum of the latter by 38%. This underscores
the importance of modelling the clustering effect.

5 Fitting a FARIMA-GARCH model

Series exhibiting variance clustering and other related prop-
erties are quite common in empirical finance. They are
usually modelled by heteroscedastic processes, of which
GARCH-type models are the most widespread. The origi-
nal GARCH model was introduced by Bollerslev (1986) and
can be formulated in the following way:

εt = σtZt (7)
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Fig. 7. A section of the estimated variance process of innovations
(left) and of reshuffled innovations (right) at Váśarosnaḿeny.

σ 2
t = a0 + a1ε

2
t−1 + b1σ

2
t−1, (8)

whereZt -s are independent, zero-mean random variables
with unit variance, andσ 2

t is the time-varying conditional
variance ofεt . a0, a1 and b1 are nonnegative parameters,
which describe the dependence ofσ 2

t on the lagged value
and on the lagged variance. (Whenb1=0, we obtain the
ARCH model introduced by Engle (1982).) Values of the
εt process are uncorrelated but interdependent through their
squares. A comprehensive introduction into GARCH models
is given e.g. in Hamilton (1994).

Because of its inherent heavy-tailedness (Mikosch and
Starica, 2000), the above described original GARCH model
is not directly suitable for river flow analysis. Instead, a more
flexible heteroscedastic GARCH-type model can be used for
modelling innovations, where the conditional variance is al-
lowed to depend on the lagged values and on the lagged vari-
ance in a more complicated way (f is a given parametric
bivariate function):

εt = σtZt (9)

σ 2
t = f (εt−1, σ

2
t−1). (10)

Although Bühlmann and McNeil (2002) gives a general
nonparametric method to identifyf , we have not used this
method because of computational difficulties. However,
there is an easier – although not precise in the case ofb1 6=0
– way to illustrate howσ 2

t depends onεt−1. If the innova-
tions are grouped (e.g. into 50 groups) according to their rank
and the variance of the subsequent innovations are computed
for all groups, we see that their conditional variance depends
on the value of the previous innovation (cf. Fig. 8). (If the
εt process were independent, no pattern would appear.) Ac-
cording to Fig. 8, when the absolute value of the innovation
is large, we expect the next innovation to have large absolute
value as well. However, this empirical relation is far from
the quadratic function obtained from the standard GARCH
model.
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Fig. 8. Empirical conditional variance of innovations as a function
of the previous value at V́aśarosnaḿeny.
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Fig. 9. Conditional variance of innovations from the fitted theoreti-
cal model.

Based on Fig. 8, we have specifiedf (and thus the model)
in the following form:

εt = σtZt (11)

σ 2
t = a0 + a1(1 − exp(−sε2

t−1))+ b1σ
2
t−1. (12)

How is this model working? When the absolute value of
εt−1 is large,εt−1 has no incremental effect on the condi-
tional variance. In this caseσ 2

t can be viewed as an autore-
gressive process:

σ 2
t ≈ a0 + a1 + b1σ

2
t−1.

When εt−1 is closer to zero, the process is similar to a
GARCH-process:

σ 2
t ≈ a0 + a1sε

2
t−1 + b1σ

2
t−1,

which in the neighbourhood of zero reduces to

σ 2
t ≈ a0 + b1σ

2
t−1.
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Fig. 10.Autocorrelation function of the original, squared and abso-
lute valued GARCH-residual process at Váśarosnaḿeny station.

As the effect ofεt−1 changes smoothly between these ex-
treme cases, the model may be called a smooth transition
GARCH-type process. Put another way, there are basically
two distinct regimes in the variance of the innovation pro-
cess, and they can transform into one another in a smooth
way. The theoretical smooth relationship between the con-
ditional variance and the lagged innovations is displayed in
Fig. 9.

After the conditional distribution (i.e. the distribution of
Zt ) is specified, parameter estimation can be carried out by
the method of conditional maximum likelihood (Hamilton,
1994). In the case of conditional normality, this method es-
sentially maximises the following function:

L(a0, a1, b1, s) =

n∏
t=1

1√
2πσ 2

t

exp

(
−
ε2
t

2σ 2
t

)

whereσ 2
t is the conditional variance specified in Eq. (12).

For the innovations of river discharge at Váśarosnaḿeny the
following model was obtained:

εt = σtZt (13)

σ 2
t = 0.0062+ 0.38(1 − exp(−3.51ε2

t−1))+ 0.46σ 2
t−1. (14)

6 Simulations from the FARIMA-GARCH model

TheZt series in Eq. (11) (which we call GARCH-residuals)
can be calculated recursively using the expression (14) for
σ 2
t . As Fig. 10 shows, the squared and absolute valued resid-

ual process are no longer autocorrelated, although some neg-
ligible autocorrelation appears in the residual series itself. So
the GARCH-residuals are much closer to independence than
the pure innovation process, making simulation by bootstrap-
ping more acceptable. As the distribution is more peaked and
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Fig. 11. Probability density and high quantiles (50, 70, 90, 95, 98,
99, 99.5, 99.95% and maximum) of observed (continuous/circled)
and simulated (dotted) water discharge series at Váśarosnaḿeny.

heavier-tailed than the standard normal one, the bootstrap
procedure is indeed needed again. The shape of the distribu-
tion could also cause problems during estimation, however,
it is quite common in the finance literature to use Gaussian
conditional maximum likelihood even when the distribution
is non-Gaussian (see e.g. McNeil and Frey (2000).)

Having simulated the GARCH-residuals, theσ 2
t condi-

tional variances and theεt innovations are easily generated
recursively from Eq. (14). After that, as earlier, the fractional
ARIMA filter and the seasonal component can be applied to
get synthetic streamflow series.

Figure 11 shows that the peakedness of the probability
density is much better approximated by these simulations
than by the simulations from the linear model. The 100–year
maximum (which is quite important for flood risk estima-
tion) is overestimated while quantiles in the range 90%–95%
are slightly underestimated. The fit may improve when the
generalised Pareto-distribution is used at the tails, or when
the form of the model is more carefully chosen, e.g. by the
nonparametric fitting procedure proposed by Bühlmann and
McNeil (2002).

7 Conclusions

An overview of earlier results on statistical analysis of river
flows is given in Lawrance and Kottegada (1977). Noakes
et al. (1988) compared ARMA, fractional ARIMA and
Markov-type models in terms of their one-year ahead fore-
casting ability. Periodic autoregressive moving average mod-
els were applied by Vecchia and Ballerini (1991) to describe
the autocorrelation structure of monthly data. The role of
long range dependence was studied by Ray (1993) and Be-
ran (1994) with the findings that its importance lays in con-
fidence bounds and uncertainty estimations rather than point
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forecasting. Seasonal long memory models were analysed
recently in Montanari et al. (2000) and Ooms and Franses
(2001) where further references can be found.

Our analysis proved that taking into account linear depen-
dencies only, no matter at what length or precision, does not
result in satisfactory description of the discharge series. This
is particularly the case when extremes or high quantiles are
concerned. From the numerous possible nonlinear models,
a GARCH-type one was selected on the basis of autocor-
relations of squares and absolute values and in view of the
heteroscedasticity of the innovation process. Heuristic ar-
guments for GARCH-innovations – the greater the previous
innovation, the larger the variance of the next – may also be
given in various possible ways. Were a rigorous connection
between the innovations and the flood-generating weather
patterns established, one could say: a high-value innovation
indicates extreme weather patterns with unstable conditions,
leading to high uncertainty in the next step. However, being
a guess rather than an argument, we avoid to elaborate on this
any further.

The original GARCH-philosophy prescribes the variance
conditional on lagged values as a quadratic function. This
property is meant to capture investor behaviour in financial
markets where incoming shocking news cause greater un-
certainty (the above mentioned quadratically increasing vari-
ance) for the next couple of days. Natural phenomena lack
this psychological effect, therefore in our case there must be
a bound for the increase of variance. This is what our modi-
fied GARCH-model intends to describe.

There is another way to look at our model. It captures the
switch between high and low variance in an easily estimable
way, i.e. by making use of the apparent statistical relation-
ship between conditional variance and lagged innovations.
Whether other processes like regime switching ones may be
useful in modelling heteroscedasticity, or, in the GARCH-
type context, what other variables the variance may depend
on, are topics of further research.
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