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Supplementary methods

Section S1. Processing of NFIP claim and policy records.

The insurance status of each property at the time of included flood events is determined based on address-level records
of NFIP policies and filed claims provided by FEMA Region I'V. These records were geocoded to specific properties using the
Google Maps Geocoding API and the provided address (Google Maps Platform, 2022). Overall, 78% of claim and 85% of
policy records were successfully matched to properties using a 30-meter maximum distance tolerance. We determined the start
and end dates of included flood events based on daily counts of NFIP claims across the state. We further limited the spatial
extent of each event by excluding records from counties with less than 20 NFIP claims filed between the previously determined
start and end dates (Fig. S1). The final dataset consisted of 39,702 claims and 142,092 policy records from seven unique flood
events, representing 53% of all NFIP claims filed in North Carolina during the 1996-2019 period (Table S2).

Not all NFIP policies were included in the address-level dataset provided by FEMA. When compared against publicly
available sources of data such as the OpenFEMA NFIP Redacted Policies Dataset (FEMA, 2025), it becomes clear that the
address-level policy data only represents a subset of the total policy base in force: this ranged from 21% during Hurricane
Florence to 56% during Hurricane Irene (Table S2). This issue was specific to policies, which are used to determine the location
of “absence” points within the machine learning framework (model I, Sect. 3.3), and did not appear to affect claims, which are
used to determine “presence” points and exhibited good agreement with OpenFEMA data. To adjust for the potential effect of
missing absence points on model predictions, we randomly selected structures within the study area as “pseudo-absence”
points to be included as examples within the training data. These points were selected using a geographically stratified sampling
scheme such that the number of absence points within small geographic units matched the totals implied by auxiliary sources
of data. For post-2009 flood events, census tract-level policy enrollment data published by OpenFEMA was used to determine
the target number of absence points within each geographic unit, which were defined based on the intersection of census tract
and SFHA polygons. For events occurring prior to 2009 (the earliest date for which OpenFEMA policy data is available),

anonymized zip code-level data on NFIP policy enrollment was used to determine the target number of absence points, with



geographic units defined based on the intersection of Census Bureau Zip Code Tabulation Areas (ZCTAs) and SFHA polygons.

Within each geographic unit, the number of sampled pseudo-absence points (Np,) was determined as follows:

NPA,i = maX(NB,i , N;\;inliary _ N[f;idress) (EqS]-)

where i is a subscript denoting a specific geographic unit, Ny is the number of buildings not previously matched to an address-

level NFIP claim or policy, N is the target number of absence points implied by auxiliary data sources, and NA44ress

is the number of absence points implied by the address-level NFIP claim and policy data. The number of presence, absence,

and pseudo-absence points for each evaluated event are listed in Table S2.



Section S2. Modeling the space-time covariance structure of property values.

In the second step of our property value estimation procedure, the spatiotemporal component Z(s;, t) is estimated via
space-time interpolation of hedonic residuals using the simple lognormal kriging method (Chilés and Delfiner, 2012, p.150,
193). This method requires the specification of a covariance function describing the structure of spatial and temporal
autocorrelation in home prices; to this end, we constructed a sample variogram from spatially and temporally lagged pairs of
hedonic residuals using the Mathéron variogram estimator (Chilés and Delfiner, 2012, p.37; Mathéron, 1965). Next, we fit
the following product-sum space-time covariance model to the sample variogram (Chilés and Delfiner, 2012, p.114; Taco et
al., 2001):

C(hs, he) = co + k1 Cs(hs)Ce(he) + k2 Cs(hs) (Eq.S2)
where hg and h, are the spatial and temporal distance (respectively) between a given pair of hedonic residuals and C¢(h) and
C;(h;) are respectively the spatial and temporal components of the space-time covariance function. The parameters ¢y, k4, and
k, were estimated via least squares from the sample variogram. The purely spatial component C,(h,) was modeled as a
spherical covariance function with a spatial range estimated via least squares; the purely temporal component C;(h,) was

modeled as an exponential covariance function with a temporal range of 365 days (Chilés and Delfiner, 2012, p.84).



Section S3. Variance-based sensitivity analysis of uncertain model parameters.

To better understand the contribution of key model parameters to uncertainty in the post-flood financial conditions of
mortgage borrowers, we conducted a variance-based sensitivity analysis using the method of Sobol’ (Sobol’, 1993,2001). This
approach decomposes the variance of model outputs into terms that can be attributed to uncertain input parameters and their
interactions. In our analysis, we focused on uncertainty in the following components of our integrated modeling framework:
damage costs (model I), property values (model II), and borrower incomes (model IV) at the time of their flood exposure.
These parameters were selected because they represent the primary drivers of flood-related credit constraints and are used
directly within the calculation of combined loan-to-value (ACLTV) and debt-to-income (ADTI) ratios for flood-exposed
borrowers. When examining how uncertainty in these input parameters contributes to uncertainty in model outputs, we focused
on the following outcomes of interest: (1) the outcome of a borrower being collateral constrained (ACLTV > 100%), (2) the
outcome of a borrower being income constrained (ADTI > 45%), (3) the outcome of being constrained by both measures
(ACLTYV > 100% and ADTI > 45%), and (4) the outcome of being constrained by either measure (ACLTV > 100% or ADTI
> 45%). Because these model inputs and outcomes of interest are defined at the level of individual borrowers, sensitivity
indices were calculated separately for each borrower based on their simulated financial conditions at the time of flood exposure.

Damage costs were assumed to follow a lognormal distribution with a mean equal to the model-predicted cost at each
property location and variance estimated from cross-validation residuals using the conditional variance estimator of Fan and
Yao (1998). This approach allows the amount of variance in damage costs to vary as a smooth function of the mean estimate,
reflecting the higher uncertainty in total costs for properties predicted to have severe damage (Fig. S20). These mean-variance
relationships were fit separately for each of the seven evaluated flood events.

Property values were assumed to follow a lognormal distribution with a mean equal to the model-predicted property
value at each location and variance estimated via space-time interpolation of hedonic residuals using the simple lognormal
kriging method (Chilés and Delfiner, 2012, p.150, 193). Because the kriging method provides an estimate of the error variance
at each prediction point, it is well-suited for characterizing the uncertainty in property value estimates.

Borrower income was assumed to evolve over time as a stochastic process following geometric Brownian motion

(GBM). GBM is frequently used to model the evolution of asset prices and other financial quantities that are assumed to be
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lognormally distributed (Hull, 2018). For each borrower, the initial conditions of this process were specified based on their
simulated income at the time of mortgage origination (/). In timepoints following origination, their income is modeled
according to GBM as a lognormal distribution with the following mean and variance:
E[L] = I, e*t~t (Eq.S3)
V[I] = I3, 2t (e (t=t0) — 1) (Eq.54)
where p and o represent the expected annual growth and annualized volatility of borrower income respectively. For each
borrower, ¢ was calculated based on the average continuously-compounded growth in per-capita income in their county of
residence since the time of origination (BEA, 2023). The value of o was fixed at 7% per year; this assumption is loosely based
on Figure 3 of Dynan et al. (2012), who observed that the standard deviation of two-year changes in income for households in
the middle 50% of the income distribution was approximately 10% during the 1971-2008 period (10% / V2 = 7%).

First order and total effect Sobol’ indices were calculated using the estimator of Saltelli et al. (2010) implemented by
the SciPy Python library (Virtanen et al., 2020). The first order index (S;) reflects the share of output variability that can be
directly explained by a given parameter in isolation while ignoring interaction effects with other inputs. The total effect index
(St,) reflects the share of output variability that a given parameter contributes to either directly or through its interactions with
other variables. For each borrower, our calculation procedure results in a total of 12 index pairs (3 input parameters x 4
outcomes of interest). To evaluate the relative contribution different parameters to uncertainty in model outputs, parameters
were ranked individually for each borrower based on the total effect index, and the frequency of different ranking orders
summarized across the simulated population of mortgage borrowers (Table S8). Similarly, population-averaged index values

were computed by weighing the Sobol’ indices of individual borrowers by the variance in their outcomes of interest:

= Yi=1ViSu

I (5059
_ N VSt
Sy = M (Eq.S6)

Yie=1 Vi



In Eq. S5 and Eq. S6, V}, denotes the variance of the outcome of interest for borrower k, while S, and S—Tl denote the weighted

average first order and total effect indices (respectively) of parameter i across the population. Weighted average index values

for different parameter-outcome combinations are displayed in Fig. S21.
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Supplementary tables

Table S1. Variables and data sources used within the modeling framework.

Sub-Model / Variable Name Variable Spatial Temporal Source
Type Resolution Resolution

Flood damage (model I)
SFHA status Binary Property -- FEMA
First floor elevation Continuous  Property -- NCEM
Year built Discrete Property -- NCEM
Tax-assessed value Continuous  Property -- NCEM
Heated square footage Continuous  Property -- NCEM
Occupancy type Categorical ~ Property -- NCEM
Foundation type Categorical ~ Property -- NCEM
HUCG6 watershed Categorical ~ Property -- NHD
Maximum 3-day precipitation during event Continuous 1 km raster Daily Daymet V4
Distance to coast Continuous 30 m raster -- NHD
Distance to nearest stream Continuous 30 m raster -- NHD
Height above nearest drainage Continuous 30 m raster -- NHD, NED
Topographic wetness index Continuous 30 m raster -- NHD, NED
Soil hydraulic conductivity Continuous 30 m raster -- NHD
Impervious surface percentage Continuous 30 m raster -- NLCD
Average slope Continuous  HUCI12 subbasin = -- NED
Elevation Continuous 30 m raster -- NED

Property value (model II)
Heated square footage Continuous  Property -- NCEM
Parcel square footage Continuous  Property -- NC OneMap
Year built Discrete Property -- NCEM
Tax-assessed value Continuous  Property -- NCEM
Median household income in 2019 Continuous  Census tract -- ACS
Home price index Continuous  County Annual FHA
25" percentile of newly originated mortgage Continuous  Census tract Annual HMDA
loan amounts
50" percentile of newly originated mortgage Continuous  Census tract Annual HMDA
loan amounts
75% percentile of newly originated mortgage Continuous  Census tract Annual HDMA
loan amounts

Mortgage repayment (model III)
Loan amount Continuous  Census tract Annual HMDA
Borrower income at origination Continuous  Census tract Annual HMDA
LTV at origination Distribution  State Annual FNMA, FHLMC
DTI at origination Distribution  State Annual FNMA, FHLMC
Interest rate spread Distribution  State Annual FNMA, FHLMC

SFHA: Special Flood Hazard Area. FEMA: Federal Emergency Management Agency. NCEM: NC Emergency Management.
HUC: Hydrologic Unit Code. NHD: National Hydrography Dataset. NED: National Elevation Dataset. NLCD: National Land
Cover Database. ACS: American Community Survey. FHA: Federal Housing Administration. HMDA: Home Mortgage
Disclosure Act. LTV: Loan-to-value ratio. DTI: Debt-to-income ratio. FNMA: Fannie Mae. FHLMC: Freddie Mac
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Table S2. Number of included NFIP records and presence-absence points by flood event.

Flood event NFIP claims in NFIP policies-in-force in included counties by data source Presence Absence  Pseudo-
included counties Address-level data Tract-level data Zip code-level data points points ;l;islel:lsce
Fran (1996) 5,820 5,382 -- 65,050 5,474 4,889 43,308
Bonnie (1998) 1,764 10,258 -- 73,723 1,669 9,297 49,515
Floyd (1999) 6,684 7,906 -- 85,019 6,266 7,285 55,192
Isabel (2003) 3,631 5,914 -- 56,651 3,424 5,227 39,369
Irene (2011) 6,292 54,071 96,390 -- 6,063 49,141 42,517
Matthew (2016) 4,127 38,620 102,463 -- 3,955 36,588 64,110
Florence (2018) 11,384 19,941 95,801 - 11,057 17,123 63,371
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Table S3. Cross-validation performance of the random forest model by event.

CV method / Performance metric Value by event
Fran (1996) Bonnie (1998) Floyd (1999) Isabel (2003) Irene (2011) Matthew (2016) Florence (2018)

Random CV
ROC-AUC 0.95 0.87 0.86 0.94 0.94 0.92 0.91
Accuracy 0.92 0.97 0.92 0.95 0.95 0.97 0.92
Sensitivity 0.31 0.15 0.12 0.39 0.23 0.22 0.42
Specificity 0.99 1.00 0.99 0.99 0.99 1.00 0.98
Precision 0.75 0.54 0.70 0.71 0.72 0.76 0.78
R? score? 0.07 -0.01 0.05 0.07 0.10 0.23 0.39
R? score among true positives 0.06 0.03 0.25 0.13 0.12 0.41 0.45
Spatially aggregated R? score® 0.87 0.64 0.54 0.63 0.52 0.55 0.93

Spatial block CV
ROC-AUC 0.87 0.79 0.79 0.84 0.92 0.86 0.86
Accuracy 0.90 0.97 0.91 0.93 0.94 0.96 0.91
Sensitivity 0.11 0.00 0.01 0.10 0.20 0.12 0.33
Specificity 0.99 1.00 1.00 1.00 0.99 1.00 0.99
Precision 0.61 0.21 0.69 0.66 0.66 0.63 0.75
R? score? -0.02 -0.01 -0.01 -0.01 0.06 0.06 0.25
R? score among true positives 0.01 -0.17 -0.02 -0.02 0.02 0.38 0.31
Spatially aggregated R? score® 0.76 0.02 -0.06 0.05 0.30 0.19 0.80

CV: Cross-validation. ROC: Receiver operating characteristic. AUC: Area under curve.

aUnlike binary classification performance metrics (e.g., accuracy), which are calculated based on the predicted presence or absence of flood damage, the R? score
is calculated based on the dollar amount of damage predicted at each property.

bSpatially aggregated R? scores are calculated by comparing predicted and observed damage to NFIP-insured properties after aggregating damages across 5 km

square grid cells.
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Table S4. Confusion matrices of the random forest model by event.

CV method / Frequency of classification outcomes by event, n (%)

Classification

outcome Fran (1996) Bonnie (1998) Floyd (1999) Isabel (2003) Irene (2011) Matthew (2016)  Florence (2018)

Random CV
TP 1,672 (3.1%) 246 ( 0.4%) 765 (1.1%) 1,335 (2.8%) 1,373 (1.4%) 851 (0.8%) 4,600 (5.0%)
TN 47,637 (88.8%) 58,605 (96.9%) 62,146 (90.4%) 44,054 (91.7%) 91,122 (93.2%) 100,427 (96.0%) 79,226 (86.5%)
FP 560 (1.0%) 207 (0.3%) 331 (0.5%) 542 (1.1%) 536 (0.5%) 271 (0.3%) 1,268 (1.4%)
FN 3,802 (7.1%) 1,423 (2.4%) 5,501 (8.0%) 2,089 (4.4%) 4,690 (4.8%) 3,104 (3.0%) 6,457 (7.1%)
Total 53,671 (100.0%) 60,481 (100.0%) 68,743 (100.0%) 48,020 (100.0%) 97,721 (100.0%) 104,653 (100.0%) 91,551 (100.0%)

Spatial block CV
TP 597 (1.1%) 8 (0.0%) 75 (0.1%) 328 (0.7%) 1,213 (1.2%) 455 (0.4%) 3,680 (4.0%)
N 47,816 (89.1%) 58,782 (97.2%) 62,444 (90.8%) 44,428 (92.5%) 91,032 (93.2%) 100,430 (96.0%) 79,291 (86.6%)
FP 381 (0.7%) 30 (0.0%) 33 (0.0%) 168 (0.3%) 626 (0.6%) 268 (0.3%) 1,203 (1.3%)
FN 4,877 (9.1%) 1,661 (2.7%) 6,191 (9.0%) 3,096 (6.4%) 4,850 (5.0%) 3,500 (3.3%) 7,377 (8.1%)
Total 53,671 (100.0%) 60,481 (100.0%) 68,743 (100.0%) 48,020 (100.0%) 97,721 (100.0%) 104,653 (100.0%) 91,551 (100.0%)

SFHA: Special Flood Hazard Area. CV: Cross-validation. TP: True positives. TN: True negatives. FP: False positives. FN: False negatives
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Table S5. Cox proportional hazards regression analysis of mortgage prepayment rates.

Loan purpose / Term Interest rate benchmark used Number of loan- Number of Rate spread regression  Hazard ratio
in rate spread calculation month observations repayment events coefficient (95% CI) (95% CI)
Home purchase
30-year MORTGAGE30US 38,829,210 262,832 0.48 (0.48-0.49) 1.62 (1.61-1.63)
Refinance
30-year MORTGAGE30US 46,395,034 299,819 0.40 (0.39-0.40) 1.49 (1.48-1.49)
15-year MORTGAGEI15US 29,383,696 171,555 0.27 (0.27-0.28) 1.31 (1.31-1.32)

MORTGAGE30US: 30-year fixed rate mortgage average in the United States (Freddie Mac, 2016b). MORTGAGE15US: 15-year fixed rate mortgage average in
the United States (Freddie Mac, 2016a). CI: Confidence interval.
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Table S6. Conceptual model of mortgage borrower finances.

Line item* Corresponding variable in model IV Units

Household balance sheet

Assets
Primary residence P, USD (nominal)
Secondary and rental properties Not modeled --
Liquid savings Not modeled --
Retirement and investment accounts Not modeled --
Vehicles and other personal property Not modeled --
Liabilities
Primary mortgage Byt USD (nominal)
Home repair loans® Brit USD (nominal)
Mortgages on other properties Not modeled --
Auto loans Not modeled --
Student loans Not modeled --
Credit cards Not modeled --
Unpaid bills and other debt Not modeled --

Household cashflows
Cash inflows

Stable and predictable income* I; USD per month
Fluctuating and variable income® Not modeled --
Post-disaster aid Not modeled -
Cash outflows
Primary mortgage payment Cm USD per month
Repair loan payments® CR,i USD per month
Other recurring debt obligations¢ Cnm USD per month
Taxes and insurance® Not modeled --

USD: United States dollars.

2The entries listed within this table represent a non-exhaustive list of common household budget items.

®Uninsured borrowers are assumed to finance flood-related repairs through home equity-based borrowing.

“Borrower income is initialized at origination and assumed to evolve deterministically over time according to county-level
trends in personal income growth. We did not model exogenous shocks to household income or changes in employment status.
4Includes payments on sources of debt which were not explicitly modeled (e.g., auto loans, credit cards) but which nevertheless
affect a borrower’s DTI ratio. These obligations are assumed to remain constant over time.

“We did not model housing expenses associated with property taxes, homeowners’ insurance, or flood insurance.
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Table S7. Flood damage to properties within the study area by event and across comparative groups.

Stratification variable

Flooded properties, n (%)*

Flood damage cost, USD" (% repetitive)®

Insured

Uninsured

Flood event
Fran (1996)
Bonnie (1998)
Floyd (1999)
Isabel (2003)
Irene (2011)
Matthew (2016)
Florence (2018)
SFHA status
SFHA
Non-SFHA
Proximity to coasts
CAMA counties
Non-CAMA counties
Urban-rural classification
Urban
Rural
Overall

6,300 (0.15%)
2,100 (0.05%)
20,500 (0.48%)
7,200 (0.17%)
8,700 (0.20%)
16,300 (0.38%)
23,900 (0.56%)

31,600 (21.93%)
35,600 ( 0.86%)

33,000 (5.46%)
34,200 (0.92%)

32,700 (1.60%)
34,400 (1.52%)
67,200 (1.56%)

185,915,000 ( 0%)

20,799,000 (71%)
180,077,000 (35%)

91,858,000 (11%)
159,240,000 (51%)
174,265,000 (25%)
548,982,000 (51%)

1,092,714,000 (39%)
268,422,000 (23%)

1,035,977,000 (39%)
325,160,000 (27%)

661,636,000 (39%)
699,501,000 (33%)
1,361,137,000 (36%)

29,812,000 ( 0%)

5,001,000 (15%)
720,058,000 ( 0%)
95,831,000 ( 0%)
98,643,000 (33%)
752,584,000 ( 1%)
892,383,000 (18%)

902,960,000 (17%)
1,691,353,000 ( 3%)

725,479,000 (14%)
1,868,834,000 ( 5%)

1,406,678,000 ( 9%)
1,187,635,000 ( 6%)
2,594,313,000 ( 8%)

USD: United States dollars. SFHA: Special Flood Hazard Area. CAMA: Coastal Area Management Act.

?Percentages denote the share of all properties in a given category that were exposed to flooding.

"Monetary amounts are adjusted for inflation and expressed in 2020 United States dollars.

‘Percentages denote the share of flood-related damage attributable to repetitive losses (i.e., damages occurring after a

property’s first exposure to flooding during the study period).
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Table S8. Ranking uncertain parameters by their influence on borrower outcomes.

Outcome of interest / Parameter ranking®

Parameter ranking frequency® (%)

Property value Damage cost Income

Collateral constrained (ACLTV > 100%)

1* most influential parameter 95.9 4.1 0.0

2™ most influential parameter 4.1 95.8 0.0

3" most influential parameter 0.0 0.0 100.0
Income constrained (ADTI > 45%)

1% most influential parameter 1.9¢ 58.3 39.9

2™ most influential parameter 0.4¢ 39.8 59.7

3" most influential parameter 97.7 1.9 0.4
Constrained by both (ACLTV > 100% and ADTI > 45%)

1* most influential parameter 14.8 70.6 14.7

2" most influential parameter 12.6 22.8 64.5

3" most influential parameter 72.6 6.6 20.8
Constrained by either (ACLTV > 100% or ADTI > 45%)

1% most influential parameter 78.8 9.2 12.0

2™ most influential parameter 11.1 79.7 9.2

3" most influential parameter 10.1 11.1 78.8

ACLTV: Adjusted combined loan-to-value ratio. ADTI: Adjusted debt-to-income ratio.

?For each borrower, uncertain parameters are ranked from most to least influential based on their Sobol’ total effect index for

the outcome of interest.

"Ranking frequencies reflect the share of flood-exposed borrowers for which a given parameter was found to be the nth most

influential.

°In theory, property value should have no influence on the outcome of a borrower being income constrained. However, this

parameter occasionally has a non-zero Sobol’ total effect index due to numerical error in the calculation. This issue only occurs

when the amount of variance in the outcome of interest is close to zero.
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Supplementary figures

Hurricane Fran:
Sept 2 -17, 1996

Hurricane Bonnie:
Aug 22 - 31, 1998

Hurricane Floyd:
Sept 8 - 26, 1999

Hurricane Isabel:
Sept 16 - 24, 2003

Hurricane Irene:
Aug 24 - Sept 10, 2011

Hurricane Matthew:
Oct5-0ct 17, 2016

] []
||

Hurricane Florence:
Sept 8 - Sept 27, 2018

Figure S1. Spatial and temporal boundaries of included flood events.

Shaded regions denote counties included in the flood damage estimation model for each event. NFIP claims occurring in
included counties during the listed date range are assumed to result from flood damage incurred during the named event. All

counties included in an event must have at least 20 associated claims.
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Figure S2. Cross-validation performance of the random forest model.
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Figure S3. Cross-validation performance of the random forest model when pseudo-absences are excluded from the validation
data.
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Figure S4. Spatial block cross-validation performance of the random forest model.
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Figure S5. Cross-validation error of damage cost predictions after spatial aggregation.
In each panel, the y-axis represents observed damage among properties in the insured dataset, while the x-axis represents damage predicted by the

random forest model in cross-validation. The x- and y-coordinates of each point are determined by aggregating predicted and observed damage to
NFIP-insured properties across 5 km square grid cells.
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Figure S6. Empirical cumulative distribution function of property value model errors.

The absolute percentage error between the model-predicted and observed property sale price is plotted on the x-axis, while the
proportion of cross validation predictions within a given error tolerance is plotted on the y-axis.
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Figure S7. Property value model error by period.

The distribution of absolute error associated with cross-validation predictions for sales occurring in a given year are depicted
by the black box-and-whisker plots. Whisker boundaries correspond to the 10" and 90" percentiles of absolute error. For
comparison purposes, the median observed sale price of properties included in our sample in each year is depicted by the blue
line, while the median predicted sale price is depicted by the red dashed line.
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Figure S8. Median absolute percentage error of the property value model by county.
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Figure S9. Simulated and empirically observed mortgage repayment profiles.
Survival curves for North Carolina mortgages purchased by the GSEs from 1999-2021 are represented by blue lines. Survival

curves for simulated mortgage are denoted by red dashed lines. In both cases, survival curves were constructed using the
Kaplan-Meier estimator and stratified by the loan purpose (home purchase or refinance) and loan term (30 or 15 years).
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Figure S10. Prevalence and cost of flood damage during Hurricane Fran (1996).

The left panel depicts the aggregate cost of flood damage across comparative groups, while the right panel depicts the spatial
distribution of flooded structures across a uniform 15 km hexagonal grid. Bars should only be compared within appropriate
pairs (e.g., SFHA vs. non-SFHA) but not across pairs (e.g., SFHA vs. Coastal) as groups across pairs are not mutually
exclusive. For display purposes, only counties that are members of the nine easternmost regional councils in North Carolina
are shown.
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Figure S11. Prevalence and cost of flood damage during Hurricane Bonnie (1998).

The left panel depicts the aggregate cost of flood damage across comparative groups, while the right panel depicts the spatial
distribution of flooded structures across a uniform 15 km hexagonal grid. Bars should only be compared within appropriate
pairs (e.g., SFHA vs. non-SFHA) but not across pairs (e.g., SFHA vs. Coastal) as groups across pairs are not mutually
exclusive. For display purposes, only counties that are members of the nine easternmost regional councils in North Carolina
are shown.
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Figure S12. Prevalence and cost of flood damage during Hurricane Floyd (1999).

The left panel depicts the aggregate cost of flood damage across comparative groups, while the right panel depicts the spatial
distribution of flooded structures across a uniform 15 km hexagonal grid. Bars should only be compared within appropriate
pairs (e.g., SFHA vs. non-SFHA) but not across pairs (e.g., SFHA vs. Coastal) as groups across pairs are not mutually
exclusive. For display purposes, only counties that are members of the nine easternmost regional councils in North Carolina
are shown.
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Figure S13. Prevalence and cost of flood damage during Hurricane Isabel (2003).

The left panel depicts the aggregate cost of flood damage across comparative groups, while the right panel depicts the spatial
distribution of flooded structures across a uniform 15 km hexagonal grid. Bars should only be compared within appropriate
pairs (e.g., SFHA vs. non-SFHA) but not across pairs (e.g., SFHA vs. Coastal) as groups across pairs are not mutually
exclusive. For display purposes, only counties that are members of the nine easternmost regional councils in North Carolina
are shown.
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Figure S14. Prevalence and cost of flood damage during Hurricane Irene (2011).

The left panel depicts the aggregate cost of flood damage across comparative groups, while the right panel depicts the spatial
distribution of flooded structures across a uniform 15 km hexagonal grid. Bars should only be compared within appropriate
pairs (e.g., SFHA vs. non-SFHA) but not across pairs (e.g., SFHA vs. Coastal) as groups across pairs are not mutually
exclusive. For display purposes, only counties that are members of the nine easternmost regional councils in North Carolina
are shown.
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Figure S15. Prevalence and cost of flood damage during Hurricane Matthew (2016).

The left panel depicts the aggregate cost of flood damage across comparative groups, while the right panel depicts the spatial
distribution of flooded structures across a uniform 15 km hexagonal grid. Bars should only be compared within appropriate
pairs (e.g., SFHA vs. non-SFHA) but not across pairs (e.g., SFHA vs. Coastal) as groups across pairs are not mutually
exclusive. For display purposes, only counties that are members of the nine easternmost regional councils in North Carolina
are shown.
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Figure S16. Prevalence and cost of flood damage during Hurricane Florence (2018).

The left panel depicts the aggregate cost of flood damage across comparative groups, while the right panel depicts the spatial
distribution of flooded structures across a uniform 15 km hexagonal grid. Bars should only be compared within appropriate
pairs (e.g., SFHA vs. non-SFHA) but not across pairs (e.g., SFHA vs. Coastal) as groups across pairs are not mutually
exclusive. For display purposes, only counties that are members of the nine easternmost regional councils in North Carolina
are shown.
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Figure S17. Proportion of flood-damaged properties in each property value quintile by event.
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Figure S18. Cumulative distribution function of damage costs at flooded properties as a proportion of their pre-flood property
value by event and property value quintile.
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Figure S19. Scenario analysis examining alternative assumptions regarding home repair loan interest rates, property values,
and flood damage costs.

Each panel corresponds to a different interest rate scenario: (a) one in which the interest rate on home repair loans is equivalent
to the prevailing “market” rate (i.e., the average 30-year fixed rate on new mortgages); and (b) one in which the interest rate
on home repair loans is equal to 50% of the prevailing market rate. Within each panel, property-level estimates of flood damage
and property value are perturbed by +20% to create a range of scenarios. Each box in the 3 x 3 plot depicts the number of
borrowers projected to face flood-related credit constraints under a given scenario, as well as the share of credit constraints
attributable to various drivers (e.g., insufficient collateral, insufficient income, or both in combination).
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Figure S20. Uncertainty in damage costs at flooded properties.

In sensitivity analysis, damage costs were assumed to follow a lognormal distribution with a mean equal to the model-predicted
cost and variance estimated from cross-validation residuals using the conditional variance estimator of Fan and Yao (1998).
In the above figure, the conditional means and 95% credible intervals of the fitted lognormal distributions for each event are
denoted by black and red lines respectively.
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Figure S21. Weighted average Sobol’ indices decomposing the relative importance of property value, damage cost, and

income in determining the outcome of borrowers being credit constrained following flood exposure.

Population averages are calculated by weighing the Sobol’ indices of individual borrowers by the variance in their credit
constraint outcomes. Results are shown separately for (a) the outcome of being collateral constrained, (b) the outcome of being
income constrained, (c¢) the outcome of being constrained by both measures, and (d) the outcome of being constrained by either

measure. Darker bars indicate first-order effects, while lighter bars indicate interaction effects.
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