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Abstract. Property damage from flooding creates urgent
funding needs that uninsured households often struggle to
meet, particularly when access to affordable credit is lim-
ited. While prior research links floods to higher rates of fi-
nancial distress, little is known about the prevalence and
drivers of credit constraints among flood-exposed property
owners. In this study, we use a simulation-based approach
to estimate the impact of uninsured damage on residential
mortgage borrowers’ financial conditions over a series of
floods in North Carolina from 1996–2019. Our framework
estimates key variables (e.g., damage cost, property value,
mortgage balance) to project the number of flood-exposed
borrowers experiencing credit constraints due to negative eq-
uity, liquidity issues, or both in combination. Conservative
projections suggest that the seven floods evaluated generated
USD 4.0 billion in property damage across the study area, of
which 66 % was uninsured. Among flood-affected mortgage
borrowers, only 48 % had insurance, and 32 % lacked suf-
ficient income or collateral to finance repairs through home
equity-based borrowing, making their recovery uncertain. By
identifying which borrowers are likely to have unmet fund-
ing needs due to flood-related credit constraints, these results
can inform the design of interventions to improve the finan-
cial resilience of flood-prone households.

1 Introduction

Flooding is one of the most frequent and costly natural haz-
ards in the United States, causing billions of dollars in prop-
erty damage each year (Smith, 2020). Unlike other perils
such as wind and fire, flood damage is generally not cov-
ered by standard homeowners’ insurance and must be pur-
chased as a separate policy (Marcoux and Wagner, 2025).
This has contributed to a substantial protection gap, with a
recent study estimating that 70 % of annual US flood losses
are likely to be uninsured (Amornsiripanitch et al., 2025).
Uninsured losses can magnify the financial impact of flood
events by exposing property owners to substantial out-of-
pocket costs. Households that lack insurance are typically
forced to exhaust savings, take on debt, apply for govern-
ment aid, or rely on friends and family in order to fund repair
and recovery efforts, which increases the potential for unad-
dressed funding needs (Collier and Kousky, 2025; Kousky et
al., 2021; You and Kousky, 2024). For those without suffi-
cient funding for repairs, a flood can act as a triggering event
that pushes households into a state of financial distress char-
acterized by adverse credit outcomes and housing insecurity
(Ratcliffe et al., 2020).

Published by Copernicus Publications on behalf of the European Geosciences Union.



676 K. P. Fitzmaurice et al.: Flood risks to borrower financial stability

Low-interest forms of debt financing such as federal disas-
ter loans and home equity loans may provide uninsured prop-
erty owners with the means to cope with flood-related finan-
cial shocks by providing an immediate infusion of funds for
repairs that can be repaid gradually over many years. How-
ever, many property owners face credit constraints that limit
their ability to access loans and take on additional debt. Ap-
proval rates for federal disaster loans vary substantially based
on an applicant’s income and credit score, with overall denial
rates often exceeding 40 % during major disasters (Begley et
al., 2023; Ellis and Collier, 2019). Home equity loans are the
next-cheapest form of credit available to property owners but
have strict income and collateral requirements. Lenders are
typically unwilling to approve a loan that would cause the to-
tal amount of debt secured by a property to exceed its market
value, or which would cause a borrower’s total monthly debt
obligations to exceed a set percentage of their income. For
uninsured property owners, these collateral and income con-
straints can severely limit the amount they are able to borrow
for repairs, particularly when they have high levels of preex-
isting mortgage debt or severe damage to their property.

Understanding how income and collateral constraints af-
fect the ability of uninsured property owners to cope with
flood-related financial shocks is important for designing ef-
fective policy responses. While several empirical studies of-
fer evidence that less insured and less creditworthy house-
holds exhibit higher levels of financial distress following
disasters (Billings et al., 2022; Collier et al., 2024; You
and Kousky, 2024), few studies have attempted to quantify
the prevalence and underlying drivers of credit constraints
among flood-exposed property owners. Data limitations may
be a contributing factor to these knowledge gaps: understand-
ing whether a property owner has sufficient borrowing ca-
pacity to fund their recovery requires granular data on their
income, debt obligations, property value, and level of unin-
sured damage exposure – information which is rarely cap-
tured by a single comprehensive dataset. In this context,
simulation-based modeling approaches can help to address
data scarcity issues by integrating data from multiple het-
erogeneous sources and explicitly representing the processes
that give rise to post-flood credit constraints, allowing re-
searchers to estimate the financial impacts of flood events in
settings where direct observations are unavailable.

In this study, we use an integrated modeling approach to
simulate the impact of flood-related property damage on res-
idential mortgage borrowers’ financial conditions over a se-
ries of floods in North Carolina from 1996–2019 while ex-
amining the following research questions: (1) How much
of the damage from these events was uninsured? (2) What
share of flood-exposed borrowers faced credit constraints
that were likely to impair their ability to access home repair
loans? (3) Were these credit constraints driven by insufficient
income, insufficient collateral, or both in combination? To
answer these questions, our modeling framework combines
property-level estimates of flood damage, insurance cover-

age, and time-varying property value with neighborhood-
level data on borrower characteristics and pre-flood finan-
cial conditions. We anticipate that our proposed approach and
subsequent findings can be used to help inform the design of
policies to improve the resilience of US households to floods
and other natural disasters.

2 Background: Financing recovery

Property damage from flooding represents an unexpected
shock to household finances that requires affected property
owners to access large amounts of liquid funds to cover
costs associated with repairs, which can easily run into the
tens of thousands of dollars. To address this financing chal-
lenge, property owners can draw from a variety of funding
sources, including insurance, government aid, secured debt,
unsecured debt, personal savings, and informal borrowing
from family and friends. Many property owners will only
have access to a subset of these funding sources, which differ
in their eligibility criteria, amount of funding provided, and
costs associated with utilization. In this section, we provide
a review of the sources of financing used by property owners
to fund flood-related repairs and their implications for house-
hold financial stability.

For property owners with flood insurance, funding for re-
pairs typically comes in the form of an insurance payout. The
primary source of flood insurance in the US is the federally-
operated National Flood Insurance Program (NFIP), which
in 2024 provided coverage to 4.8 million policyholders na-
tionwide while collecting USD 4.0 billion in written pre-
miums (FEMA, 2025c). During the 2000–2024 period, the
median (IQR) claim payout provided to NFIP policyhold-
ers was USD 15 600 (USD 1500–70 000) in 2020 dollars
(FEMA, 2025b). This infusion of funds helps to minimize
the amount of disruption to household finances and typically
allows property owners to pay for repairs without having to
draw from savings or take on debt. In a survey of hurricane-
exposed households, You and Kousky (2024) observed that
those with insurance had better self-reported financial health
in the year following the disaster and were much less likely
to have unmet funding needs.

During major flood events, the majority of losses are typ-
ically uninsured: catastrophe modeling firms estimate that
less than a third of all damage to residential properties from
flooding during Hurricanes Helene, Florence, Irma, and Har-
vey was covered by insurance (CoreLogic, 2024; Reuters,
2017a, b; RMS, 2018). The reasons for this protection gap
are multifaceted, but can be broadly attributed to the fol-
lowing factors: (1) purchase of flood insurance is voluntary
for properties located outside of zones designated as Spe-
cial Flood Hazard Areas (SFHAs) by the Federal Emergency
Management Agency (FEMA) that have an estimated annual
chance of flooding of 1 % or greater; (2) the use of SFHA
status as an indicator of flood risk can lead property own-
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ers outside the SFHA to believe insurance is unnecessary
(Horn, 2022a); and (3) many households have limited ability
or willingness to pay for flood insurance (Atreya et al., 2015;
Kousky, 2011; Netusil et al., 2021), which poses a major bar-
rier to increasing uptake. Since the implementation of a new
rate-setting methodology known as Risk Rating 2.0 in April
2022, approximately 77 % of NFIP policyholders have seen
their premiums rise, sparking concerns that higher costs may
prompt even more property owners to forgo flood coverage
(Frank, 2022; Horn, 2022b).

Even when purchase of flood insurance is mandatory, in-
stances of noncompliance are common (GAO, 2021; HUD,
2020). Those with mortgages backed by the federal govern-
ment are typically required to purchase and maintain flood
insurance if their property is located in a SFHA (GAO,
2021). Nationwide, approximately 70 % of single-family
mortgages receive federal backing through agencies such as
the Federal Housing Administration (FHA) and government-
sponsored enterprises (GSEs) such as Fannie Mae and Fred-
die Mac (GAO, 2019). Yet, challenges in enforcing manda-
tory purchase requirements have contributed to noncompli-
ance among mortgage borrowers. A recent study by the
U.S. Department of Housing and Urban Development (HUD)
found that in a sample of FHA-insured mortgages in North
Carolina, less than half of those required to carry flood insur-
ance actually had it (HUD, 2020). Prior studies suggest that
borrowers often fail to renew their insurance in the years fol-
lowing mortgage origination: an analysis by Michel-Kerjan
et al. (2012) observed that the median tenure of an NFIP
policy (2–4 years) was far shorter than the median housing
tenure (5–6 years) over the 2001–2009 period, implying that
many policyholders allow their policy to lapse while remain-
ing in their residence; similarly, a study by the Government
Accountability Office found that only 72 % of newly pur-
chased properties located in SFHAs that had NFIP policies
originated in 2014 were still covered by an NFIP policy in
2019 (GAO, 2021). In addition, the binary nature of SFHA
boundaries means that there are many properties located just
outside the SFHA that are not required to purchase flood in-
surance despite facing substantial risk from both larger return
period events (e.g., a 1-in-200 year flood) and pluvial flood
hazards that are not represented on existing maps (Brody et
al., 2018; Pricope et al., 2022; Sebastian et al., 2021). As a
result, uninsured damage from flooding remains a major fi-
nancial threat to mortgage borrowers and (by extension) their
lenders (CBO, 2023; Thomson et al., 2023).

For uninsured property owners, the primary sources of fed-
eral post-disaster aid are disaster loans from the U.S. Small
Business Administration (SBA) and, to a lesser extent, indi-
vidual assistance grants from FEMA (Horn, 2018). Grants
provided by FEMA’s Individuals and Households Program
(IHP) are intended to meet basic needs and typically cover
only a small fraction of the total cost of flood-related dam-
ages (Lindsay and Webster, 2022). Between 2002 and 2024,
the median (IQR) IHP grant for property owners reporting

flood damage to their primary residence was only USD 2900
(USD 930–7510) in 2020 dollars (FEMA, 2025a). Disaster
loans offered through the SBA provide a larger infusion of
funds, have low interest rates (typically around 50 % of the
average 30 year mortgage rate), long repayment terms, flex-
ible collateral requirements, and play an important role in
recovery; however, many applicants are denied a loan due
to unsatisfactory credit history or insufficient income (Ellis
and Collier, 2019; Lindsay and Webster, 2022). A key metric
used by the SBA to evaluate loan applicants is their debt-
to-income (DTI) ratio, which describes the share of their
monthly income that goes towards recurring debt obligations
(e.g., payments on mortgage and auto loans). In an analysis
of SBA loan applications from the 2005–2013 period, Col-
lier et al. (2024) observed a sharp decrease in the probability
of loan approval for applicants with a DTI ratio exceeding
40 %: those with a DTI ratio just over this threshold were
much less likely to receive a loan than those with a DTI ratio
just under it (60 % vs. 80 % approved), with approval rates
dropping below 50 % for applicants with a DTI ratio of 45 %
or greater. Using a regression discontinuity design, the au-
thors of this study were able to estimate the causal effect of
access to low-interest forms of credit on recovery, finding
that those who qualified for an SBA loan were far less likely
to experience negative financial outcomes such as bankruptcy
and mortgage delinquency in the years following a disaster.
These findings underscore the contribution of income-related
credit constraints to financial distress among property owners
exposed to uninsured damage.

After SBA loans, the next-cheapest form of credit avail-
able to uninsured property owners are home equity loans.
These loans are a form of secured debt that requires property
owners to pledge their property as collateral, giving lenders
the right to initiate foreclosure proceedings should they fail to
repay. As such, the maximum amount that a property owner
can borrow via this route is limited by both their income and
the amount of equity they have in their home (i.e., the differ-
ence between its market value and the amount of outstanding
debt secured by the property). Applicants for home equity
loans are evaluated based on their credit score, DTI ratio, and
combined loan-to-value (CLTV) ratio, which is calculated by
dividing the total balance of all loans secured by the property
by its market value. The maximum allowable DTI and CLTV
ratios for most conventional loans are 45 % and 97 % re-
spectively, though certain government lending programs will
allow disaster-affected property owners to borrow at CLTV
ratios of up to 100 % (Fannie Mae, 2024a; HUD, 2024). In
a study of Houston-area residents during Hurricane Harvey,
Billings et al. (2022) observed a significant increase in the
use of home equity loans among property owners living in
flooded areas outside the SFHA, where insurance penetration
is low; this effect was strongest for those who were unlikely
to qualify for an SBA loan. This suggests that property own-
ers who are denied an SBA loan can sometimes use home
equity loans as a substitute source of funding for recovery;
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however, it is important to note that there are disadvantages
to this strategy. Home equity-based borrowing is a more ex-
pensive form of debt than SBA loans and is also constrained
by the amount of equity a borrower has in their home. Prior
studies suggest that flood events can depress property values
in affected areas (Bin and Landry, 2013; Fang et al., 2023;
Ortega and Tas.pınar, 2018), though disentangling the direct
effects of flood damage from changes in market perceptions
of risk can often be a challenge (Atreya and Ferreira, 2015).
Post-flood declines in property value can reduce a property
owner’s equity at the critical moment when it is needed as
collateral for loans, potentially impeding their ability to fi-
nance repairs, especially when the amount of damage is se-
vere. For property owners with low levels of pre-flood eq-
uity (e.g., those who recently purchased their home with a
mortgage), the combination of uninsured damage and prop-
erty value reductions can lead to a situation of “negative eq-
uity” in which the amount of debt secured by their property
exceeds its market value, leading to a CLTV ratio greater
than 100 %. This prevents them from using their property as
collateral to obtain additional loans and can also create a fi-
nancial incentive to default on their existing debt obligations
(Foote and Willen, 2018). These factors may help to explain
the elevated rates of bankruptcy observed by Billings et al.
(2022) among property owners with an outstanding mortgage
and limited capacity to take on additional debt.

For property owners who are unable to access SBA loans
or home equity loans, the available financing options nar-
row considerably, often leaving only higher-cost sources of
funds that impose difficult tradeoffs between meeting urgent
recovery needs and preserving long-term financial stability.
Credit cards and other forms of unsecured debt can provide
households with quick access to funds but have low borrow-
ing limits and high interest rates. In a study of Houston res-
idents following Hurricane Harvey, Del Valle et al. (2022)
found that households in flooded areas tended to utilize credit
cards strategically by taking advantage of promotional-rate
offers and quickly repaying balances to avoid accruing in-
terest. This study found that post-Harvey increases in credit
card spending were largely offset by card payments, con-
sistent with the earlier findings of Gallagher and Hartley
(2017) who found that Hurricane Katrina had only a mod-
est and short-lived impact on the credit card balances of New
Orleans residents. Together, these two studies suggest that
credit cards provide short-term liquidity to disaster-affected
households but do not constitute a major source of funding
for flood-related repairs.

In a survey of hurricane-exposed households, You and
Kousky (2024) found that over half reported using their sav-
ings to fund repairs. While savings are a cost-effective way
to manage small emergencies, many property owners are un-
likely to have sufficient liquid savings to cover the full cost of
flood-related repairs. In the Federal Reserve’s 2024 Survey of
Household Economics and Decisionmaking, 43 % of respon-
dents with a mortgage reported that they would be unable to

cover a USD 2000 emergency expense using only their sav-
ings (Board of Governors of the Federal Reserve System,
2025). Households might also use retirement accounts to
fund repairs when other savings prove insufficient: Deryug-
ina et al. (2018) observed a large increase in withdrawals
from retirement accounts among New Orleans residents fol-
lowing Hurricane Katrina. Among households included in
the Federal Reserve’s 2022 Survey of Consumer Finances,
the median retirement account balance was USD 86 900 (Al-
adangady et al., 2023) – an amount that would be sufficient to
cover the typical cost of most flood-related repairs. However,
draining retirement accounts to fund repairs is likely to be a
last resort for most property owners, as this strategy is likely
to have negative consequences for their long-term financial
health, particularly for those who are at or near retirement
age. While property owners may be able to supplement their
savings with financial support from family and friends (You
and Kousky, 2024) and social safety net transfers (Deryug-
ina, 2017), it is unclear whether these sources provide suffi-
cient funds to meet the recovery needs of those with severe
damage to their residence.

When these funding sources fall short, unmet repair needs
can destabilize household finances. Numerous studies have
linked floods and hurricanes to higher rates of mortgage
delinquency (Calabrese et al., 2024; Du and Zhao, 2020;
Kousky et al., 2020; Mota and Palim, 2024; Rossi, 2021)
and personal bankruptcy (Billings et al., 2022; Collier et
al., 2024), with effects varying based on households’ ac-
cess to insurance and affordable credit. After Hurricane Har-
vey, Kousky et al. (2020) found that mortgaged properties
with moderate to severe flood damage had over double the
odds of becoming 180 or more days delinquent than undam-
aged properties – a relationship significant only outside the
SFHA, where insurance uptake is low. Similarly, Billings
et al. (2022) documented higher rates of bankruptcy and
credit delinquency among Harvey-affected households out-
side the SFHA. This study found that post-Harvey increases
in bankruptcy were largely concentrated in a specific seg-
ment of the population: mortgage borrowers located outside
the SFHA with below-median incomes and credit scores.
Property owners in this group faced high levels of uninsured
damage but had limited ability to finance repairs through ad-
ditional borrowing. Collectively, these studies suggest that
uninsured property owners experience lasting financial con-
sequences from flooding, particularly when income or collat-
eral constraints prevent them from accessing low-cost forms
of debt financing. Despite growing awareness of these risks,
few efforts have been made to systematically measure the
prevalence, severity, and drivers of credit constraints among
flood-exposed households at scale.
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3 Methods

This analysis uses a data-driven modeling framework to es-
timate dynamic changes in the financial condition of resi-
dential mortgage borrowers in response to uninsured prop-
erty damage incurred over a series of floods concentrated in
the eastern part of the US state of North Carolina (Fig. 1).
The approach extends the framework used by Thomson et al.
(2023) to estimate the prevalence of negative equity follow-
ing Hurricane Florence in 2018 by including other drivers of
credit constraints among flood-exposed mortgage borrowers
(e.g., insufficient income) and by capturing the cumulative
effects of multiple flood exposures occurring over a series
of seven named tropical cyclones (including Florence) dur-
ing the 1996–2019 period. The initial financial conditions of
mortgage borrowers are simulated using loan-level data on
household income, monthly debt obligations, unpaid mort-
gage balance, and loan structure at the time of origination.
Temporal changes in property values and home equity are
simulated based on local trends in real estate prices and em-
pirically observed repayment profiles in a sample of mort-
gages purchased by Fannie Mae and Freddie Mac. This infor-
mation is combined with property-level NFIP policy enroll-
ment data and flood damage estimates to assess the impact of
financial shocks from uninsured flood damages on borrower
equity and liquidity. Finally, we calculate post-damage ad-
justed combined loan-to-value (ACLTV) and adjusted debt-
to-income (ADTI) ratios to estimate the number of flood-
exposed borrowers facing credit constraints due to insuffi-
cient income, insufficient collateral, or both in combination.

3.1 Study area and period

This study examines the historical impact of multiple flood
events on the US state of North Carolina during the 24 year
period from 1996 through 2019. This region is home to
over 10 million people, of whom approximately 4 % live
within the 100 year floodplain (NYU Furman Center, 2017;
U.S. Census Bureau, 2023). Based on data from FEMA and
the North Carolina Department of Emergency Management
(NCEM), we estimate that only 47 % of buildings inside
the SFHA were covered by an NFIP policy in 2019, imply-
ing that many property owners lack financial protection de-
spite facing substantial flood risk (FEMA, 2025c; NCEM,
2022). This is consistent with nationwide rates of flood in-
surance uptake inside the SFHA observed by Bradt et al.
(2021). North Carolina frequently experiences flooding as-
sociated with tropical cyclones, which accounted for 14 ma-
jor disaster declarations in the state between 1996 and 2019
(FEMA, 2024). Our analysis focuses on the seven largest
named storms during this period as measured by the num-
ber of associated NFIP claims filed in North Carolina: Hurri-
canes Fran (September 1996), Bonnie (August 1998), Floyd
(September 1999), Isabel (September 2003), Irene (August
2011), Matthew (October 2016), and Florence (September

2018). When evaluating the financial impact of these events,
we restrict our focus to the 78 North Carolina counties for
which we had access to address-level information on flood
insurance coverage (Fig. 2); this region – hereafter referred to
as the “study area” – encompasses 86 % of the state’s popu-
lation and 82 % of the land area (U.S. Census Bureau, 2023).

3.2 Modeling framework overview

The focus of our analysis is on residential mortgage borrow-
ers living in single-family detached homes. We selected this
property type due to its ubiquity in North Carolina and be-
cause other property categories such as multifamily hous-
ing and mobile home parks exhibit complex ownership and
disaster recovery patterns that require specialized modeling
approaches (Mongold et al., 2024; Moradi and Nejat, 2020;
Rumbach et al., 2020). In addition, we further restrict our
focus to mortgage loans secured by a borrower’s primary
residence and thus exclude those associated with investment
properties or secondary residences. Based on data from the
2021 American Housing Survey, we estimate that owner-
occupied single-family detached homes account for 53 % of
all housing units and 84 % of housing units with a mort-
gage in the South Atlantic Census Bureau Division (which
includes North Carolina) (U.S. Census Bureau, 2021).

Our modeling framework combines property character-
istics (e.g., square footage, foundation type, first floor
elevation) and data on environmental variables affecting
flood hazard (e.g., distance to rivers, height above near-
est drainage) with financial observations (e.g., insurance
claims, property sales, mortgage originations) to simulate
the financial conditions of residential mortgage borrow-
ers at a monthly timestep. This is accomplished through
a series of sub-models describing: flood damage exposure
(model I, Sect. 3.3); property value dynamics (model II,
Sect. 3.4); simulated mortgage repayment profiles (model III,
Sect. 3.5); and damage-adjusted measures of borrower eq-
uity and liquidity over the study period (model IV, Sect. 3.6)
(Fig. 1). Where possible, our modeling framework incor-
porates property-specific data (e.g., structure characteristics,
past sales); certain variables that are only available at the
census tract level (e.g., mortgage loan characteristics) are
stochastically sampled to create synthetic values for individ-
ual properties. As such, the estimates produced by our sim-
ulation model do not represent the exact conditions experi-
enced by any specific borrower but are intended to reflect the
distribution of key financial variables within a given census
tract – a spatial resolution that is likely to be relevant for the
targeting of policy interventions and post-disaster aid.

3.3 Model I: flood damage

Unlike insured losses, uninsured damage from flooding is
rarely tracked and often difficult to quantify. To overcome
this data gap, we use a random forest machine learning model
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Figure 1. Overview of the integrated modeling framework. The top left grid represents environmental and building structural data (available
at each property), while the bottom left grid represents financial data (available for a subset of properties). The various sub-models used to
create spatially complete estimates of borrower financial conditions are denoted by colored boxes.

Figure 2. Overview map of the study area. County boundaries are shown in black, with counties under the jurisdiction of the Coastal Area
Management Act (CAMA) colored in a darker shade of tan than non-CAMA counties. Major waterbodies are depicted in blue. Urban areas
are shaded in dark grey.

trained on NFIP policy and claim data to estimate damage
to uninsured properties as a function of geospatial predic-
tors. This method closely resembles the approach employed
by Thomson et al. (2023) to estimate uninsured damage to
properties during Hurricane Florence, and builds on a foun-
dation of research that has utilized random forest models to
construct spatially complete maps of historical flood expo-
sure from sparse observations (Collins et al., 2022; Garcia
et al., 2025; Mobley et al., 2021). For each flood event eval-
uated, we employ a two-stage approach to predict the pres-
ence of flooding (model I, stage I) and magnitude of damage
(model I, stage II) at each property within the study area.

The location and structural characteristics (e.g., founda-
tion type, first floor elevation) of each individual property are
specified using a statewide building inventory complied by
NCEM’s GIS team (NCEM, 2022) that represents an approx-
imate snapshot of the building stock during the middle of the
study period. This database includes information on occu-
pancy classifications that allow for a distinction between var-
ious types of residential and commercial structures. It is spa-
tially joined to a statewide parcels dataset that delineates the
boundaries of individual properties (NC OneMap, 2022). For
properties with multiple structures (e.g., a main building and
an outbuilding), property characteristics are evaluated based
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on the structure with the largest aerial footprint. For prop-
erties missing data on key attributes (e.g., year built) miss-
ing values were spatially imputed using nearest-neighbor in-
terpolation. The values of environmental variables affect-
ing flood hazard (e.g., rainfall, elevation, distance to nearest
stream) are estimated at each property location from a variety
of sources, including the Daymet V4 meteorological dataset
(Thornton et al., 2022), North Carolina Flood Risk Informa-
tion System (NC Floodplain Mapping Program, 2022), Na-
tional Elevation Dataset (Gesch et al., 2018), National Hy-
drography Dataset (Moore et al., 2019), and National Land
Cover Database (Homer et al., 2012). In total, a set of 17
variables describing the structural and environmental char-
acteristics of each property are included as predictors when
estimating the presence and magnitude of flood damage. A
complete list of these variables and their data sources is avail-
able in Table S1 in the Supplement.

In the first stage of the damage estimation procedure
(model I, stage I), a random forest machine learning model
is trained with address-level NFIP policy and claims data to
predict the presence or absence of flood damage as a function
of environmental and property characteristics. The insurance
status of each property at the time of an event is determined
based on records of NFIP policies and filed claims provided
by FEMA Region IV (Sect. S1 and Table S2 in the Supple-
ment). Observations from insured properties are used to train
a random forest model predicting the probability of experi-
encing property damage during a specific flood event: prop-
erties filing a flood insurance claim during the event are la-
beled as “presence” points (i.e., locations with known flood
damage exposure) while those with an active flood insurance
policy, but no claims, are labeled as “absence” points (i.e., lo-
cations known to have not experienced flood damage). Due
to NFIP record-keeping practices, a substantial fraction of
policy records (but not claims) from the pre-2009 period are
missing from the address-level dataset provided by FEMA
(NFIP, 2024); to address this imbalance in our dataset, we
randomly select “pseudo-absence” points from the remaining
properties in the study area using geographically stratified
sampling to ensure that the number of presence and absence
points within each geographic unit (e.g., the intersection of
census tract and SFHA polygons) matches the totals implied
by auxiliary sources of data – in this case, anonymized NFIP
policy enrollment statistics obtained from FEMA (a detailed
description of the process is provided in Sect. S1 and Ta-
ble S2). As such, the machine learning method for predicting
the presence of flood damage is a hybrid approach that relies
on a combination of actual presence-absence and stochasti-
cally generated pseudo-absence training data (Barbet-Massin
et al., 2012). While the inclusion of pseudo-absences likely
introduces some label noise into the training data, this step
was necessary to correct for the bias inherent in the address-
level insurance data, which disproportionately captured dam-
aged (claim) locations. For each event, the trained random
forest model is used to classify uninsured properties as “dam-

aged” or “undamaged.” For further information on the im-
plementation and performance of this method, we refer the
reader to Garcia et al. (2025).

In the second stage of the damage estimation procedure
(model I, stage II), a second random forest model is trained
with NFIP claims data to predict the dollar amount of flood
damage at properties classified as “damaged” in stage one.
Unlike many physics-based inundation models, our data-
driven approach does not explicitly model the depth of flood-
waters at each property location; as such, the depth-damage
relations commonly used to estimate damage to building
structure and contents from flooding are not applicable here
(Wing et al., 2020). Instead, observed claims at insured prop-
erties are used to train an event-specific random forest regres-
sion model predicting the dollar cost of flood damage among
damaged properties as a function of structural and environ-
mental characteristics (e.g., first floor elevation, proximity to
sources of flooding). The trained model is subsequently used
to estimate the cost of flood damage at each uninsured prop-
erty classified as “damaged.”

The performance of the two-stage damage estimation ap-
proach is evaluated using both random and spatial block
cross-validation. When validation data are randomly selected
for cross-validation from the entire spatial domain, train-
ing and validation data from nearby locations can exhibit
dependence (i.e., spatial autocorrelation), leading to overly-
optimistic estimates of model error when applied to more
spatially distant locations (Roberts et al., 2017). To address
this concern, random cross validation was used to assess the
“interpolation” error of the model (i.e., how well it performs
in areas with a high density of training examples, such as in-
side the SFHA) while spatial block cross validation was used
to assess the “extrapolation” error of the model (i.e., how
well it performs in areas with a lower density of training ex-
amples, such as outside the SFHA). Random cross validation
was performed by splitting the presence-absence and pseudo-
absence data into 10 equally sized random subsets (folds) and
repeating model training 10 times, each time withholding one
subset to validate the prediction results. Spatial block cross
validation was performed by dividing the presence-absence
and pseudo-absence data into n spatial blocks defined by
5 km square grid cells, and repeating model training n times,
each time withholding one block for validation while also ex-
cluding adjacent blocks from the data used for training. This
procedure was performed separately for each of the seven
flood events included in this study to produce event-specific
estimates of model performance (Figs. S2–S4 in the Supple-
ment). In addition, a subgroup analysis was performed to as-
sess potential differences in model error inside and outside
of the SFHA, and when pseudo-absences are excluded from
the validation data.

In random cross-validation, the area under the receiver-
operating characteristic curve (AUC) was between 0.86 and
0.95 for all included events, suggesting that the random for-
est model is able to clearly distinguish between damaged and
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undamaged properties across a variety of time periods and
settings (Fig. S2, Table S3). This result was consistent inside
and outside of the SFHA (AUC score of 0.85–0.94 inside
vs. 0.83–0.97 outside across all storms) and when pseudo-
absences were excluded from the validation data (AUC score
of 0.75–0.95) (Figs. S2 and S3). When identifying damaged
properties, the model exhibited high accuracy (≥ 92 %) and
specificity (≥ 98 %) but low sensitivity, with true positive
rates of between 12 % and 42 % across events. This behav-
ior is characteristic of machine learning classifiers trained
on class imbalanced data where the positive class (e.g., pres-
ence of flood damage) is rare compared to the negative class
(Haixiang et al., 2017; He and Cheng, 2021). Among proper-
ties that were misclassified by our model in cross-validation,
false positive and false negative predictions respectively ac-
counted for 12 % and 88 % of model errors across the seven
evaluated events (Table S4). Collectively, these results sug-
gest that our model often fails to detect properties that were
damaged, which is likely to lead to a systematic underestima-
tion of the true level of flood exposure within the study area.
As such, our projections of flood damage exposure (and, by
extension, flood-related credit constraints) should be inter-
preted as a conservative bound as opposed to a central esti-
mate.

In spatial block cross-validation, AUC scores were
marginally lower for all events, ranging between 0.79 and
0.92 (Fig. S4 and Table S3). This slight decrease in per-
formance is expected and suggests that our random forest
model can still distinguish between damaged and undamaged
properties at spatially distant locations that are 5 km away
from the nearest training datapoint. The accuracy and speci-
ficity of the model remained high across events (≥ 90% and
≥ 98% respectively); however, there was a notable decrease
in sensitivity associated with the transition from random to
spatial block cross-validation. This effect was strongest for
Hurricane Bonnie, the smallest event included in terms of
NFIP claims, which had a sensitivity of < 1% in spatial
block cross-validation. Across the other 6 events, sensitiv-
ity ranged between 1 % and 33 % in spatial block cross-
validation (Fig. S4).

The two-stage damage estimation procedure is assessed in
terms of its ability to predict the dollar amount of flood dam-
age to individual properties based on the out-of-sample coef-
ficient of determination (R2

os) calculated via cross-validation.
At the individual property level, the model could only ex-
plain a small fraction of the total variance in damage costs
(R2

os≤ 0.39 across all events). The low observed R2
os scores

likely arise at least in part due to the low sensitivity of the
random forest model used to classify properties as “dam-
aged” in the first stage of the damage estimation procedure:
those classified as “undamaged” are assigned a damage cost
value of zero in the second stage of the procedure regard-
less of their actual flood damage status. Among damaged
properties that were correctly classified as such, damage cost
R2

os scores were typically higher but still exhibited substan-

tial variation, ranging between 0.03 and 0.45 across events
(Table S3). One potential source of uncertainty in our dam-
age cost estimates is that our data-driven approach does not
explicitly account for the impact of key hydrodynamic vari-
ables (e.g., water depth, flow velocity, and duration) that have
been shown to play an important role in determining the cost
of flood-related damage (Amadio et al., 2019). The damage
cost estimates produced by the model are more consistent
with cross-validation targets when aggregated across spatial
blocks defined by 5 km grid cells, with R2

os scores ranging
between 0.52 and 0.93 (Fig. S5). These results suggest that
while damage cost predictions at individual properties are
highly uncertain, our method can produce reasonable esti-
mates of neighborhood-level damage in an efficient manner.

3.4 Model II: property value

The time-varying market value of each property included in
the analysis is estimated across the study period on a quar-
terly basis using a dataset of residential real estate sales ac-
quired from ATTOM Data Solutions (ATTOM, 2021). This
dataset includes 2.3 million property transactions from North
Carolina during the 1990–2019 period, and contains infor-
mation on the property location, sale price, and date on which
the transaction occurred. Property transactions were geolo-
cated to building footprints via a two-step process: (1) trans-
actions were first spatially joined to parcels based on the
reported latitude and longitude in the ATTOM dataset, and
(2) each transaction’s location was then refined to correspond
to the largest building footprint within the associated parcel.
The parcel and building datasets used in this process were the
same as those described in Sect. 3.3. After discarding trans-
actions that were not from single-family detached homes or
which had missing data, the final dataset consisted of 1.8 mil-
lion geolocated property sales.

Sale price data are only observed for a small fraction of
properties within a given year but can be interpolated across
space and time to estimate the value of properties with no re-
cent sale transactions. To this end, a hedonic pricing model
utilizing a random forest regression kriging (RFRK) method
is used to predict home values as a function of property-
specific characteristics (e.g., lot size, year built) while ac-
counting for spatial and temporal autocorrelation in home
prices. Hedonic models are an established property valua-
tion technique that has previously been employed to exam-
ine property price trends following floods (Bin and Landry,
2013; de Koning et al., 2018). Kriging is a geostatistical
technique that is commonly used to improve the accuracy of
property value models by incorporating the effects of spatial
autocorrelation on home prices, which can arise as a result of
locational attributes (e.g., proximity to parks) that increase
or decrease the price of a property relative to what would be
expected given its basic characteristics (e.g., number of bed-
rooms) (Kuntz and Helbich, 2014).
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For each fiscal quarter between 1990 and 2019, the market
value (Pi,t ) of each property within the study area is esti-
mated via the following regression:

logPi,t = log P̂ (xi,t )+ Ẑ(si, t)+ εi,t , (1)

where xi,t is a vector of available property-specific charac-
teristics, si is a vector of spatial coordinates describing the
property location, and t refers to the valuation date. Our
hedonic pricing model assumes property values can be de-
composed into three components: a deterministic component
P̂ (xi,t ) reflecting basic property characteristics; a spatiotem-
poral component Ẑ(si, t) reflecting location-specific ameni-
ties; and a zero-mean stochastic residual εi,t .

The deterministic component P̂ (xi,t ) is estimated via ran-
dom forest regression of observed sale prices on selected
property characteristics available from the NCEM statewide
building inventory and public sources of data such as the
U.S. Census Bureau (Table S1). These predictors include
property-specific attributes such as parcel size, heated square
footage, and year built; census-tract level characteristics such
as median income and mortgage loan amounts; and county-
level housing market trends as measured by the FHA’s an-
nual home price index (Bogin et al., 2019). Using the trained
random forest model and selected property characteristics, a
hedonic property value (P̂ (xi,t )) is estimated for each prop-
erty. Among properties with sale transactions, the difference
between the estimated hedonic price and the observed market
sale price (Pi,t ) yields a “hedonic residual” (Zi,t ) such that:

Zi,t = logPi,t − log P̂ (xi,t ), (2)

Because property sale prices reflect unobserved locational
attributes and local market trends, hedonic residuals ex-
hibit strong spatial and temporal autocorrelation. With this
in mind, the spatiotemporal component of property value
Ẑ(si, t) is estimated via space-time interpolation of hedonic
residuals using the simple lognormal kriging method (Chilès
and Delfiner, 2012). Additional details regarding this proce-
dure are available in Sect. S2.

To allow for regional variation in model parameters and to
improve the computational efficiency of our method, prop-
erty value estimation was carried out independently across
75 “kriging neighborhoods” created via k-means clustering
of property sales, with each cluster containing an average of
30 000 sale transactions. To assess the performance of our
property value estimation approach, predicted property val-
ues were compared against observed sale prices in 10-fold
cross validation. In each fold, a separate model was fitted us-
ing 90 % of the property sales data, with 10 % withheld for
validation.

The property values predicted by our model in cross-
validation were within ±20 % of the actual sale price for
54 % of predictions, and within ±50 % for 79 % of predic-
tions; when the 10 % lowest-priced sale transactions in each
year are excluded, these percentages increase to 59 % and

86 % respectively (Fig. S6). The scale of model errors var-
ied over time as a result of property value appreciation and
housing market trends; the distribution of absolute prediction
error and median home prices by year are shown in Fig. S7.
Model performance varied somewhat across the study area
(Fig. S8), with the lowest errors observed in urbanized coun-
ties having a high density of sale transactions. The substantial
uncertainty in our property value estimates likely arises from
a combination of factors, including: (1) the limited number
of property-specific details in NCEM’s statewide building in-
ventory, which describes basic structural attributes but lacks
information on other price-relevant characteristics such as re-
cent improvements or deferred maintenance; (2) the presence
of sales that do not reflect fair market values (e.g., intrafam-
ily transfers) in the training and validation data, which can
bias model predictions; and (3) geolocation errors that may
result in mismatches between recorded sales and parcel ge-
ometries. Future work could potentially enhance the perfor-
mance of the property valuation model by introducing filters
to identify arms-length sales and by adding predictors that
capture property-specific attributes related to structural de-
fense and prior flood exposure (Nolte et al., 2024; Pollack
and Kaufmann, 2022).

3.5 Model III: mortgage repayment

The unpaid balance on mortgages within the study area
was simulated on a monthly basis starting from the time
of loan origination. Mortgage origination activity in each
year was characterized using Home Mortgage Disclosure
Act (HMDA) Loan Application Register data (CFPB, 2017;
FFIEC, 2023; Forrester, 2021). This loan-level dataset con-
tains 7.2 million mortgages originated in North Carolina
from 1992 to 2019, and includes information on the loan
amount, loan purpose, property type, census tract, and bor-
rower income at the time of origination. After restricting
our sample to loans from single-family, primary-residence
homes located within the study area, our final dataset con-
sisted of 4.7 million mortgage loans.

The HMDA data does not contain information on the
interest rate, original loan-to-value (LTV) ratio, and orig-
inal debt-to-income (DTI) ratio of each mortgage loan;
thus, these variables were stochastically generated based on
their observed distributions in the Fannie Mae and Fred-
die Mac (hereafter referred to as the GSEs) single-family
loan datasets (Fannie Mae, 2023; Freddie Mac, 2023). These
datasets include detailed loan-level origination and monthly
performance data for all single-family mortgages in North
Carolina that were acquired by the GSEs between 1999 and
2021. We restricted our sample to mortgages with 30 year
and 15 year terms, which accounted for 98 % of home pur-
chase and 86 % of refinance loans in the GSE dataset. To ad-
just for temporal trends in mortgage rates, we converted the
interest rate of each loan included in the GSE dataset into an
interest rate spread by subtracting the average 30 or 15 year
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fixed mortgage rate at the time of origination (hereafter re-
ferred to as the “benchmark rate”) from the loan-specific rate
(Freddie Mac, 2016b, a).

We used the copula method to separately model the cor-
relation structure and marginal distributions of the following
five mortgage origination variables: borrower income, loan
amount, LTV ratio, DTI ratio, and spread over the benchmark
rate. The marginal distribution of each variable was nonpara-
metrically modeled using empirical distribution functions es-
timated from GSE origination data; the correlation between
variables was modeled using a Gaussian copula fit to GSE
data using the maximum pseudo-likelihood (MPL) method
(Genest et al., 1995). The resulting multivariate distributions
were stratified by the year of origination, loan purpose (home
purchase or refinance), and loan term (30 or 15 years). These
distributions were then used to simulate the values of mort-
gage origination variables not included in the HMDA dataset
(i.e., LTV ratio, DTI ratio, spread over the benchmark rate)
conditional on borrower income and loan amount. Because
the GSE dataset does not include loans originated prior to
1999, the joint distribution of origination variables for pre-
1999 mortgages was modeled by combining the year-specific
marginal distributions of borrower income and loan amount
observed in the HMDA dataset; the marginal distributions of
LTV, DTI, and rate spread among GSE mortgages originated
in 1999; and the fitted Gaussian copula corresponding to the
1999 period.

Because HMDA mortgage origination data is anonymized
to the census tract level, each mortgage loan is randomly as-
signed to a specific property within the listed census tract
at origination. The probability of a given property being
matched to a loan is determined based on its estimated value
at the time of origination (model II, Sect. 3.4) and the prob-
ability density function (PDF) of potential property values
implied by the mortgage loan amount and LTV ratio distribu-
tion. Once a mortgage loan is assigned to a specific property,
no new mortgages can be assigned to that same property until
the previous mortgage has been terminated.

Mortgage repayment is simulated on a monthly basis until
the loan is either paid off in full or the end of the simulation
time horizon (December 2019) is reached. The borrower’s
monthly mortgage payment (c) is calculated as a function
of the original loan balance (Bt0 ), monthly interest rate (r),
and loan term in months (N ) assuming a constant repayment
schedule:

c =
r

1− (1+ r)−N
Bt0 (3)

The unpaid balance is updated at the end of each month to
reflect interest and payments:

Bt+1 = Bt (1+ r)− c (4)

For simplicity, our model assumes that all home purchase
loans have a 30 year term; among single-family home pur-
chase loans acquired by the GSEs in North Carolina, those

with repayment periods of less than 30 years accounted for
only 11 % of the total (Fannie Mae, 2023; Freddie Mac,
2023). For refinance loans, two-thirds are randomly assigned
a 30 year term while the remainder are assigned a 15 year
term, which reflects the approximate ratio of 30–15 year
terms among refinance loans acquired by the GSEs.

Most mortgage loans in the US are repaid well before the
maturity date due to borrowers refinancing or selling their
property. In an environment of falling interest rates, borrow-
ers have a strong incentive to refinance their mortgage to ob-
tain a lower rate; at a given point in time, this incentive is
captured by the spread between their loan’s interest rate and
the prevailing “market” rate (i.e., the average 30 or 15 year
fixed rate on new mortgages). With this in mind, we model
the time-dependent prepayment rate as a function of both the
loan age and interest rate spread using a Cox proportional
hazards model (Cox, 1972):

λ(t)= λ0(t)exp
[
β
(
r − rm,t

)]
, (5)

where λ(t) is the hazard (prepayment) rate t months after
origination for a loan with interest rate r , λ0(t) is the “base-
line” hazard function, rm,t is the prevailing market rate, and
β is a coefficient controlling the degree to which a positive
rate spread increases prepayment rates. Cox model coeffi-
cients and baseline hazard functions were estimated using
115 million loan-month observations from North Carolina
mortgages included the GSE single-family loan performance
datasets (Table S5). These estimates were stratified by the
loan purpose (home purchase or refinance) and, in the case
of refinanced mortgages, the loan term (30 or 15 years). The
fitted Cox models are used within our simulation to calculate
the monthly probability of a borrower repaying their mort-
gage early; if this occurs, the balance on their loan is set
to zero. Our model only simulates loan terminations result-
ing from voluntary payoffs (i.e., prepayments and maturity
payments) and does not track terminations from defaults or
foreclosures. The omission of default-related terminations is
unlikely to materially affect the loan age distribution, as the
“background” rate of default was low relative to the rate of
voluntary payoffs. Among GSE-backed single-family mort-
gages in North Carolina that were active at any point from
2000–2019, only 3.3 % of loans were ever more than 120 d
delinquent (a prerequisite for initiating foreclosure proceed-
ings) and over 97 % of loan terminations during this period
resulted from voluntary payoffs (Fannie Mae, 2023; Freddie
Mac, 2023). The simulated repayment profiles produced by
our model closely align with those empirically observed in
the GSE data (Fig. S9).

It is important to note that mortgages acquired by the
GSEs – which account for approximately half of all US mort-
gage originations (GAO, 2019) – consist of “conforming”
loans that meet standardized requirements related to loan
size, borrower credit quality, and documentation. Mortgages
that are not represented in the GSE data include “jumbo”
loans whose amounts exceed the conforming loan limit,
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which are typically associated with very expensive prop-
erties; “subprime” loans made to borrowers with question-
able credit history or unverifiable income, which peaked at
15 % of the US mortgage market in the years leading up to
the 2007 subprime mortgage crisis (Agarwal and Ho, 2007);
and loans insured by government programs targeting specific
groups such as first-time homebuyers, veterans, and active-
duty military personnel (Jones, 2022; Perl, 2018). As such,
borrower attributes that were simulated based on GSE data
primarily reflect the characteristics of middle-income, cred-
itworthy borrowers, and may underrepresent the characteris-
tics of households at both the upper and lower ends of the
wealth distribution and of communities in North Carolina
with a large military presence such as Cumberland, Onslow,
and Craven counties (N.C. Department of Military and Vet-
erans Affairs, 2025).

3.6 Model IV: borrower financial conditions

The financial conditions of mortgage borrowers are simu-
lated on a monthly basis while accounting for the effects of
flood damage exposure, insurance status, income growth, and
property value dynamics on borrower equity and liquidity.
Our approach integrates the outputs of the three sub-models
(Fig. 1) – flood-related damages (model I, Sect. 3.3), property
values (model II, Sect. 3.4), and unpaid mortgage balances
(model III, Sect. 3.5) – to provide a comprehensive picture
of a borrower’s capacity to finance home repairs in the after-
math of a flood while continuing to meet their existing debt
obligations.

At simulation onset, the monthly debt obligations of each
borrower (cD) are determined based on their debt-to-income
ratio (DTI) and monthly income (I ) at the time of origination
(t0):

cD,t0 = DTIt0 · It0 (6)

The monthly non-mortgage debt obligations of each bor-
rower (cNM) are calculated by subtracting their mortgage
payment (cM) from the total monthly liability implied by
Eq. (6):

cNM = cD,t0 − cM (7)

This value represents the sum of recurring monthly obli-
gations from sources of debt that are not explicitly mod-
eled, but nevertheless affect a borrower’s DTI ratio (e.g.,
student loans, revolving credit) (Fannie Mae, 2024b). These
non-mortgage obligations are assumed to remain constant
throughout time. If a borrower obtains a loan to fund flood-
related repairs, their total monthly debt obligation is updated
to reflect this additional liability:

cD,t = cNM+ cM+

Nt∑
i=1

cR,i, (8)

where Nt represents the number of separate home repair
loans that are being repaid at a given point in time, and cR,i
represents the monthly payment associated with each loan.
The third term in Eq. (8) only applies to those who are still
paying off home repair loans obtained following exposure
to uninsured flood damage in an earlier simulation timestep.
Borrower income is updated on an annual basis to reflect
county-level trends in personal income growth:

It+1 = It (1+ gt ), (9)

where gt represents the average rate of growth in per-capita
income for a specific county and period (BEA, 2023). At
each timestep, DTI ratios are updated to reflect income
growth and changes in total monthly debt obligations:

DTIt =
cD,t

It
(10)

The time-varying DTI ratio from Eq. (10) is an important
measure of a borrower’s monthly cashflow that reflects their
capacity to support additional debt payments. Lenders typi-
cally impose limits on DTI that can prevent those with a high
ratio from obtaining a loan, with most conventional mort-
gages requiring a DTI ratio of 45 % or lower (Fannie Mae,
2024b).

The ability of property owners to finance home repairs
through debt is also affected by their loan-to-value (LTV)
and combined loan-to-value (CLTV) ratio. At each simula-
tion timestep, a borrower’s LTV ratio is calculated based on
the outstanding balance on their mortgage and the value of
their property:

LTVt =
BM,t

Pt
, (11)

where Pt is the property value estimated by the hedonic home
price model (model II, Sect. 3.4), and BM,t is the current un-
paid mortgage balance (model III, Sect. 3.5). The LTV ratio
in Eq. (11) only includes the primary mortgage and does not
consider other debts secured by the property. In contrast, a
borrower’s CLTV ratio includes the outstanding balance on
home repair loans obtained over the simulation time horizon:

CLTVt =
BM,t +

∑Nt
i=1BR,i,t

Pt
, (12)

where Nt represents the number of separate home repair
loans that are being repaid at a given point in time, and BR,i,t
represents the current balance of each loan. The number of
home repair loans associated with each borrower is updated
over time as the loans are paid off or as new ones are acquired
following successive exposures to uninsured property dam-
age. The CLTV ratio is a dynamic measure of mortgage bor-
rower’s equity that reflects their capacity to borrow against
the value of their property. In most cases, mortgage lenders
are unwilling to approve a loan that would increase a bor-
rower’s CLTV ratio beyond 97 % (Fannie Mae, 2024a).
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If a mortgage borrower experiences flooding, ad-
justed debt-to-income (ADTI) and combined loan-to-value
(ACLTV) ratios are calculated by assuming the borrower will
attempt to pay for uninsured damage by applying for a home
repair loan using their property as collateral:

ADTIt = DTIt +
cF

It
, (13)

ACLTVt = CLTVt +
BF

Pt
, (14)

where BF is the loan amount required to fully pay for unin-
sured damages, and cF is the monthly payment associated
with a loan of this size having a 30 year term and interest rate
equal to the prevailing average 30 year mortgage rate (Fred-
die Mac, 2016b). Borrowers are evaluated for loan approval
or denial based on their damage-adjusted debt-to-income and
adjusted loan-to-value ratios: those with an ADTI ratio of
≤ 45% and an ACLTV ratio of ≤ 100% are assumed to
receive the loan, while those who fail to meet these crite-
ria are assumed to be ineligible for a private loan. These
thresholds reflect the underwriting criteria employed by the
FHA’s Sect. 203(h) program, which insures mortgages made
by lenders to disaster-affected property owners (HUD, 2024).
Unlike most other sources of home equity loans, which typ-
ically impose stricter CLTV limits, the 203(h) program per-
mits property owners to borrow up to 100 % of their equity
with no down payment so long as their total monthly debt
obligation does not exceed 45 % of their gross monthly in-
come (McCarty et al., 2006). It should be noted that bor-
rowers meeting these ratio-based criteria can still be denied
a loan due to unsatisfactory credit history – a process that
is not represented in our modeling framework. While ex-
isting mortgage borrowers have (by definition) previously
met lending standards and likely possess higher credit scores
than the general population, the omission of factors related
to credit history may cause us to underestimate the share of
flood-exposed borrowers who would be denied a loan.

Borrowers with uninsured flood damage who are approved
for a loan are assumed to fully repair the damage to their
home while continuing to meet their existing debt obliga-
tions, while those who are prevented from obtaining a loan
due to their ADTI or ACLTV ratio are removed from subse-
quent simulation timesteps. The recovery outcomes of those
who are ineligible for private home repair loans are uncer-
tain and highly dependent on the availability of alternative
funding sources, including: personal savings, home disaster
loans provided by the SBA, and housing assistance grants
provided by FEMA’s Individuals and Households Program
(IHP). SBA loans have maturities of up to 30 years and offer
below-market interest rates to borrowers meeting program
credit score and debt-to-income ratio requirements (Ellis and
Collier, 2019; Lindsay and Getter, 2023; Lindsay and Web-
ster, 2022). IHP housing assistance grants can provide prop-
erty owners with funding for repairs to their primary resi-
dence up to a fixed amount (USD 42 500 as of 2024) updated

annually for inflation (U.S. GPO, 2023; Webster, 2024). Al-
though we do not explicitly model these sources of federal
disaster relief, in sensitivity analysis, we vary home repair
interest rates and loan amounts to assess the potential impact
of SBA loans and IHP grants on borrower ADTI and ACLTV
ratios (Sect. 4.2).

Borrowers who are unable to obtain a home repair loan
are considered to be “credit constrained” and are further cat-
egorized based on whether these constraints are driven by
insufficient collateral, insufficient income, or both in com-
bination. An ACLTV ratio of > 100% denotes the presence
of negative equity and indicates that a borrower cannot use
their residence as collateral to obtain additional loans; these
individuals are thus considered to be “collateral constrained.”
An ADTI ratio of > 45% implies liquidity problems and in-
dicates that a borrower lacks the available income necessary
to take on an additional monthly loan payment; these individ-
uals are thus considered to be “income constrained.” If both
criteria are met, this indicates that a borrower is prevented
from obtaining a home repair loan by both income and col-
lateral constraints. It is important to note the ACLTV and
ADTI thresholds employed in this framework are assumed to
be necessary (but not sufficient) conditions for financial dis-
tress; as such, the credit constraint estimates generated by our
procedure reflect the share of flood-exposed borrowers who
may be forced to rely on other less reliable sources of funding
for recovery such as savings, post-disaster aid, and support
from family and friends. Additional information linking the
post-flood financial conditions of mortgage borrowers to the
probability of bankruptcy and default could be used to trans-
late the estimates generated by our approach into projections
of lender credit losses (Bellini, 2019).

Because we lack data on mortgages originated prior to
1992, our method is likely to underestimate the number of
mortgages that were active during the earliest two flood
events that occurred during the study period. For this rea-
son, the years 1992–1998 are treated as a “warm-up” pe-
riod for the simulation and Hurricanes Fran (1996) and
Bonnie (1998) are excluded from estimates of flood-related
credit constraints. For each simulation run, we simulate the
financial conditions of 4.7 million borrowers with single-
family mortgages originated during the 1992–2019 period at
a monthly timestep over the life of their loan. Because cer-
tain variables describing the initial financial conditions and
repayment profiles (model III) of mortgage borrowers are
stochastically generated, model projections of flood-related
credit constraints were averaged over ten simulation runs
conducted with different random seeds. This number of repli-
cates was found to be sufficient for achieving stable esti-
mates of the number of borrowers facing flood-related credit
constraints across the study area; however, generating stable
estimates for smaller geographic units (e.g., specific census
tracts) would likely require additional simulation runs.

Our approach to modeling household financial conditions
focuses on how uninsured property damage affects the bor-
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rowing capacity of flood-exposed property owners through
its influence on CLTV and DTI ratios. It does not, how-
ever, capture the full range of factors and processes that may
play a role in shaping household financial outcomes follow-
ing flood events. These include household saving behaviors,
which may be heterogenous by wealth and insurance status;
the timing of insurance claim payouts (which are assumed to
immediately offset the cost of flood damage for insured bor-
rowers); exogenous shocks to income arising from changes
in employment status and negative life events; and the ability
of households to supplement or replace home equity-based
borrowing with other sources of funding for recovery, as de-
scribed in Sect. 2. A conceptual overview of common house-
hold budget components that were included and excluded
from our model is provided in Table S6.

4 Results

Results include analyses of seven flood events across the
study period, with the financial impacts (e.g., loan repay-
ment) from one event sometimes extending through the oc-
currence of the next. Model projections of flood damage ex-
posure (Sect. 4.1) and financial risks to mortgage borrowers
stemming from flood-related credit constraints (Sect. 4.2) are
aggregated across a number of groups defined based on ge-
ographic and economic factors that may be relevant to flood
resilience policy. Unless otherwise stated, monetary amounts
are adjusted for inflation based on the US Consumer Price
Index and displayed in 2020 United States dollars (OECD,
2023).

4.1 Estimates of flood damage exposure

A total of 67 200 properties were projected to have flooded
at least once over the study period, resulting in USD 4.0 bil-
lion in aggregate damage (Fig. 3 and Table S7). Properties
flooded two or more times accounted for 19 % of all inun-
dated structures and generated USD 694 million in repetitive
damages, which we define as any damage to a property oc-
curring after its first exposure to flooding during the study
period. Only 34 % (USD 1.4 billion) of all projected damages
were covered by flood insurance, with a total of 43 300 prop-
erties exposed to USD 2.6 billion in uninsured flood dam-
age over the study period. Among those exposed to unin-
sured damage, the median (IQR) cost of property damage
was USD 45 100 (USD 38 200–58 200) – an amount equal to
over 70 % of the 2020 median household income in North
Carolina (U.S. Census Bureau, 2020).

The most severe events in terms of property damage were
Hurricanes Florence (USD 1.4 billion), Matthew (USD 927
million), and Floyd (USD 900 million). Approximately 36 %
of properties damaged by flooding during Hurricane Flo-
rence also experienced damage during one of the other evalu-
ated events, with 12 % flooded two years prior during Hurri-

cane Matthew. A high degree of overlap was observed be-
tween properties damaged by Hurricanes Isabel and those
damaged by Hurricane Irene (20 % overlap), as well as Hur-
ricanes Fran and Bonnie (17 % overlap). In general, events
that mainly impacted coastal areas (which we define as coun-
ties under the jurisdiction of the Coastal Area Management
Act) and SFHAs exhibited a higher degree of repetitive dam-
age than events whose impacts extended to inland regions
and areas outside of the SFHA (Figs. S10–S16). Across the
study period, the share of damages attributable to repetitive
flooding was 29 % in coastal areas versus 8 % in inland ar-
eas and 29 % inside the SFHA versus 5 % outside the SFHA
(Fig. 4a). Among repeatedly flooded properties, the average
number of times inundated was 2.4 over the 24-year study
period. Because our analysis only considers the seven largest
flood events that occurred during the study period, these es-
timates of repetitive damage are likely to be conservative.

The share of uninsured damages varied substantially by
event, from a low of 14 % during Hurricane Fran (whose
flood impacts were mainly limited to areas near the coast and
inside SFHAs) to a high of 81 % during Hurricane Matthew
(which caused widespread flooding in areas further inland
and outside SFHAs) (Fig. 3 and Table S7). In general, the
uninsured fraction of damage increased with event size and
accounted for over 70 % of all flood-related damages dur-
ing the three costliest events (Hurricanes Florence, Matthew,
and Floyd). The share of uninsured damages was highest for
properties located outside of the SFHA (86 %) and in inland
areas (85 %). Even inside the SFHA, where uptake of flood
insurance is relatively higher, nearly half of all property dam-
age was uninsured (Fig. 4 and Table S7). Rural areas were
exposed to over USD 1.4 billion in uninsured flood damage
over the study period, compared to USD 1.2 billion for areas
classified by the Census Bureau as urban (which account for
a higher share of the state’s population and housing units)
(Fig. 4 and Table S7) (U.S. Census Bureau, 2024). This was
likely driven by the large amount of damage concentrated
in North Carolina’s Coastal Plain region, which accounts for
approximately 45 % of the state’s land area but contains rel-
atively few large metropolitan areas.

Properties at the extreme ends of the property value dis-
tribution exhibited the highest levels of flood damage ex-
posure over the study period. During Hurricanes Floyd and
Isabel, a plurality (31 %) of flood-damaged homes were in
the bottom 20 % of the statewide property value distribution;
during Hurricanes Florence and Matthew, these homes ac-
counted for over half of all properties damaged by flood-
ing (Fig. S17). In contrast, homes in the top 20 % made
up the greatest share of flood-damaged homes during Hur-
ricanes Fran, Bonnie, and Irene (Fig. S17). This is largely
due to the concentration of high-valued real estate along the
North Carolina coastline and Outer Banks, which accounted
for the bulk of inundated properties during events driven pri-
marily by coastal flooding (Hurricanes Fran, Bonnie, Irene,
and Isabel). In contrast, events producing large amounts of
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Figure 3. Flood damage to structures within the study area by event. Dollar amounts are adjusted for inflation and expressed in 2020 USD.

Figure 4. Flood damage to structures within the study area by comparative groups. Bars should only be compared within appropriate pairs
(e.g., SFHA vs. non-SFHA) but not across pairs (e.g., SFHA vs. Coastal) as groups across pairs are not mutually exclusive. In panel (b),
percentages denote the proportion of structures within the study area that flooded at least once during the seven evaluated events stratified by
group.

pluvial and fluvial flooding in inland areas such as Hurri-
canes Matthew and Florence damaged many homes in rural
areas of the Coastal Plain, where property values tend to be
lower (Anton and Cusick, 2018). Lower-valued homes ex-
posed to flooding experienced much higher levels of relative
damage (damage cost per dollar of property value) than their
more expensive counterparts. For example, the median rela-
tive damage to properties flooded during Hurricane Florence
was 70 % for those in the bottom two property value quin-
tiles versus just 5 % for those in the top two property value
quintiles (Fig. S18). During Hurricanes Floyd, Matthew, and
Florence, over 37 % of flooded homes in the bottom property
value quintile experienced damage exceeding 90 % of their
pre-flood property value; in contrast, less than 1 % of flooded
homes in the top property value quintile experienced this
outcome. This has important implications for neighborhood-
level recovery outcomes: areas with a large number of “to-
tal loss” properties are likely to see elevated rates of prop-
erty vacancy and abandonment since both property owners
and lenders have less to gain financially by quickly repairing

these homes (Zhang, 2012). High rates of property vacancy
can lead to negative spillover effects that reduce the value of
nearby homes and also impose costs on local governments in
the form of lost tax revenue and expenses related to mainte-
nance, demolition, and crime prevention (GAO, 2011; Ger-
ardi et al., 2015; Lin et al., 2009).

Spatial differences in the intensity and type of flood dam-
age exposure are illustrated by aggregating estimates of in-
sured, uninsured, and repetitive damages on a uniform 15 km
hexagonal grid (Fig. 5). For display purposes, plots of dam-
age intensity only include counties that are members of
the nine easternmost regional councils of North Carolina
(NCARCOG, 2024), which collectively accounted for over
99 % of estimated damages during the seven evaluated flood
events. Damages are normalized by the number of properties
within each grid cell and averaged over the 24 year study pe-
riod to produce estimates of average annual damage (AAD).
The highest concentrations of uninsured damage were ob-
served in Pamlico, Edgecombe, Nash, and Pender counties,
which all experienced uninsured AADs exceeding USD 200
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per property. Two spatial clusters with high levels of unin-
sured and repetitive damages were identified: the first encom-
passes an area spanning Pamlico, Craven and Carteret coun-
ties, which were collectively exposed to USD 744 million
in flood damage over the study period, of which 45 % was
uninsured; and the second cluster spans Robeson, Bladen and
Columbus counties, which were exposed to USD 521 million
in total damage with an uninsured fraction of 86 %.

4.2 Financial risks to mortgage borrowers

Among 4.7 million single-family mortgages originated in the
study area from 1992–2019, approximately 22 100 (0.47 %)
are estimated to have experienced flood damage at least once
over the life of the loan from one or more of the seven eval-
uated events. Among borrowers exposed to flood damage,
11 100 (50 %) were located outside of the SFHA and 11 500
(52 %) lacked flood insurance at the time of their exposure,
with non-SFHA borrowers accounting for 73 % of those ex-
posed to uninsured damage. The median (IQR) loan amount
required to fully cover the uninsured cost of flood damage
repairs was USD 46 000 (USD 39 200–57 200); in relative
terms, the cost of these repairs represented a median (IQR) of
32 % (20 %–47 %) of a borrower’s pre-flood property value.
Borrowers with uninsured flood damage had ACLTV and
ADTI ratios that were a median of 32 and 4 percentage points
higher (respectively) than their pre-flood CLTV and DTI ra-
tios; these increases were most pronounced for lower-income
borrowers and those with lower-valued properties (Fig. 6).

Over the study period, 7180 mortgage borrowers were pro-
jected to face flood-related credit constraints as indicated by
ACLTV> 100 % or ADTI> 45 %. This number represents a
small share (0.15 %) of all mortgages originated during the
study period but a substantial fraction (32 %) of those ex-
posed to flooding. Given the relatively low sensitivity of our
flood damage model observed in cross-validation (Sect. 3.3),
our projections may underestimate the true number of bor-
rowers exposed to flooding over the study period and preva-
lence of flood-related credit constraints. Among borrowers
exposed to flooding, 28 % were projected to experience neg-
ative equity (ACLTV> 100 %) after accounting for flood-
related property damage; for comparison, 23 % of US mort-
gage borrowers had negative equity during the peak of the
global financial crisis (James, 2009). Among credit con-
strained borrowers, the median (IQR) shortfall in funding for
home repairs was USD 29 600 (USD 16 700–44 600) (Fig. 7).
This quantity represents the difference between a property
owner’s borrowing capacity (i.e., the maximum amount of
additional debt they can take on without exceeding CLTV
and DTI limits) and the total cost of uninsured property dam-
age. Of those facing flood-related credit constraints, 89 %
were collateral constrained (ACLTV> 100 %), 35 % were
income constrained (ADTI> 45 %), and 24 % were con-
strained by both (ACLTV> 100 % and ADTI> 45 %). Be-
cause these categories are not mutually exclusive, we here-

after use the terms “collateral constrained only” and “in-
come constrained only” to distinguish those who faced col-
lateral or income constraints but not both simultaneously.
Those facing simultaneous collateral and income constraints
exhibited high levels of financial stress (average shortfall
of USD 50 200) compared to those who were constrained
by collateral only or income only (average shortfall of
USD 31 600 and USD 32 600, respectively).

The role of liquidity as a driver of credit constraints varied
substantially across the income distribution. Among those
experiencing uninsured damage whose income put them in
the bottom 20 % of mortgage borrowers, over half faced in-
come constraints (ADTI> 45 %) that would impair their ac-
cess to home repair loans (Fig. 6c). These borrowers also
exhibited high rates of negative equity (ACLTV> 100 %),
with those facing simultaneous income and collateral con-
straints accounting for a large share (47 %) of all credit con-
strained borrowers in this income group (Fig. 8a). These
findings indicate that the monthly cashflows of many lower-
income borrowers are already stretched to the limit, and that
these households would likely require modification of their
existing mortgage loan (e.g., reduced interest rate, extended
repayment term) to support additional debt payments asso-
ciated with home repairs. The importance of liquidity as a
driver of credit constraints was diminished for high-income
borrowers whose monthly cashflows had more capacity to
absorb additional debt payments: among borrowers in the
top income quintile, 87 % of credit constrained borrowers
had sufficient income to take on a home repair loan but were
prevented from doing so by negative equity (i.e., insufficient
collateral).

Borrowers in the lowest property value quintile dispropor-
tionately faced flood-related credit constraints, primarily due
to negative equity. Because a given dollar amount of flood
damage produces more relative damage at a lower-valued
property, borrowers in the bottom property value quintile
were more likely to have ACLTV exceeding 100 % follow-
ing a flood. The probability of uninsured damage exceeding
the value of a borrower’s pre-flood home equity was 82 %
for those in the bottom property value quintile (Fig. 6d) com-
pared with 14 % for those in the top property value quintile
(Fig. 6f). Higher pre-flood property values reduced the po-
tential for negative equity: those in the top 40 % of the prop-
erty value distribution accounted for only 17 % of all col-
lateral constrained borrowers (Fig. 8b). However, high value
properties were still susceptible to income constraints, which
occurred for 20 % of borrowers in the top property value
quintile that experienced uninsured flood damage. Given that
most households derive the bulk of their net worth from the
value of their primary residence (Jones and Neelakantan,
2023), these findings indicate that households with lower ini-
tial wealth face substantial barriers to affordable credit in the
aftermath of a flood, which may exacerbate wealth inequality
in affected areas (Howell and Elliott, 2019).
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Figure 5. Spatial distribution of insured, uninsured, and repetitive flood damage. Estimates of damages occurring over the 24 year study
period are aggregated on a uniform 15 km hexagonal grid. For display purposes, only counties that are members of the nine easternmost
regional councils in North Carolina are shown.

Those with recently originated loans under two years old
accounted for over a third of all credit constrained mort-
gage borrowers (Fig. 8c). Compared to those with loans aged
≥ 10 years, borrowers with loans aged < 2 years were al-
most twice as likely to experience either collateral or in-
come constraints following an exposure to uninsured flood
damage. The protective effect of loan age likely arises from
the interaction of three dynamic processes: (1) reductions in
the unpaid mortgage balance over time as the loan is repaid,
(2) property value appreciation, and (3) income growth over
time. Loan repayment and property value appreciation act in
combination to increase a borrower’s pre-flood equity (thus
lowering their CLTV ratio), while income growth causes
their existing mortgage payment to represent a smaller share

of their total monthly cashflow (thus lowering their DTI ra-
tio) which increases their capacity to support additional debt
payments associated with home repairs.

Our projections of flood-related credit constraints by in-
come, property value, and loan age (Fig. 8) should be in-
terpreted in light of several modeling assumptions that may
influence comparisons across groups. First, we did not ac-
count for the positive correlation between income and flood
insurance uptake when assigning loans to specific properties
within a census tract (Sect. 3.5). Incorporating this source of
heterogeneity in flood insurance adoption would likely in-
crease projected credit constraints for low-income borrowers
and reduce them for high-income borrowers, particularly in
areas outside the SFHA where insurance purchase is volun-
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Figure 6. Damage-adjusted debt-to-income (DTI) and combined loan-to-value (CLTV) ratios among mortgage borrowers exposed to unin-
sured flood damage. The DTI ratio measures the share of a borrower’s monthly income consumed by recurring debt obligations, while the
CLTV ratio measures home equity as the total balance of all loans secured by a property divided by its market value. The post-flood adjusted
DTI (ADTI) and adjusted CLTV (ACLTV) ratios capture the projected effects of financing flood-related repairs through home equity-based
borrowing on borrowers’ cashflow and equity positions. Dashed lines indicate the ADTI and ACLTV thresholds used to classify borrowers
as credit constrained following exposure to uninsured damage.

tary. Second, we assumed that borrower income evolves ac-
cording to county-level trends in per-capita income growth
(Sect. 3.6) and did not model changes in employment status.
This assumption may overstate the protective effect of loan
age, particularly for income-related credit constraints. Fi-
nally, our framework focuses on the ability of uninsured bor-
rowers to finance repairs through home equity-based borrow-
ing and does not capture how the ability to draw upon other
sources of funding for recovery (such as savings and invest-
ments) may differ by income and property value. Because
wealthier households tend to hold a greater share of their
net worth in non-physical assets such as stocks (Jones and
Neelakantan, 2023), the reliance on home equity-based bor-

rowing for recovery is likely less pronounced among higher-
income and higher-property-value households.

In a scenario analysis examining how alternative assump-
tions regarding the cost of debt would impact these results,
the interest rate at which uninsured borrowers can finance
home repairs had only a modest effect on the total num-
ber of mortgage borrowers facing flood-related credit con-
straints (Fig. S19). This likely occurs because the vast ma-
jority of credit constraints arise as a result of negative eq-
uity (ACLTV> 100 %), which depends on the loan amount
required to finance repairs but not on the interest rate. For
this reason, interest rate subsidies only affected the num-
ber of borrowers who were constrained by income alone –
a relatively small percentage of the total. An interest rate
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Figure 7. Distribution of shortfall in funding for home repairs among mortgage borrowers facing flood-related credit constraints. Shortfall is
calculated by subtracting a household’s borrowing capacity (i.e., the maximum amount of additional debt they can take on without exceeding
a CLTV limit of 100 % and DTI limit of 45 %) from the total cost of uninsured property damage. Borrowers constrained by collateral only
(ACLTV> 100 %, ADTI≤ 45 %) are shown in red; those constrained by income only (ACLTV≤ 100 %, ADTI> 45 %) in blue; and those
constrained by both (ACLTV> 100 %, ADTI> 45 %) in purple.

Figure 8. Characteristics of mortgage borrowers facing flood-related credit constraints. Horizontal bars represent the cumulative number of
mortgage borrowers facing flood-related credit constraints over the study period stratified by (a) income quintile, (b) property value quintile,
and (c) loan age. Borrowers constrained by collateral only (ACLTV> 100 %, ADTI≤ 45 %) are shown in red; those constrained by income
only (ACLTV≤ 100 %, ADTI> 45 %) in blue; and those constrained by both (ACLTV> 100 %, ADTI> 45 %) in purple.
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Figure 9. Scenario analysis on the amount of home repair grant assistance available to mortgage borrowers should they experience uninsured
flood damage. The amount of available assistance is varied between zero and USD 42 500 – the maximum award that households can receive
from FEMA’s Individuals and Households Program (IHP) as of 2024 (U.S. GPO, 2023).

subsidy equal to 50 % of the average 30 year mortgage rate
(which approximates the below-market rate on SBA disaster
loans) reduced the number of borrowers with ADTI> 45 %
by 22 %; however, this only translated into a 3 % overall
reduction in the number of borrowers facing flood-related
credit constraints due to the frequent co-occurrence of in-
come and collateral constraints.

In a scenario analysis examining the potential impact of
a generic home repair grant program, the number of mort-
gage borrowers facing flood-related credit constraints was
highly sensitive to the maximum amount of assistance avail-
able to those without flood insurance (Fig. 9). Providing
property owners with up to USD 15 000 in funding for re-
pairs reduced the number of credit constrained borrowers by
22 %, while further increasing this limit to USD 30 000 re-
duced the number of credit constrained borrowers by over
50 %. An infusion of up to USD 42 500 in funding for re-
pairs – equivalent to the maximum award that households can
receive through FEMA’s IHP program (U.S. GPO, 2023) –
led to a 72 % reduction in the number of credit constrained
borrowers. These findings suggest that home repair grants
can improve the financial stability of flood-affected mort-
gage borrowers in a much more dramatic fashion than other
forms of post-disaster aid such as low-interest loans. How-
ever, given that less than half of applicants to FEMA’s IHP
program are approved, with only a tiny fraction receiving
the maximum award (GAO, 2020a), it appears likely that a
substantial number of mortgage borrowers will remain credit
constrained even after accounting for the allocation of post-
disaster aid under current policies. In addition, the slow pace
of the award determination process (which takes an average
of 48 d from start to finish) can create short-term financial
disruptions even for those who are ultimately approved for
IHP aid (GAO, 2020a).

In a variance-based sensitivity analysis, we evaluated how
uncertainty in estimates of flood damage (model I), prop-
erty value (model II), and income (model IV) contributed to
variation in borrower-level financial outcomes. Ranking un-
certain parameters by their Sobol’ total effect index (Saltelli
et al., 2010; Sobol’, 1993, 2001) for the outcome of a bor-
rower being credit constrained due to either insufficient col-
lateral or income (ACLTV> 100 % or ADTI> 45 %) re-
vealed property value as the most influential parameter for
79 % of flood-exposed borrowers (Table S8). Averaged over
the simulated borrower population, the Sobol’ total effect
index of property value was approximately twice that of
damage costs, the second-most influential parameter for this
outcome (Fig. S21d). Uncertainty in estimates of damage
costs had the greatest influence on the outcome of a bor-
rower being simultaneously constrained by collateral and in-
come (ACLTV> 100 % and ADTI> 45 %) (Table S8 and
Fig. S21c), likely because of the higher average level of flood
damage required to trigger both constraints together than ei-
ther constraint individually. Overall, these findings suggest
that error associated with the estimation of property values
and damage costs represent the largest sources of uncertainty
in our projections of flood-related credit constraints. Addi-
tional details regarding our analysis of parameter uncertainty
are available in Sect. S3.

5 Discussion

This analysis quantified the magnitude of uninsured prop-
erty damage from seven flood events in North Carolina over
the 24 year period from 1996–2019 at highly resolved spa-
tial scales and evaluated the impact of these losses on the
financial stability of residential mortgage borrowers. Our
approach utilized a novel, data-driven framework combin-
ing property-level damage predictions with simulations of
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household income, debt, and property value dynamics to
calculate the monthly value of financial metrics relevant
to the post-flood credit constraints; these included damage-
adjusted debt-to-income (ADTI) and combined loan-to-value
ratios (ACLTV) for individual mortgages. This bottom-up
approach provides insight into how the underlying drivers of
credit constraints vary spatially and by borrower characteris-
tics. In general, borrowers with lower amounts of home eq-
uity and higher debt-to-income ratios had diminished capac-
ity to fund property repairs through low-cost sources of debt
financing and were more likely to be credit constrained in the
aftermath of a flood. Approximately one third of mortgages
exposed to flooding were found to be credit constrained due
to uninsured damage, with a large proportion of these risks
stemming from recently originated loans and lower-valued
properties.

Our results suggest that the number of North Carolina
properties with past flood exposure is much larger than im-
plied by NFIP records. During the seven flood events eval-
uated in this study, there were over 26 100 properties in the
study area with at least one recorded NFIP claim and over
9200 with two or more; however, this number does not reflect
damage occurring to properties without insurance, which ac-
counted for 66 % of all estimated losses (Fig. 3). When unin-
sured damage is considered, the number of properties pro-
jected to have flooded at least once increases by a factor of
2.6 to 67 200, while the number flooded multiple times in-
creases by a factor of 1.4 to 12 800. Among newly identified
properties with past flood exposure, 12 000 (29 %) were lo-
cated inside the SFHA, 13 800 (34 %) were located within a
250 m distance of the SFHA, and 15 300 (37 %) were located
more than 250 m from the SFHA boundary.

These findings, coupled with the pace of new construc-
tion in areas immediately adjacent to the SFHA, suggest that
the number of uninsured properties exposed to flooding is
likely to grow substantially over the coming decades. A re-
cent study by Sanchez et al. (2024) estimates that 21 % of
new development in North Carolina between 2020 and 2060
is likely to be concentrated within 250 m of current SFHA
boundaries – an area that is typically exempt from flood-
related building codes and insurance purchase requirements.
As such, many of the flood events evaluated in this analy-
sis would likely produce even greater amounts of uninsured
damage were they to occur in the future simply due to the
increased density of asset value in harm’s way. Whether the
bulk of future losses from flooding are internalized by af-
fected households and communities within the state or trans-
ferred to the NFIP and private insurers depends strongly on
future levels of flood insurance uptake. Given the high con-
centration of uninsured damage observed in inland areas of
the Coastal Plain (Fig. 5), increasing the adoption of flood
insurance in this region should be a priority for North Car-
olina policymakers, and likely those in other states as well.
Many counties in the inner Coastal Plain exhibit high lev-
els of economic distress relative to the rest of the state, and

the cost of NFIP premiums is likely to be burdensome for
many lower-income households in the region (NC Depart-
ment of Commerce, 2024). Thus, there is an urgent need
for further research examining the cost-effectiveness of in-
terventions to promote flood insurance uptake while simulta-
neously addressing affordability concerns, especially in light
of recent premium increases under Risk Rating 2.0 (GAO,
2023).

This is particularly true as lower-valued properties were
found to experience higher levels of flood damage relative
to their market value and accounted for a disproportion-
ate share of credit constrained mortgage borrowers. Consis-
tent with the findings of Wing et al. (2020), we observed
that the dollar amount of flood damage experienced by a
property was not directly proportional to its market value;
thus, the structural damage sustained by lower-valued prop-
erties represented, on average, a much greater share of their
pre-flood property value than the damages experienced by
higher-valued properties. As a result, mortgage borrowers in
the bottom half of the property value distribution – those that
had lower absolute amounts of home equity to begin with –
lost a much larger share of their equity to uninsured dam-
age and were more likely to face collateral constraints than
those in the top half of the distribution. It is also worth noting
that less wealthy households often derive a greater share of
their net worth from the value of their primary residence than
wealthier households that tend to have more diversified hold-
ings, which may intensify the distributional impacts of eq-
uity losses due to uninsured damage (Jones and Neelakantan,
2023). These findings highlight the mechanisms by which
natural disasters such as floods reinforce and compound ex-
isting wealth gaps in the United States (Howell and Elliott,
2019).

Mortgage borrowers with minimal pre-flood home equity
(e.g., those that have recently purchased their first home)
were more likely to experience challenges in financing home
repairs when confronted with uninsured damage given the
reduced ability to use equity as a form of collateral. Tradi-
tional lenders such as banks and credit unions typically re-
quire home equity as collateral for loans, and a lack of equity
can leave those with uninsured damage with few options for
obtaining funds for repairs. Those with lower-valued proper-
ties or recently originated mortgages often experienced dam-
age exceeding the value of their home equity, which severely
constrains their borrowing capacity in the aftermath of a
flood. The recovery outcomes of those with negative equity
are uncertain and depend strongly on the availability of fed-
eral sources of aid such as low-interest SBA disaster loans
and FEMA IHP grants. The SBA’s disaster lending program
has flexible collateral requirements that in theory should not
preclude those with negative home equity from obtaining a
loan (Lindsay and Getter, 2023); however, in practice, many
applicants are denied a loan on the basis of their credit history
or debt-to-income ratio (Ellis and Collier, 2019; Lindsay and
Webster, 2022). From 2016–2022, the SBA approved and de-

Nat. Hazards Earth Syst. Sci., 26, 675–701, 2026 https://doi.org/10.5194/nhess-26-675-2026



K. P. Fitzmaurice et al.: Flood risks to borrower financial stability 695

nied a roughly equal number of home disaster loan appli-
cations meeting minimum qualifying requirements, with the
top reasons for denial being unsatisfactory credit and lack of
repayment ability (GAO, 2024). This suggests that the im-
portance of negative equity as a driver of post-flood financial
distress is diminished for higher-income mortgage borrow-
ers, who are likely to qualify for SBA loans due their higher
average credit scores and lower post-flood debt-to-income
ratios (Fig. 6e). However, lower-income borrowers, who of-
ten experience both negative equity and cashflow problems
in the aftermath of a flood, may face difficulty in accessing
SBA loans due to their high post-flood DTI ratios (Figs. 6c
and 8a). Additional data on how SBA loan approval rates
vary by credit score, LTV, and DTI would allow for this
source of post-disaster aid to be explicitly incorporated into
the modeling framework.

The results of this analysis should be interpreted in the
context of several limitations. First, we used a machine learn-
ing model trained on insurance policies and claims data to
estimate flood damage exposure within the study area, which
creates the potential for selection bias due to differences be-
tween insured and uninsured households. For example, prop-
erties in high-risk flood zones are overrepresented in our
training data due to regulations requiring property owners
with federally-backed mortgages to purchase flood insurance
if their property is located inside the SFHA (GAO, 2021).
In addition, higher-income households may also be over-
represented in our training data due to the positive asso-
ciation between wealth and flood insurance uptake (Atreya
et al., 2015; Kousky, 2011). Although it is difficult to pre-
dict how these biases may influence our projections of flood
damage, cross-validation results suggest that model perfor-
mance was similar for insured properties inside and outside
the SFHA (Fig. S2). While insured properties located outside
the SFHA are an imperfect proxy for uninsured households
(for whom we lack data), this group provides insight into how
our model is likely to perform in areas that were underrepre-
sented in the training data.

Second, we evaluated only the seven largest flood events
(in terms of associated NFIP claims) between 1996 and 2019,
and did not include the larger number of smaller, more local-
ized events that occurred during the study period. As such,
our approach may underestimate past exposure to flood dam-
age; an analysis by Garcia et al. (2025) examining a larger
set of 78 events suggests that the number of buildings in
the study area with past flood exposure could be as high as
90 000 – a number 34 % higher than our estimate of 67 000.
Including these unmodeled events would likely increase the
amount home repair debt carried by borrowers within the
study area, leading to higher projections of flood-related
credit constraints among those that also flooded during one
of the seven evaluated events. In addition, cross-validation
results suggest that our machine learning-based approach of-
ten failed to detect properties that were damaged, which is
likely to contribute to a systematic underestimation of the

true level of flood exposure within the study area. For these
reasons, our projections of flood damage exposure and flood-
related credit constraints should be interpreted as conserva-
tive bounds as opposed to central estimates.

Third, when modeling the financial conditions of residen-
tial mortgage borrowers, household income was assumed to
grow over time at a rate equal to the change in average per-
sonal income for a given county and year. Data from longi-
tudinal studies of income dynamics suggest that, in reality,
the rate of income growth varies depending on a household’s
initial wealth and that year-to-year changes in income can be
highly volatile even within a given income stratum (Fisher et
al., 2016). In addition, our modeling approach does not con-
sider exogenous income shocks arising from events such as
job loss, illness, or divorce. Including these sources of vari-
ability in household income would likely increase the num-
ber of mortgage borrowers projected to experience income-
related credit constraints following exposure to flooding.

Fourth, our model framework does not account for how
factors related to the 2008 global financial crisis (GFC) may
have impacted the financial health and credit access of mort-
gage borrowers during the study period. These include ele-
vated rates of unemployment that persisted for several years
following the GFC and a tightening of mortgage lending
standards that reduced the availability of credit to property
owners. Mortgage lending standards in the US underwent a
gradual loosening during the early 2000s leading up to the
crisis, followed by a sharp tightening during the 2007–2009
period that led to increases in loan denial rates and more
stringent LTV and DTI requirements (Vojtech et al., 2020).
Of the seven flood events evaluated in this study, the ef-
fects of the GFC would be most relevant for Hurricane Irene,
which occurred in 2011 when the economy was still recov-
ering from the crisis. If the elevated rate of unemployment
and reduced credit supply during this period were incorpo-
rated into our model, projections of credit constraints among
borrowers exposed to flooding from Hurricane Irene would
likely be higher.

Finally, we did not explicitly model the various sources
of funding for post-disaster recovery that might be available
to uninsured mortgage borrowers who lack sufficient equity
or liquidity to obtain private home repair loans. These in-
clude: federal sources of post-disaster aid such as SBA loans
and FEMA IHP grants; alternative finance sources such as
payday lenders, auto title loans, and pawnbrokers; and liquid
assets such as personal savings and retirement accounts. To
examine how the availability of low-interest SBA loans and
FEMA IHP grants may impact our findings, we conducted
scenario analyses on the interest rate at which borrowers can
finance home repairs as well as the amount of home repair
assistance available to those without insurance. The num-
ber of credit constrained mortgage borrowers was sensitive
to the amount of grant aid available but relatively insensitive
to the interest rate on home repair loans. During Hurricanes
Matthew and Florence, less than a third of property own-
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ers who applied for IHP aid were approved, and the average
grant awarded was under USD 5000 (GAO, 2020b); thus, it
appears unlikely that the inclusion of IHP aid would substan-
tially alter estimates of the number of mortgage borrowers
facing flood-related credit constraints. Future research could
examine how these programs are likely to shape the long-
term recovery outcomes of credit constrained mortgage bor-
rowers by explicitly incorporating the timing and distribution
of post-disaster aid into the integrated modeling framework.

Future research could also build upon the integrated mod-
eling framework developed in this study to analyze the cost-
effectiveness of policy interventions to improve the post-
flood financial resilience of US households. By coupling
the financial components of our framework (models II–IV)
with a probabilistic flood hazard event set, future studies
could evaluate borrower outcomes over a wider range of
plausible flood scenarios than the seven historical events
examined in this study. While generating synthetic inun-
dation footprints for probabilistic flood risk assessment is
non-trivial, recent research has developed a suite of meth-
ods and datasets to support this task, particularly for tropical
cyclone-induced flooding (Grimley et al., 2025; Nederhoff
et al., 2024; Sarhadi et al., 2025). Pairing these approaches
with simulations of household financial conditions would al-
low for the expected costs and benefits of various policy in-
terventions to be comprehensively assessed, including their
impact on the share of mortgage borrowers projected to face
flood-related credit constraints. Based on the findings of our
study, insurance policies whose deductibles are tailored, or
“right sized”, to a household’s borrowing capacity are an in-
tervention worthy of examination in future policy analyses.
For example, a mortgage borrower whose CLTV and DTI
ratio allows them to take on USD 30 000 in additional debt
could select a policy with a USD 15 000 deductible (equiva-
lent to 50 % of their borrowing capacity). Although a high-
deductible policy of this kind would not fully cover the cost
of flood damage, it may help to reduce the probability of a
mortgage defaulting by ensuring that the borrower can cover
the remaining cost of repairs through home equity-based bor-
rowing. Due to the higher deductible (which could be ad-
justed over time as the mortgage is repaid), such a policy
could be offered at a lower premium than traditional flood
insurance through the NFIP, which may make it an attrac-
tive option for areas outside the SFHA where uptake of flood
insurance is quite low. Given that properties located outside
of the SFHA accounted for the majority of mortgages fac-
ing flood-related credit constraints, requiring such a policy
on homes located in moderate-risk areas outside the SFHA
(e.g., the FEMA 500 year floodplain) could potentially re-
duce the exposure of mortgage borrowers and their lenders
to flood-related credit risk.

6 Conclusion

Over 40 million Americans live in flood-prone areas, many
of whom are uninsured and just one storm away from poten-
tially losing their home (Wing et al., 2018). Although floods
are a threat to rich and poor alike, the consequences of unin-
sured damage are much more severe for less wealthy and
credit-insecure households who lack the borrowing capacity
of those with substantial home equity and available income,
reducing their ability to obtain funding for post-disaster re-
covery from traditional sources. This paper presents a novel,
data-driven method for characterizing how the pre-flood fi-
nancial conditions of residential mortgage borrowers (i.e.,
insurance status, equity, and liquidity) affect their ability to
access low-cost sources of financing for flood-related repairs.
The findings of this analysis shed light on the relative contri-
bution of negative equity and liquidity issues to credit con-
straints among flood-affected mortgages and provide infor-
mation on the capacity of property owners to fund repair
and recovery efforts. These results and methodological ap-
proaches may inform the nature and targeting of interven-
tions to improve the financial resilience of US households by
providing highly resolved information on which households
and communities are likely to be credit constrained in the af-
termath of a flood. While the focus of this work is on flood-
ing, the methods and modeling approach are generalizable to
other natural hazards such as wind or wildfires.

Code and data availability. This analysis was conducted us-
ing Python version 3.11 and R version 4.2.1. The code
used in this analysis is available in a Zenodo repository
at https://doi.org/10.5281/zenodo.15313723 (Fitzmaurice,
2025) and on GitHub (https://github.com/UNC-Cofires/
flooding-financial-risk, last access: 12 November 2025). Most data
used in this analysis are publicly available; select data, includ-
ing address-level NFIP policies and claims, contain personally
identifiable information and are not publicly available at the scale
of individual properties. Address-level data on NFIP claims and
policies were obtained through an Information Sharing Access
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