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Supplementary methods 

 

Section S1. Processing of NFIP claim and policy records. 

 

The insurance status of each property at the time of included flood events is determined based on address-level records 

of NFIP policies and filed claims provided by FEMA Region IV. These records were geocoded to specific properties using the 

Google Maps Geocoding API and the provided address (Google Maps Platform, 2022). Overall, 78% of claim and 85% of 

policy records were successfully matched to properties using a 30-meter maximum distance tolerance. We determined the start 

and end dates of included flood events based on daily counts of NFIP claims across the state. We further limited the spatial 

extent of each event by excluding records from counties with less than 20 NFIP claims filed between the previously determined 

start and end dates (Fig. S1). The final dataset consisted of 39,702 claims and 142,092 policy records from seven unique flood 

events, representing 53% of all NFIP claims filed in North Carolina during the 1996-2019 period (Table S2).  

Not all NFIP policies were included in the address-level dataset provided by FEMA. When compared against publicly 

available sources of data such as the OpenFEMA NFIP Redacted Policies Dataset (FEMA, 2025), it becomes clear that the 

address-level policy data only represents a subset of the total policy base in force: this ranged from 21% during Hurricane 

Florence to 56% during Hurricane Irene (Table S2). This issue was specific to policies, which are used to determine the location 

of “absence” points within the machine learning framework (model I, Sect. 3.3), and did not appear to affect claims, which are 

used to determine “presence” points and exhibited good agreement with OpenFEMA data. To adjust for the potential effect of 

missing absence points on model predictions, we randomly selected structures within the study area as “pseudo-absence” 

points to be included as examples within the training data. These points were selected using a geographically stratified sampling 

scheme such that the number of absence points within small geographic units matched the totals implied by auxiliary sources 

of data. For post-2009 flood events, census tract-level policy enrollment data published by OpenFEMA was used to determine 

the target number of absence points within each geographic unit, which were defined based on the intersection of census tract 

and SFHA polygons. For events occurring prior to 2009 (the earliest date for which OpenFEMA policy data is available), 

anonymized zip code-level data on NFIP policy enrollment was used to determine the target number of absence points, with 
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geographic units defined based on the intersection of Census Bureau Zip Code Tabulation Areas (ZCTAs) and SFHA polygons. 

Within each geographic unit, the number of sampled pseudo-absence points (𝑁௉஺) was determined as follows:  

𝑁௉஺,௜ = max൫𝑁஻,௜  ,  𝑁஺,௜
஺௨௫௜௟௜௔௥௬

− 𝑁஺,௜
஺ௗௗ௥௘௦௦൯ (Eq. S1) 

where 𝑖 is a subscript denoting a specific geographic unit, 𝑁஻ is the number of buildings not previously matched to an address-

level NFIP claim or policy, 𝑁஺
஺௨௫௜௟௜௔௥௬ is the target number of absence points implied by auxiliary data sources, and 𝑁஺

஺ௗௗ௥௘௦௦ 

is the number of absence points implied by the address-level NFIP claim and policy data. The number of presence, absence, 

and pseudo-absence points for each evaluated event are listed in Table S2.  
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Section S2. Modeling the space-time covariance structure of property values. 

 

In the second step of our property value estimation procedure, the spatiotemporal component 𝑍መ(𝒔𝒊, 𝑡) is estimated via 

space-time interpolation of hedonic residuals using the simple lognormal kriging method (Chilès and Delfiner, 2012, p.150, 

193). This method requires the specification of a covariance function describing the structure of spatial and temporal 

autocorrelation in home prices; to this end, we constructed a sample variogram from spatially and temporally lagged pairs of 

hedonic residuals using the Mathéron variogram estimator  (Chilès and Delfiner, 2012, p.37; Mathéron, 1965). Next, we fit 

the following product-sum space-time covariance model to the sample variogram (Chilès and Delfiner, 2012, p.114; Iaco et 

al., 2001):  

𝐶(ℎ௦, ℎ௧) = 𝑐଴ + 𝑘ଵ𝐶௦(ℎ௦)𝐶௧(ℎ௧) + 𝑘ଶ𝐶௦(ℎ௦) (Eq. S2) 

where ℎ௦ and ℎ௧ are the spatial and temporal distance (respectively) between a given pair of hedonic residuals and 𝐶௦(ℎ௦) and 

𝐶௧(ℎ௧) are respectively the spatial and temporal components of the space-time covariance function. The parameters 𝑐଴, 𝑘ଵ, and 

𝑘ଶ  were estimated via least squares from the sample variogram. The purely spatial component 𝐶௦(ℎ௦) was modeled as a 

spherical covariance function with a spatial range estimated via least squares; the purely temporal component 𝐶௧(ℎ௧) was 

modeled as an exponential covariance function with a temporal range of 365 days (Chilès and Delfiner, 2012, p.84). 

 

 

 

 

  



8 
 

Section S3. Variance-based sensitivity analysis of uncertain model parameters. 

 

To better understand the contribution of key model parameters to uncertainty in the post-flood financial conditions of 

mortgage borrowers, we conducted a variance-based sensitivity analysis using the method of Sobol’ (Sobol′, 1993, 2001). This 

approach decomposes the variance of model outputs into terms that can be attributed to uncertain input parameters and their 

interactions. In our analysis, we focused on uncertainty in the following components of our integrated modeling framework: 

damage costs (model I), property values (model II), and borrower incomes (model IV) at the time of their flood exposure. 

These parameters were selected because they represent the primary drivers of flood-related credit constraints and are used 

directly within the calculation of combined loan-to-value (ACLTV) and debt-to-income (ADTI) ratios for flood-exposed 

borrowers. When examining how uncertainty in these input parameters contributes to uncertainty in model outputs, we focused 

on the following outcomes of interest: (1) the outcome of a borrower being collateral constrained (ACLTV > 100%), (2) the 

outcome of a borrower being income constrained (ADTI > 45%), (3) the outcome of being constrained by both measures 

(ACLTV > 100% and ADTI > 45%), and (4) the outcome of being constrained by either measure (ACLTV > 100% or ADTI 

> 45%). Because these model inputs and outcomes of interest are defined at the level of individual borrowers, sensitivity 

indices were calculated separately for each borrower based on their simulated financial conditions at the time of flood exposure.  

Damage costs were assumed to follow a lognormal distribution with a mean equal to the model-predicted cost at each 

property location and variance estimated from cross-validation residuals using the conditional variance estimator of Fan and 

Yao (1998). This approach allows the amount of variance in damage costs to vary as a smooth function of the mean estimate, 

reflecting the higher uncertainty in total costs for properties predicted to have severe damage (Fig. S20). These mean-variance 

relationships were fit separately for each of the seven evaluated flood events.  

Property values were assumed to follow a lognormal distribution with a mean equal to the model-predicted property 

value at each location and variance estimated via space-time interpolation of hedonic residuals using the simple lognormal 

kriging method (Chilès and Delfiner, 2012, p.150, 193). Because the kriging method provides an estimate of the error variance 

at each prediction point, it is well-suited for characterizing the uncertainty in property value estimates.  

Borrower income was assumed to evolve over time as a stochastic process following geometric Brownian motion 

(GBM). GBM is frequently used to model the evolution of asset prices and other financial quantities that are assumed to be 
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lognormally distributed (Hull, 2018). For each borrower, the initial conditions of this process were specified based on their 

simulated income at the time of mortgage origination (𝐼௧బ
). In timepoints following origination, their income is modeled 

according to GBM as a lognormal distribution with the following mean and variance:  

𝐸[𝐼௧] = 𝐼௧బ
𝑒ఓ(௧ି௧బ) (Eq. S3) 

𝑉[𝐼௧] = 𝐼௧బ
ଶ 𝑒ଶఓ(௧ି௧బ)൫𝑒ఙమ(௧ି௧బ) − 1൯ (Eq. S4) 

where 𝜇 and 𝜎 represent the expected annual growth and annualized volatility of borrower income respectively. For each 

borrower, 𝜇 was calculated based on the average continuously-compounded growth in per-capita income in their county of 

residence since the time of origination (BEA, 2023). The value of 𝜎 was fixed at 7% per year; this assumption is loosely based 

on Figure 3 of Dynan et al. (2012), who observed that the standard deviation of two-year changes in income for households in 

the middle 50% of the income distribution was approximately 10% during the 1971-2008 period (10% / √2 ≈ 7%).  

 First order and total effect Sobol’ indices were calculated using the estimator of Saltelli et al. (2010) implemented by 

the SciPy Python library (Virtanen et al., 2020). The first order index (𝑆௜) reflects the share of output variability that can be 

directly explained by a given parameter in isolation while ignoring interaction effects with other inputs. The total effect index 

(𝑆்೔
) reflects the share of output variability that a given parameter contributes to either directly or through its interactions with 

other variables. For each borrower, our calculation procedure results in a total of 12 index pairs (3 input parameters × 4 

outcomes of interest). To evaluate the relative contribution different parameters to uncertainty in model outputs, parameters 

were ranked individually for each borrower based on the total effect index, and the frequency of different ranking orders 

summarized across the simulated population of mortgage borrowers (Table S8). Similarly, population-averaged index values 

were computed by weighing the Sobol’ indices of individual borrowers by the variance in their outcomes of interest:  

𝑆ప
ഥ =

∑ 𝑉௞𝑆௜௞
ே
௞ୀଵ

∑ 𝑉௞
ே
௞ୀଵ

(Eq. S5) 

𝑆
ഢ்

തതതത =
∑ 𝑉௞𝑆்೔ೖ

ே
௞ୀଵ

∑ 𝑉௞
ே
௞ୀଵ

(Eq. S6) 
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In Eq. S5 and Eq. S6, 𝑉௞ denotes the variance of the outcome of interest for borrower 𝑘, while 𝑆ప
ഥ  and 𝑆

ഢ்
തതതത denote the weighted 

average first order and total effect indices (respectively) of parameter 𝑖 across the population. Weighted average index values 

for different parameter-outcome combinations are displayed in Fig. S21.  
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Supplementary tables 

Table S1. Variables and data sources used within the modeling framework. 

Sub-Model / Variable Name Variable 
Type 

Spatial 
Resolution 

Temporal 
Resolution 

Source 

Flood damage (model I)     
SFHA status Binary Property -- FEMA 
First floor elevation Continuous Property -- NCEM 
Year built Discrete Property -- NCEM 
Tax-assessed value Continuous Property -- NCEM 
Heated square footage Continuous Property -- NCEM 
Occupancy type Categorical Property -- NCEM 
Foundation type Categorical Property -- NCEM 
HUC6 watershed Categorical Property -- NHD 
Maximum 3-day precipitation during event Continuous 1 km raster Daily Daymet V4 
Distance to coast Continuous 30 m raster -- NHD 
Distance to nearest stream Continuous 30 m raster -- NHD 
Height above nearest drainage Continuous 30 m raster -- NHD, NED 
Topographic wetness index Continuous 30 m raster -- NHD, NED 
Soil hydraulic conductivity Continuous 30 m raster -- NHD 
Impervious surface percentage Continuous 30 m raster -- NLCD 
Average slope Continuous HUC12 subbasin -- NED 
Elevation Continuous 30 m raster -- NED 

Property value (model II)     
Heated square footage Continuous Property -- NCEM 
Parcel square footage Continuous Property -- NC OneMap 
Year built Discrete Property -- NCEM 
Tax-assessed value Continuous Property -- NCEM 
Median household income in 2019 Continuous Census tract -- ACS 
Home price index Continuous County Annual FHA 
25th percentile of newly originated mortgage 
loan amounts 

Continuous Census tract Annual HMDA 

50th percentile of newly originated mortgage 
loan amounts 

Continuous Census tract Annual HMDA 

75th percentile of newly originated mortgage 
loan amounts 

Continuous Census tract Annual HDMA 

Mortgage repayment (model III)     
Loan amount Continuous Census tract Annual HMDA 
Borrower income at origination Continuous Census tract Annual HMDA 
LTV at origination Distribution State Annual FNMA, FHLMC 
DTI at origination Distribution State Annual FNMA, FHLMC 
Interest rate spread Distribution State Annual FNMA, FHLMC 

SFHA: Special Flood Hazard Area. FEMA: Federal Emergency Management Agency. NCEM: NC Emergency Management. 
HUC: Hydrologic Unit Code. NHD: National Hydrography Dataset. NED: National Elevation Dataset. NLCD: National Land 
Cover Database. ACS: American Community Survey. FHA: Federal Housing Administration. HMDA: Home Mortgage 
Disclosure Act. LTV: Loan-to-value ratio. DTI: Debt-to-income ratio. FNMA: Fannie Mae. FHLMC: Freddie Mac
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Table S2. Number of included NFIP records and presence-absence points by flood event. 

Flood event NFIP claims in 
included counties 

NFIP policies-in-force in included counties by data source Presence 
points 

Absence 
points 

Pseudo-
absence 
points Address-level data Tract-level data Zip code-level data 

Fran (1996) 5,820 5,382 -- 65,050 5,474 4,889 43,308 
Bonnie (1998) 1,764 10,258 -- 73,723 1,669 9,297 49,515 
Floyd (1999) 6,684 7,906 -- 85,019 6,266 7,285 55,192 
Isabel (2003) 3,631 5,914 -- 56,651 3,424 5,227 39,369 
Irene (2011) 6,292 54,071 96,390 -- 6,063 49,141 42,517 
Matthew (2016) 4,127 38,620 102,463 -- 3,955 36,588 64,110 
Florence (2018) 11,384 19,941 95,801 -- 11,057 17,123 63,371 
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Table S3. Cross-validation performance of the random forest model by event.  

CV method / Performance metric Value by event 

Fran (1996) Bonnie (1998) Floyd (1999) Isabel (2003) Irene (2011) Matthew (2016) Florence (2018) 

Random CV        

ROC-AUC 0.95 0.87 0.86 0.94 0.94 0.92 0.91 

Accuracy 0.92 0.97 0.92 0.95 0.95 0.97 0.92 

Sensitivity 0.31 0.15 0.12 0.39 0.23 0.22 0.42 

Specificity 0.99 1.00 0.99 0.99 0.99 1.00 0.98 

Precision 0.75 0.54 0.70 0.71 0.72 0.76 0.78 

R2 scorea 0.07 -0.01 0.05 0.07 0.10 0.23 0.39 

R2 score among true positives 0.06 0.03 0.25 0.13 0.12 0.41 0.45 

Spatially aggregated R2 scoreb 0.87 0.64 0.54 0.63 0.52 0.55 0.93 

Spatial block CV        

ROC-AUC 0.87 0.79 0.79 0.84 0.92 0.86 0.86 

Accuracy 0.90 0.97 0.91 0.93 0.94 0.96 0.91 

Sensitivity 0.11 0.00 0.01 0.10 0.20 0.12 0.33 

Specificity 0.99 1.00 1.00 1.00 0.99 1.00 0.99 

Precision 0.61 0.21 0.69 0.66 0.66 0.63 0.75 

R2 scorea -0.02 -0.01 -0.01 -0.01 0.06 0.06 0.25 

R2 score among true positives 0.01 -0.17 -0.02 -0.02 0.02 0.38 0.31 

Spatially aggregated R2 scoreb 0.76 0.02 -0.06 0.05 0.30 0.19 0.80 

CV: Cross-validation. ROC: Receiver operating characteristic. AUC: Area under curve.  
aUnlike binary classification performance metrics (e.g., accuracy), which are calculated based on the predicted presence or absence of flood damage, the R2 score 

is calculated based on the dollar amount of damage predicted at each property.  
bSpatially aggregated R2 scores are calculated by comparing predicted and observed damage to NFIP-insured properties after aggregating damages across 5 km 

square grid cells.  
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Table S4. Confusion matrices of the random forest model by event.  

CV method / 

Classification 

outcome 

Frequency of classification outcomes by event, n (%) 

Fran (1996) Bonnie (1998) Floyd (1999) Isabel (2003) Irene (2011) Matthew (2016) Florence (2018) 

Random CV        

TP 1,672 (3.1%) 246 ( 0.4%) 765 (1.1%) 1,335 (2.8%) 1,373 (1.4%) 851 (0.8%) 4,600 (5.0%) 

TN 47,637 (88.8%) 58,605 (96.9%) 62,146 (90.4%) 44,054 (91.7%) 91,122 (93.2%) 100,427 (96.0%) 79,226 (86.5%) 

FP 560 (1.0%) 207 (0.3%) 331 (0.5%) 542 (1.1%) 536 (0.5%) 271 (0.3%) 1,268 (1.4%) 

FN 3,802 (7.1%) 1,423 (2.4%) 5,501 (8.0%) 2,089 (4.4%) 4,690 (4.8%) 3,104 (3.0%) 6,457 (7.1%) 

Total 53,671 (100.0%) 60,481 (100.0%) 68,743 (100.0%) 48,020 (100.0%) 97,721 (100.0%) 104,653 (100.0%) 91,551 (100.0%) 

Spatial block CV       

TP 597 (1.1%) 8 (0.0%) 75 (0.1%) 328 (0.7%) 1,213 (1.2%) 455 (0.4%) 3,680 (4.0%) 

TN 47,816 (89.1%) 58,782 (97.2%) 62,444 (90.8%) 44,428 (92.5%) 91,032 (93.2%) 100,430 (96.0%) 79,291 (86.6%) 

FP 381 (0.7%) 30 (0.0%) 33 (0.0%) 168 (0.3%) 626 (0.6%) 268 (0.3%) 1,203 (1.3%) 

FN 4,877 (9.1%) 1,661 (2.7%) 6,191 (9.0%) 3,096 (6.4%) 4,850 (5.0%) 3,500 (3.3%) 7,377 (8.1%) 

Total 53,671 (100.0%) 60,481 (100.0%) 68,743 (100.0%) 48,020 (100.0%) 97,721 (100.0%) 104,653 (100.0%) 91,551 (100.0%) 

SFHA: Special Flood Hazard Area. CV: Cross-validation. TP: True positives. TN: True negatives. FP: False positives. FN: False negatives 
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Table S5. Cox proportional hazards regression analysis of mortgage prepayment rates. 

Loan purpose / Term Interest rate benchmark used 
in rate spread calculation 

Number of loan-
month observations 

Number of 
repayment events 

Rate spread regression 
coefficient (95% CI) 

Hazard ratio 
(95% CI) 

Home purchase      
30-year MORTGAGE30US 38,829,210 262,832 0.48 (0.48–0.49) 1.62 (1.61–1.63) 

Refinance      
30-year MORTGAGE30US 46,395,034 299,819 0.40 (0.39–0.40) 1.49 (1.48–1.49) 
15-year MORTGAGE15US 29,383,696 171,555 0.27 (0.27–0.28) 1.31 (1.31–1.32) 

MORTGAGE30US: 30-year fixed rate mortgage average in the United States (Freddie Mac, 2016b). MORTGAGE15US: 15-year fixed rate mortgage average in 
the United States (Freddie Mac, 2016a). CI: Confidence interval.
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Table S6. Conceptual model of mortgage borrower finances.  

Line itema Corresponding variable in model IV Units 

Household balance sheet   

Assets   

Primary residence 𝑃௧ USD (nominal) 

Secondary and rental properties Not modeled -- 

Liquid savings Not modeled -- 

Retirement and investment accounts Not modeled -- 

Vehicles and other personal property Not modeled -- 

Liabilities   

Primary mortgage 𝐵ெ,௧ USD (nominal) 

Home repair loansb 𝐵ோ,௜,௧ USD (nominal) 

Mortgages on other properties Not modeled -- 

Auto loans Not modeled -- 

Student loans Not modeled -- 

Credit cards Not modeled -- 

Unpaid bills and other debt Not modeled -- 

Household cashflows   

Cash inflows   

Stable and predictable incomec 𝐼௧ USD per month 

Fluctuating and variable incomec Not modeled -- 

Post-disaster aid Not modeled -- 

Cash outflows   

Primary mortgage payment 𝑐ெ USD per month 

Repair loan paymentsb 𝑐ோ,௜ USD per month 

Other recurring debt obligationsd 𝑐ேெ  USD per month 

Taxes and insurancee Not modeled -- 

USD: United States dollars.  

aThe entries listed within this table represent a non-exhaustive list of common household budget items.  

bUninsured borrowers are assumed to finance flood-related repairs through home equity-based borrowing. 

cBorrower income is initialized at origination and assumed to evolve deterministically over time according to county-level 

trends in personal income growth. We did not model exogenous shocks to household income or changes in employment status.  

dIncludes payments on sources of debt which were not explicitly modeled (e.g., auto loans, credit cards) but which nevertheless 

affect a borrower’s DTI ratio. These obligations are assumed to remain constant over time.  
eWe did not model housing expenses associated with property taxes, homeowners’ insurance, or flood insurance.  
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Table S7. Flood damage to properties within the study area by event and across comparative groups.  

Stratification variable Flooded properties, n (%)a 
Flood damage cost, USDb (% repetitive)c  

Insured Uninsured 

Flood event    

Fran (1996) 6,300 (0.15%) 185,915,000 (00%) 29,812,000 (00%) 

Bonnie (1998) 2,100 (0.05%) 20,799,000 (71%) 5,001,000 (15%) 

Floyd (1999) 20,500 (0.48%) 180,077,000 (35%) 720,058,000 (00%) 

Isabel (2003) 7,200 (0.17%) 91,858,000 (11%) 95,831,000 (00%) 

Irene (2011) 8,700 (0.20%) 159,240,000 (51%) 98,643,000 (33%) 

Matthew (2016) 16,300 (0.38%) 174,265,000 (25%) 752,584,000 (01%) 

Florence (2018) 23,900 (0.56%) 548,982,000 (51%) 892,383,000 (18%) 

SFHA status    

SFHA 31,600 (21.93%) 1,092,714,000 (39%) 902,960,000 (17%) 

Non-SFHA 35,600 (00.86%) 268,422,000 (23%) 1,691,353,000 (03%) 

Proximity to coasts     

CAMA counties 33,000 (5.46%) 1,035,977,000 (39%) 725,479,000 (14%) 

Non-CAMA counties 34,200 (0.92%) 325,160,000 (27%) 1,868,834,000 (05%) 

Urban-rural classification    

Urban 32,700 (1.60%) 661,636,000 (39%) 1,406,678,000 (09%) 

Rural 34,400 (1.52%) 699,501,000 (33%) 1,187,635,000 (06%) 

Overall 67,200 (1.56%) 1,361,137,000 (36%) 2,594,313,000 (08%) 

USD: United States dollars. SFHA: Special Flood Hazard Area. CAMA: Coastal Area Management Act.  

aPercentages denote the share of all properties in a given category that were exposed to flooding.  

bMonetary amounts are adjusted for inflation and expressed in 2020 United States dollars.  

cPercentages denote the share of flood-related damage attributable to repetitive losses (i.e., damages occurring after a 

property’s first exposure to flooding during the study period).  
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Table S8. Ranking uncertain parameters by their influence on borrower outcomes.  

Outcome of interest / Parameter rankinga Parameter ranking frequencyb (%) 

Property value Damage cost Income 

Collateral constrained (ACLTV > 100%)    

1st most influential parameter 95.9 4.1 0.0 

2nd most influential parameter  4.1 95.8 0.0 

3rd most influential parameter 0.0 0.0 100.0 

Income constrained (ADTI > 45%)     

1st most influential parameter 1.9c 58.3 39.9 

2nd most influential parameter  0.4c 39.8 59.7 

3rd most influential parameter 97.7 1.9 0.4 

Constrained by both (ACLTV > 100% and ADTI > 45%)     

1st most influential parameter 14.8 70.6 14.7 

2nd most influential parameter  12.6 22.8 64.5 

3rd most influential parameter 72.6 6.6 20.8 

Constrained by either (ACLTV > 100% or ADTI > 45%)    

1st most influential parameter 78.8 9.2 12.0 

2nd most influential parameter  11.1 79.7 9.2 

3rd most influential parameter 10.1 11.1 78.8 

ACLTV: Adjusted combined loan-to-value ratio. ADTI: Adjusted debt-to-income ratio.  

aFor each borrower, uncertain parameters are ranked from most to least influential based on their Sobol’ total effect index for 

the outcome of interest.  

bRanking frequencies reflect the share of flood-exposed borrowers for which a given parameter was found to be the nth most 

influential.  

cIn theory, property value should have no influence on the outcome of a borrower being income constrained. However, this 

parameter occasionally has a non-zero Sobol’ total effect index due to numerical error in the calculation. This issue only occurs 

when the amount of variance in the outcome of interest is close to zero.  
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Supplementary figures 

 

Figure S1. Spatial and temporal boundaries of included flood events.  

Shaded regions denote counties included in the flood damage estimation model for each event. NFIP claims occurring in 
included counties during the listed date range are assumed to result from flood damage incurred during the named event. All 
counties included in an event must have at least 20 associated claims.  
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Figure S2. Cross-validation performance of the random forest model.   
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Figure S3. Cross-validation performance of the random forest model when pseudo-absences are excluded from the validation 
data.   
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Figure S4. Spatial block cross-validation performance of the random forest model. 
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Figure S5. Cross-validation error of damage cost predictions after spatial aggregation.  

In each panel, the y-axis represents observed damage among properties in the insured dataset, while the x-axis represents damage predicted by the 
random forest model in cross-validation. The x- and y-coordinates of each point are determined by aggregating predicted and observed damage to 
NFIP-insured properties across 5 km square grid cells. 
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Figure S6. Empirical cumulative distribution function of property value model errors.  

The absolute percentage error between the model-predicted and observed property sale price is plotted on the x-axis, while the 
proportion of cross validation predictions within a given error tolerance is plotted on the y-axis. 
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Figure S7. Property value model error by period.  

The distribution of absolute error associated with cross-validation predictions for sales occurring in a given year are depicted 
by the black box-and-whisker plots. Whisker boundaries correspond to the 10th and 90th percentiles of absolute error. For 
comparison purposes, the median observed sale price of properties included in our sample in each year is depicted by the blue 
line, while the median predicted sale price is depicted by the red dashed line. 
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Figure S8. Median absolute percentage error of the property value model by county.   
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Figure S9. Simulated and empirically observed mortgage repayment profiles. 

Survival curves for North Carolina mortgages purchased by the GSEs from 1999-2021 are represented by blue lines. Survival 
curves for simulated mortgage are denoted by red dashed lines. In both cases, survival curves were constructed using the 
Kaplan-Meier estimator and stratified by the loan purpose (home purchase or refinance) and loan term (30 or 15 years).  
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Figure S10. Prevalence and cost of flood damage during Hurricane Fran (1996). 

The left panel depicts the aggregate cost of flood damage across comparative groups, while the right panel depicts the spatial 
distribution of flooded structures across a uniform 15 km hexagonal grid. Bars should only be compared within appropriate 
pairs (e.g., SFHA vs. non-SFHA) but not across pairs (e.g., SFHA vs. Coastal) as groups across pairs are not mutually 
exclusive. For display purposes, only counties that are members of the nine easternmost regional councils in North Carolina 
are shown.   
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Figure S11. Prevalence and cost of flood damage during Hurricane Bonnie (1998). 

The left panel depicts the aggregate cost of flood damage across comparative groups, while the right panel depicts the spatial 
distribution of flooded structures across a uniform 15 km hexagonal grid. Bars should only be compared within appropriate 
pairs (e.g., SFHA vs. non-SFHA) but not across pairs (e.g., SFHA vs. Coastal) as groups across pairs are not mutually 
exclusive. For display purposes, only counties that are members of the nine easternmost regional councils in North Carolina 
are shown.   
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Figure S12. Prevalence and cost of flood damage during Hurricane Floyd (1999). 

The left panel depicts the aggregate cost of flood damage across comparative groups, while the right panel depicts the spatial 
distribution of flooded structures across a uniform 15 km hexagonal grid. Bars should only be compared within appropriate 
pairs (e.g., SFHA vs. non-SFHA) but not across pairs (e.g., SFHA vs. Coastal) as groups across pairs are not mutually 
exclusive. For display purposes, only counties that are members of the nine easternmost regional councils in North Carolina 
are shown.   
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Figure S13. Prevalence and cost of flood damage during Hurricane Isabel (2003). 

The left panel depicts the aggregate cost of flood damage across comparative groups, while the right panel depicts the spatial 
distribution of flooded structures across a uniform 15 km hexagonal grid. Bars should only be compared within appropriate 
pairs (e.g., SFHA vs. non-SFHA) but not across pairs (e.g., SFHA vs. Coastal) as groups across pairs are not mutually 
exclusive. For display purposes, only counties that are members of the nine easternmost regional councils in North Carolina 
are shown.   
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Figure S14. Prevalence and cost of flood damage during Hurricane Irene (2011). 

The left panel depicts the aggregate cost of flood damage across comparative groups, while the right panel depicts the spatial 
distribution of flooded structures across a uniform 15 km hexagonal grid. Bars should only be compared within appropriate 
pairs (e.g., SFHA vs. non-SFHA) but not across pairs (e.g., SFHA vs. Coastal) as groups across pairs are not mutually 
exclusive. For display purposes, only counties that are members of the nine easternmost regional councils in North Carolina 
are shown.   
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Figure S15. Prevalence and cost of flood damage during Hurricane Matthew (2016). 

The left panel depicts the aggregate cost of flood damage across comparative groups, while the right panel depicts the spatial 
distribution of flooded structures across a uniform 15 km hexagonal grid. Bars should only be compared within appropriate 
pairs (e.g., SFHA vs. non-SFHA) but not across pairs (e.g., SFHA vs. Coastal) as groups across pairs are not mutually 
exclusive. For display purposes, only counties that are members of the nine easternmost regional councils in North Carolina 
are shown.   
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Figure S16. Prevalence and cost of flood damage during Hurricane Florence (2018). 

The left panel depicts the aggregate cost of flood damage across comparative groups, while the right panel depicts the spatial 
distribution of flooded structures across a uniform 15 km hexagonal grid. Bars should only be compared within appropriate 
pairs (e.g., SFHA vs. non-SFHA) but not across pairs (e.g., SFHA vs. Coastal) as groups across pairs are not mutually 
exclusive. For display purposes, only counties that are members of the nine easternmost regional councils in North Carolina 
are shown.   
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Figure S17. Proportion of flood-damaged properties in each property value quintile by event. 
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Figure S18. Cumulative distribution function of damage costs at flooded properties as a proportion of their pre-flood property 
value by event and property value quintile.  
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Figure S19. Scenario analysis examining alternative assumptions regarding home repair loan interest rates, property values, 
and flood damage costs. 

Each panel corresponds to a different interest rate scenario: (a) one in which the interest rate on home repair loans is equivalent 
to the prevailing “market” rate (i.e., the average 30-year fixed rate on new mortgages); and (b) one in which the interest rate 
on home repair loans is equal to 50% of the prevailing market rate. Within each panel, property-level estimates of flood damage 
and property value are perturbed by ±20% to create a range of scenarios. Each box in the 3 × 3 plot depicts the number of 
borrowers projected to face flood-related credit constraints under a given scenario, as well as the share of credit constraints 
attributable to various drivers (e.g., insufficient collateral, insufficient income, or both in combination). 
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Figure S20. Uncertainty in damage costs at flooded properties.  

In sensitivity analysis, damage costs were assumed to follow a lognormal distribution with a mean equal to the model-predicted 
cost and variance estimated from cross-validation residuals using the conditional variance estimator of Fan and Yao (1998). 
In the above figure, the conditional means and 95% credible intervals of the fitted lognormal distributions for each event are 
denoted by black and red lines respectively.  
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Figure S21. Weighted average Sobol’ indices decomposing the relative importance of property value, damage cost, and 
income in determining the outcome of borrowers being credit constrained following flood exposure. 

Population averages are calculated by weighing the Sobol’ indices of individual borrowers by the variance in their credit 
constraint outcomes. Results are shown separately for (a) the outcome of being collateral constrained, (b) the outcome of being 
income constrained, (c) the outcome of being constrained by both measures, and (d) the outcome of being constrained by either 
measure. Darker bars indicate first-order effects, while lighter bars indicate interaction effects.  
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