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Abstract. Most flood hazard assessments follow the event-
based approach, assuming that the probability of flooding
approximates the probability of flood drivers. However, this
approach neglects information about the temporal and spatial
variability of flood drivers and flood processes such as water
propagation inland and its interaction with topography. The
response-based approach accounts for these factors by us-
ing a large number of flood events that allow the calculation
of flood probabilities. Here, we compare differences in flood
hazards between the event- and response-based approaches
for a case study in Gloucester City (NJ, U.S.). We find that
compound events with return periods less than 20 years can
produce the 100-year (i.e., 1 % annual exceedance probabil-
ity) flood depths in large areas of the city. This is caused by
the temporal and spatial characteristics of these events, such
as prolonged high coastal water levels and rainfall fields with
higher rainfall rates over urbanized areas. These event char-
acteristics are not included in extreme value models of the
flood drivers and are commonly simplified by using a sin-
gle design event. However, flood hazards largely depend on
them, introducing large discrepancies in resulting flood haz-
ards if neglected. The temporal and spatial variabilities of
flood drivers need to be incorporated in flood hazard assess-
ments to produce robust estimates.

1 Introduction

Coastal communities worldwide are facing increasing flood
hazards from rising sea levels (Taherkhani et al., 2020;
Wing et al., 2024) and extreme events such as tropical cy-

clones (Nederhoff et al., 2024). The rapid development in
coastal zones compared to inland areas is also contributing
to increasing the exposure to flooding of people and assets
(Cosby et al., 2024), making flooding the costliest hazard for
coastal zones. In the U.S. alone, damages from tropical cy-
clones exceeded USD 1.5 trillion in total since 1980. and ac-
count for more than 50 % of total disaster costs every year
(NCEI, 2024). Therefore, developing adaptation and mitiga-
tion strategies to reduce flood impacts and increase the re-
silience of coastal communities is essential.

The most common framework for estimating coastal flood
risks is the one defined by the Intergovernmental Panel on
Climate Change (IPCC) in the Special Report on Manag-
ing the Risks of Extreme Events and Disasters to Advance
Climate Change Adaptation (SREX), in which risks are de-
fined as a function of the hazard, exposure, and vulnerability
(IPCC, 2012). In the context of coastal flooding, quantifying
the likelihood of coastal flood hazards is thus the first step
to estimating flood risks and impacts. However, there is no
standard approach to quantifying flood hazards, resulting in
a variety of methods being used, and discrepancies between
them are not well understood. There are two main general
approaches to estimating flood hazards, namely event-based
and response-based. However, there is also no clear consen-
sus in the literature regarding the terminology used to dis-
tinguish these two approaches. The event-based method is
often referred to as the “design-storm” or “deterministic” ap-
proach. In contrast, the response-based approach has been
described using terms such as “probabilistic”, “stochastic”,
“continuous”, or “weather-generator-based”. Some of these
terms (particularly “probabilistic”) are also used in other con-

Published by Copernicus Publications on behalf of the European Geosciences Union.



572 S. Santamaria-Aguilar et al.: Event- and response-based compound flood hazard estimates

texts, such as to describe flood maps that incorporate uncer-
tainty in model parameters, which can lead to ambiguity in
their interpretation (Alfonso et al., 2016; Di Baldassarre et
al., 2010; Bates et al., 2004). Therefore, in this study, we
adopt the term “response-based”, consistent with its usage
in the structural reliability literature (Gouldby et al., 2014;
Jane et al., 2022).

The event-based approach is the most commonly used.
It consists of estimating first the probability of the flood
driver(s), selecting one event of desired probability (e.g., 1 %
annual exceedance probability (AEP)), and assuming that the
flooding resulting from that event approximates the occur-
rence probability of the event (i.e. one-to-one relationship).
This approach can be applied for the full range of probabil-
ities of events, from low to high, and produce what is also
known as probabilistic flood hazard estimates (e.g., Kupfer
et al., 2024). However, the most commonly used bench-
mark event for flood hazards is the 1 % AEP, often referred
as the 100 year return period or in other words, an event
that has a 1 in 100 chance of being equaled or exceeded in
any given year. In the U.S., the event-based approach has
been widely used by the Federal Emergency Management
Agency (FEMA) to produce the 1% AEP flood elevations
for both coastal and inland flood mapping, which serve as
the basis for regulatory floodplain for management and plan-
ning (FEMA, 2022). For inland flooding, FEMA applies the
event-based approach that starts by defining a design rainfall
storm, typically derived from NOAA Atlas 14 which pro-
vides rainfall depths for specific probabilities (e.g., 1 % AEP,
24-h storms). The design storms are used in hydrologic mod-
els to simulate runoff, with the resulting hydrographs then
routed through hydraulic models to estimate flood depths and
extents. In some cases, inland flooding is instead mapped
using the 1% AEP river discharge estimated from stream
gauges. Similarly for coastal regions, a design event is se-
lected from the distribution of coastal water levels to estimate
the 1% AEP regulatory floodplain. In regions affected by
tropical cyclones (TCs), FEMA further implements the Joint
Probability Method (JPM) to construct a synthetic storm cli-
matology. This involves statistically sampling combinations
of key storm parameters (e.g. central pressure deficit, radius
to maximum winds, forward speed) based on their joint prob-
ability distributions. These synthetic events are then dynam-
ically downscaled to the coast and exceedance probabilities
of coastal water levels are calculated based on the probabili-
ties of the storm characteristics. Although the JPM approach
might reduce the uncertainties related to estimating the likeli-
hood of low-probability coastal water level events by increas-
ing the sample size of these events, in both cases, the prob-
ability of the event is assumed to approximate the probabil-
ity of flooding (FEMA, 2022). Selecting a single event that
approximates the 1% AEP floodplain might not be a sim-
ple task. On one hand, observational records of flood drivers
are typically shorter than 100 years, making it necessary to
apply statistical extreme value models to estimate the likeli-
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hood of events and to extrapolate beyond the observed data
to characterize low-probability events (such as the 1 % AEP)
that may not be captured in the historical record. Statisti-
cal extreme value models focus only on the magnitude of
the drivers, and the temporal and spatial variability during
events are neglected (e.g., Jane et al., 2020; Moftakhari et
al., 2019). In the case of coastal water levels, the lack of in-
formation about the temporal evolution of the event has been
commonly simplified using different approaches such as se-
lecting one historical event as a “design event” and rescal-
ing its time series to the desired magnitude, e.g., matching
the 1% AEP event (Dawson et al., 2005; Peiia et al., 2023;
Wadey et al., 2015); assuming a triangular or sine shape (e.g.,
Vousdoukas et al., 2016; Moftakhari et al., 2019); or defin-
ing a mean hydrograph shape from hindcast data (Dullaart
et al., 2023). However, neglecting the temporal variability
of coastal water levels can introduce large uncertainties in
estimated flooding (Kupfer et al., 2024; Quinn et al., 2014,
Santamaria-Aguilar et al., 2017). Similarly, for rainfall and
river discharge, traditional approaches defined a single “de-
sign storm” or “design event” to represent the temporal and
spatial patterns of these drivers (i.e. a representative event
structure). However, some recent studies have shown that re-
lying on a single “design storm”, overlooking the variability
in event structure across multiple storms, can underestimate
flood hazards and associated impacts (Baer, 2025; Perez et
al., 2024). Furthermore, when flooding results from multiple
drivers (e.g., tropical cyclones producing both storm surge
and heavy rainfall), various combinations of driver magni-
tudes may share the same probability yet lead to differing
flood depths and extents (see e.g. Pefia et al., 2023). On the
other hand, flooding (i.e., the response) also depends on other
factors beyond the flood driver characteristics, such as topog-
raphy and associated water dynamics.

In contrast, the response-based approach can account for
all these factors to produce more robust flood hazard esti-
mates (Baer, 2025; Perez et al., 2024). This approach in-
volves simulating flooding from many events, enabling the
calculation of empirical flood depth distributions at differ-
ent points in the floodplain. However, the response-based
approach also has limitations. First, a large set of events is
needed, which is unavailable in observed records that rarely
span more than a few decades (Ponte et al., 2019). There-
fore, synthetic event datasets generated through dynamical
modelling and/or complex statistical frameworks are neces-
sary (Gori et al., 2020; Kim et al., 2023; Maduwantha et al.,
2025). Second, this approach is computationally more de-
manding and hence it has been rarely used in the past, but it is
becoming more feasible due to advances in computing power
(Gori et al., 2020) and new computationally efficient flood
models (Bates et al., 2005; Leijnse et al., 2021). Although
the response-based approach provides more robust estimates
of flood depths at the household level (or at single points),
the corresponding flood extent does not represent the flood-
plain of a single event, which might be needed for some ap-
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plications such as emergency management, government bud-
geting for natural disasters, and insurance market. Coastal
flooding often occurs from a combination of different drivers
such as storm surges, wave runup, tides, heavy precipitation,
and river discharge; so-called compound events. In fact, the
risk of compound flooding from storm surges and rainfall is
larger in the Atlantic and Gulf coasts of the U.S. (Wahl et al.,
2015). However, FEMA has not planned to incorporate com-
pound flood modelling in coastal regions or transition to a
full response-based approach to estimate coastal compound
flood hazards. For inland regions, FEMA is working to de-
velop a methodology to transition to response-based (prob-
abilistic) estimates (Lehman, 2023). Although FEMA pro-
vides some guidelines to map the 1 % AEP floodplain, Map-
ping Partners can deviate from the guidelines if they con-
sider it appropriate (FEMA, 2022). Thus, choosing between
an event-based or response-based approach to estimate flood
hazard is a decision that can be made. However, this choice
is challenging to make in advance since it is unclear how
closely the 1 % AEP event (in terms of the flood drivers) ap-
proximates the 1 % AEP flood (in terms of the response). To
our knowledge, the differences in flood hazard estimates be-
tween these two approaches have only been evaluated for
rainfall flooding (Baer, 2025; Perez et al., 2024; Winter et al.,
2020), but remain unexplored for compound coastal flood-
ing. For the latter, selecting a single 1 % AEP design event
is particularly challenging, as multiple combinations of flood
drivers can yield the same joint exceedance probability. This
challenge has sometimes been addressed through the intro-
duction of ambiguous constructs, such as the “most likely”
event, which attempts to identify a representative scenario
among equally probable combinations based on the density
of observed events (Jane et al., 2022; Moftakhari et al., 2019;
Salvadori et al., 2011).

Here, we explore the degree of linearity in the relation-
ship between events of 1% chance of occurring any year
and flooding of equal probability, from compound events of
precipitation and estuarine water levels in a case study for
Gloucester City, New Jersey. We first assess the variability
in flooding from different synthetic 1 % AEP events of equal
probability but different magnitudes, and temporal and spa-
tial evolutions, to quantify the uncertainties related to using
a single design event for estimating flood hazards. Then, we
compare flood extents and depths from the 1 % AEP events
with the response 1% AEP flood. Finally, we investigate
which individual compound events can cause the response
1 % AEP flood depth in different parts of the study area.

2 Study site

Our study site is Gloucester City, New Jersey, a small mu-
nicipality located in the Delaware estuary (Fig. 1) frequently
affected by pluvial and coastal flooding (Smith, 2023). We
selected this study site based on the exploratory scoping anal-
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ysis of Helgeson et al. (2025) for place-based convergence
research. Gloucester City is bordered by water on multi-
ple sides, with the Delaware River to the west and Newton
Creek and Little Timber Creek to the north and south, re-
spectively. The catchments of these two creeks are relatively
small (147.45 km?), extending slightly beyond the city’s ad-
ministrative boundaries and draining into the Delaware River
to the north and south of Gloucester City. Alongside the
confluence of Newton Creek, Little Timber Creek, and the
Delaware River, the city’s low-lying terrain, with elevation <
10 m above NAVDS88, makes it especially susceptible to com-
pound flooding from rainfall and elevated estuarine water
levels, including storm surges, tides, and river discharge. In
addition, these catchments are highly urbanized (see Fig. S2
in the Supplement) and the sewer and stormwater systems are
combined. The municipalities in these catchments have faced
long-standing issues with repetitive flooding of streets and
properties caused by inadequate stormwater drainage Sys-
tems and tidal influences in the outflow discharging systems
(Smith, 2023).

The FEMA Risk Map and Report, dated in 1979 and up-
dated in 2016, defines a coastal and riverine 1 % AEP flood-
plain (i.e., Special Flood Hazard Area, SFHA) that cov-
ers large areas of the city, including five essential facilities
(FEMA, 2016). Between 1974 and 2016, Gloucester City
was subject to five federally declared flood-related disasters.
Despite this, only 94 properties were enrolled in the National
Flood Insurance Program (NFIP) as of 2016, according to
data from OpenFEMA. Of these, 76 properties were located
within the SFHA. Based on the National Structure Inventory,
Gloucester City contains a total of 3341 single-family homes,
148 of which are situated within the SFHA. Gloucester City
has been facing problems with repetitive localized pluvial
and coastal flooding for years (Fig. S5), further exacerbated
by an inadequate stormwater drainage system (Smith, 2023).
This is also highlighted in the FEMA Risk Map, in which an
intersection of the city outside the SFHA is marked together
with a photo of flooding from an event in 2009 (FEMA,
2016; Fig. S21).

3 Data and Methods

We investigate differences in flooding between the event- and
response-based approaches by simulating flooding from a
large number (5000) of compound events that allow estimat-
ing the empirical distribution of flooding and comprise sev-
eral events that have a 1 % chance of happening in any year.
We created a catalog of 5000 synthetic compound events
(more details on those events are provided in Sect. 3.1) fol-
lowing the framework of Maduwantha et al. (2025), which
provides storm tide hydrographs and rainfall fields.

The joint probabilities of these events were calculated us-
ing the multivariate statistical framework of Maduwantha
et al. (2024). We use the reduced-complexity flood model
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Figure 1. Location of Gloucester City (NJ, U.S.) within the inner part of the Delaware estuary (a—b). The map (c) shows the flood model
domain covering the catchments of Newton Creek and Little Timber Creek that surround the study site of Gloucester City. The blue line
shows the location of the open boundary of the flood model along the Delaware River, the purple line is the inland outflow boundary, and the
orange dots are the grid nodes of the rainfall forcing [NAD83/UTM18N. Sources (a): Esri, TomTom, Garmin, FAO, NOAA, USGS, EPA,
NPS, USFWS | Powered by Esri. Sources (b): Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS,
USDA, USFWS | Powered by Esri. Source (c): Esri | Powered by Esri].

SFINCS (Super-Fast INundation of CoastS) to simulate plu-
vial and coastal flooding from the synthetic events in the
study area (Fig. 1). Details of the flood model configuration
and input data are described in Sect. 3.2, and the model vali-
dation is presented in Sect. 3.3.

3.1 Synthetic compound events

We need a large sample of compound events to estimate
the response-based flood hazard, in which the probability
of certain flood thresholds being exceeded is calculated for
each model cell based on the empirical distribution. We use
both the multivariate statistical framework of Maduwantha
et al. (2024) and the event generation approach of Maduwan-
tha et al. (2025) to derive a catalog of synthetic compound
events, including information on rainfall fields and coastal
water levels along the Delaware River at Gloucester City.
Maduwantha et al. (2024) developed a new multivariate sta-
tistical framework to estimate joint probabilities of rain-
fall and non-tidal residuals (NTR) using copulas, account-
ing for the dependencies between these two flood drivers
but also stratifying the extreme events by the different storm
types that generate them, namely tropical cyclones and non-
tropical cyclones (Fig. 2), since these show different statisti-
cal characteristics. Non-tropical events dominate the low re-
turn levels, while tropical cyclones have a stronger effect on
large return levels, such as the ones associated with events of
1 % chance occurring in any given year. Accounting for the
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different statistical characteristics of events caused by these
different storm types, the joint probability analysis avoids
mischaracterization of both low and high-return level events.

For the catchments of our study site, Maduwantha et
al. (2024) used around 120 years of in-situ rainfall and
coastal water level measurements to estimate the joint prob-
abilities of the flood drivers, namely rainfall and NTR. Since
our study site is located in the mid-estuarine region of the
Delaware Estuary, the NTR reflects contributions from both
fluvial discharge and coastal storm surge, as well as their
nonlinear interactions. We opted not to disaggregate the
NTR into riverine and coastal components due to the sub-
stantial complexity of their coupled dynamics and the ad-
ditional challenges this would introduce into the structure
and parameterization of the multivariate statistical model.
Maduwantha et al. (2024) found the largest dependency be-
tween NTR peak and rainfall exists for 18-h rainfall accu-
mulation. Since single-point rainfall might not be represen-
tative of the entire catchment, they also used 40 years of
4km gridded rainfall data from the Analysis of Period of
Record for Calibration (AORC, Kitzmiller et al., 2018) of
the corresponding catchments to obtain spatial rainfall infor-
mation and average catchment values. Observed compound
events were identified using the Peaks Over Threshold (POT)
approach combined with a two-sided conditional sampling
method. Thresholds were set to capture an average of five
events per year, providing a balance between sufficient sam-
ple size and an appropriate representation of the tail distribu-
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Figure 2. (a) Joint probabilities of non-tidal residual (NTR) and 18 h rainfall accumulation. Blue dots show the historical non-tropical cyclone
events, red dots show the historical tropical cyclone events, and grey dots the 5000 synthetic events generated for this study. All synthetic
events (grey points) have assigned water level hydrographs and rainfall fields to be used as boundary conditions for SFINCS. (b), (¢) and (d)
show as an example the time series of three 1 % AEP (100-year) events (black dots along the 100-year isoline); (b) shows the time series of
the “most likely” event, marked as a purple triangle in (a); (c) shows the 1 % AEP (100-year) event that produces the largest flood from all
1 % AEP (100-year) events (black dots in (a); and (d) shows the 1 % AEP (100-year) event that produces the smallest flood from all 1 % AEP

(100-year) events. Water levels are referenced to NAVDSS.

tion. These thresholds also maximized the statistical depen-
dence between variables. Additionally, the conditional sam-
pling method includes events where one variable is not ex-
treme, allowing for coverage of the full range of driver mag-
nitudes, including those that may not lead to flooding. Fur-
ther details about the multivariate statistical framework can
be found in Maduwantha et al. (2024).

Maduwantha et al. (2025) developed an approach to gen-
erate synthetic compound events based on the joint probabil-
ity distribution from the previous analysis and by consider-
ing the temporal and spatial information of historical events.
From the joint probability distribution, they derived a sample
of 5000 events, ensuring that the proportion of observed trop-
ical and non-tropical events is retained in the synthetic data
(Fig. 2). Dynamic flood models such as SFINCS also require
information about the temporal evolution of events, namely
time series of both coastal water levels and rainfall fields.
For that, Maduwantha et al. (2025) used the time series of
historical events to generate new time series for the synthetic
event set. For each synthetic event, the time series of a histor-
ical event is selected randomly accounting for their proximity
in the joint probability space, and thus accounting for dif-
ferences in the temporal and spatial characteristics of these
events depending on their magnitude. The historical event
is then rescaled to the desired magnitude of the synthetic
event. The rescaled NTR time series is then combined with a
mean sea-level value and a tidal curve while accounting for
seasonality. The NTR hydrograph (i.e., time series) and the
selected tidal curve are combined by selecting the lag from
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the observed events in order to account for the tide-surge in-
teraction. Likewise, the synthetic rainfall field is combined
with the synthetic water level hydrograph selecting a time
lag between peaks based on the observed historical events.
The synthetic compound events were validated by compar-
ing observed and simulated distributions of key event char-
acteristics (e.g. magnitude of the peaks, duration, times lags,
intensities) and dependencies among them, finding a good
agreement between observed and simulated events. Further
details about the methodology used to generate the synthetic
compound events can be found in Maduwantha et al. (2025)
and the codes in Maduwantha (2026).

Of the 5000 synthetic compound events used, 25 lie along
the 100-year (1 % AEP) isoline (i.e. with a 1 % probability
of happening any given year; Fig. 2) To further investigate
differences in flood hazard estimations between approaches,
we also define a “design event” from all the 100-year events
following the “most likely” approach for multivariate events
(Jane et al., 2022; Moftakhari et al., 2019). This approach se-
lects one event in the isoline based on the density of observed
events along it (Salvadori et al., 2011), identifying this event
as the most representative scenario (“most likely””) among
the equally probable combinations along the isoline. The wa-
ter levels at the Delaware River boundary of the model are
also affected by the tidal variability, which is periodic and
thus its probability is not included in the multivariate ex-
treme method of Maduwantha et al. (2024) for stochastic
variables. We estimate the likelihood of tidal levels based on
the predicted tides of the 19-year period from 2003 to 2021
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to include long-term tidal variations such as the perigean and
nodal cycles (4.4 and 18.6 years). Predicted tidal levels are
generated based on the annual harmonic analysis performed
by Maduwantha et al. (2024) including nodal corrections es-
timated from astronomical parameters (see Codiga, 2011 for
further information about the tidal harmonic analysis using
UTide). We focus only on the likelihood of high tide peaks
since flooding is more likely at these levels, but it is important
to notice that the synthetic events are generated by combin-
ing the NTR peak and the high tide peak accounting for the
historical distribution of time lags, and thus accounting for
tide-surge interactions (Maduwantha et al., 2025).

The tidal regime in our study region is mixed semidiurnal,
with two high tides per day, but one is higher than the other.
We calculate the Mean Higher High Water (MHHW) level
following the definition by the National Oceanic and Atmo-
spheric Administration (NOAA) to provide an average level
of the largest tidal level that happens once a day. MHHW is
estimated as the average of the higher high water peaks of
each day over a specified period, which in our case is the
19-year period from 2003 to 2021 (instead of the National
Tidal Datum Epoch (1983-2001) used by NOAA), in order
to provide an updated estimate of MHHW and better repre-
senting present-day tidal conditions (Fig. 3). Although the
largest variability of tidal levels is at daily scale, tidal high
waters also vary at fortnightly, seasonal, and interannual time
scales. Therefore, we also estimate the mean spring tidal lev-
els as the average of the largest high-water levels every 14d
and the average “king tide” as the mean of the annual largest
tide over the 19-year period (Fig. 3).

Previous studies pointed to periods of increases in both
high-tide flooding (Thompson et al., 2021) and extreme
coastal flooding (Enriquez et al., 2022) caused by the nodal
and perigean modulations of high-tide levels. Although these
modulations are at longer time scales (4.4 and 18.6 years),
the next peaks of both cycles will occur between 2025 and
2034 for diurnal and semidiurnal regimes. Since the tidal
regime in our study site is mixed semidiurnal, the peaks of
these two long-term tidal cycles are expected to occur within
that period. To evaluate potential impacts of the long-term
tidal modulations on the compound flood analyses, we es-
timate the 4.4- and 18.6-year tidal cycles following the ap-
proach of Enriquez et al. (2022) for the tide-gauge records
of Philadelphia. We fit a least-squares regression to the an-
nual king tidal levels (Eq. 1) of the last 60 years of record as
suggested by Haigh et al. (2011).

H(t) = 21 . 2w
(t) =B+ B1 (1) + Bz cos <ﬂt) + By sin (ﬂt>

+ Bacos (ot ) + pssin | =t ()
45\ 186 S 1856
Where H (¢) are the king tides of each year ¢, By is a constant

term, B is the linear term, B> and B3 are the amplitudes of
the perigean cycle and f4 and B5 are the amplitudes of the
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Figure 3. Histogram of tidal high water levels over the last 19
year period from 2003 to 2021. Black lines show the tidal levels
of MHHW, Mean Spring Tide, and Mean King Tide (defined as the
largest annual tide). Coloured lines show as an example the largest
high tide levels of the tidal curves selected for the synthetic events
shown in Fig. 2b—d, and two additional synthetic events (#605 and
#3354) discussed in the results section. Tidal levels are referenced
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nodal cycle. Based on the fitted regression, we estimate the
amplitudes of both the perigean and nodal cycles, and the
timing of the next peak of both cycles for our study region;
this provides a better estimation of the present-day probabil-
ity of large astronomical tides.

3.2 Flood Model

We use the dynamic flood model SFINCS (Super-Fast INun-
dation of CoastS), which was designed specifically for sim-
ulating flooding from multiple flood drivers (Leijnse et al.,
2021), since we are interested in capturing interactions be-
tween rainfall and coastal water levels as well as the effects of
spatio-temporal variability of compound events on the flood
response. SFINCS is a reduced-complexity flood model that
balances computational efficiency with accuracy, making it
a perfect candidate to simulate thousands of events at a re-
duced computational cost.

The municipality of Gloucester City is encircled by the
catchments of Newtown Creek and Little Timber Creek, for
both of which discharge data is unavailable. Therefore, we
define the SFINCS model domain (Fig. 1) to cover the catch-
ments of these two creeks by their 14-digit hydrologic units
from the NJDEP Bureau of GIS (New Jersey Department of
Environmental Protection, Bureau of Geographic Informa-
tion Systems, 2021; Table S1 in the Supplement). This do-
main encompasses all runoff that could potentially lead to
pluvial flooding in the study area or fluvial flooding from
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the creeks. We define an open boundary along the Delaware
River where the water level boundary conditions are given.
The inland boundaries of the model domain are defined as
“outflow” to allow any water flow to exit the domain. We
use the subgrid approach of SFINCS with a dual resolution
of 10m (758 904 cells) and 1 m (147 450 698 cells) and the
Digital Elevation Model (DEM) of Coastal National Eleva-
tion Database (CoNED) from the U.S. Geological Survey
(U.S. Geological Survey, Earth Resources Observation and
Science (EROS) Center, 2018; Fig. S1), which has a hor-
izontal resolution of 1 m and a vertical accuracy of 10cm
(Danielson et al., 2016). This DEM at 1 m is aggregated us-
ing the median to 10 m in ArcGIS pro-3.2.0. We use spatially
varying surface roughness based on land cover data from the
NIDEP Bureau of GIS (Table S1), converting land classifi-
cations into Manning’s coefficients based on guidance from
the U.S. Army Corps of Engineers (USACE, 2021). Water
level boundary conditions are provided as time series at the
location of the Philadelphia tide-gauge and the model inter-
polates them along the open boundary of the Delaware River.
Rainfall forcing is applied as spatially varying fields, with
the same resolution as the AORC data (Fig. 1); SFINCS in-
terpolates these onto the model grid resolution. The model is
run with the advection term neglected, solving the local in-
ertia equations. We use the GPU version of SFINCS and run
the 5000 simulations on an Intel(R) Core (TM) i7-13700KF
CPU and NVIDIA GeForce RTX 4080 GPU. The outputs of
the simulations at 10 m resolution are downscaled to 1 m res-
olution using MATLAB 2023a.

Validation and calibration of flood models is a difficult task
due to the common lack of observed flood data worldwide
(Merz et al., 2024; Molinari et al., 2019). This is especially
true for under-resourced regions; but the lack of observed
flood data is also an issue in developed countries and more
noticeable in the case of pluvial flood events, which are the
most frequent in our study area of Gloucester City (Hino and
Nance, 2021).

To address the challenges of flood model validation
in data-scarce environments, we conducted an extensive
search for observational data in Gloucester City. We eval-
uated a wide range of sources, including satellite imagery,
high-water marks, FEMA reports, NOAA’s Storm Events
database, local news articles, and crowd-sourced platforms
such as MyCoast and Twitter. Although conventional data
sources provided limited information, we identified and sim-
ulated three documented flood events (2009, 2019, and 2020)
for model validation. As part of this process, we evaluated the
model outputs when including infiltration, finding an overes-
timation of infiltration and underprediction of flooding using
the Curve Number method. Based on this and the high imper-
viousness of the urban area, infiltration was excluded from
the final model configuration. Additionally, the known flood-
prone areas identified by local authorities (Smith, 2023) were
well captured by our 10-year flood hazard map. This multi-
source approach provides the most robust validation feasible
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for this site given current data availability. A detailed descrip-
tion of the model validation is included in the Supplement.

4 Results

4.1 Differences in flood response from events with the
same (joint) probability

We simulate flooding from 25 events with a 1 % AEP (1 %
chance of occurring in any given year) that have different
combinations of the magnitude of rainfall and NTR peak,
but also different temporal and spatial evolutions and are
combined with different tidal curves (Fig. 2). We find that
the floodplain of each of these 1% AEP events is different
(Fig. S6), resulting in very large differences in both flood
extent and depth between some of the events (Fig. S6). In
Fig. 4a, we show the frequency of flooding at each cell (1 m?)
from all 25 1 % AEP events; a frequency of 1 indicates that
the particular area is flooded from all 25 events and a fre-
quency near zero indicates that this area is only flooded from
one or few of the 25 events. Certain areas scattered through-
out the municipality experience flooding during all events
with a 1 % chance of occurring in any given year (1 % AEP;
green areas in Fig. 4a). However, a larger area is flooded
only by a few of these events, which shows that selecting
only one event with 1 % AEP for estimating flood hazard can
introduce large uncertainties in exposure (and subsequently
risk). Areas flooded only from a few 1% AEP events are
mainly along the Delaware River and creeks, where both
flood drivers interact. In contrast, pluvial hot spots, i.e. re-
gions that are not hydrologically connected to the Delaware
River or creeks and thus rainfall is the only flood driver, ex-
hibit notably less variability in flood extents and water depths
between the different events of 1 % AEP. The variability of
flooding in pluvial hotspots is more clearly observed by com-
paring the flood hazard maps across the 25 events presented
in Fig. S6.

We also analyze the variability in water depths using the
standard deviation between the flooding from all 25 events
of 1% AEP in all model cells (Fig. 4b). Larger standard
deviations in water depth exist in regions where all events
of 1% AEP produce flooding, with maximum values of ~
0.8 m. Larger variability of water depths also exists in coastal
regions, where both flood drivers interact, while small varia-
tions occur in pluvial hotspots (see also Fig. S6).

The largest and smallest flooding, in terms of flood extent
and volumes, are produced by events that have almost the
same 18h accumulation rainfall and NTR peak, 59.18 mm
and 1.86m and 57.18 mm and 1.88 m respectively, and thus
lie very close to each other on the 100-year (1 % AEP) iso-
line (Fig. 2c and d). However, the NTR hydrographs of these
events are different, with one of them lasting for several
hours with sustained large water levels (Fig. 2c) while the
other is shorter and with lower water levels (Fig. 2d). In addi-
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poral evolution and to have water level peaks that differ by
~ (0.5 m, which combined leads to the large differences in
flood response. Although the tidal curve combined with the
1% AEP event that produces the largest flood might appear
“extreme”, the analysis of the long-term modulations of the
tide reveals that this king tide level was reached several years
earlier in the current nodal cycle (Fig. 5). By extending the
fitted long-term modulation, we show that the tides are cur-
rently in the ascending phase of both nodal and perigean cy-
cles, with a peak expected in 2026. As a result, the likelihood
of the tidal level of this particular synthetic event is higher
over the coming years.

These results show that the variability of the NTR hydro-
graph, together with the variability of the tidal curve, have
very large effects on the resulting flooding since events with
almost equal NTR peaks can produce very different flooding.
The topography also plays an important role (Fig. S1); when
the water level at the Delaware River boundary exceeds the
elevation of the coastline, the large low-lying region behind it
floods. Thus, small increases in water levels along the hydro-
graph can cause large changes in flood extents when certain
thresholds are exceeded.

We also compare the flooding arising from all events with
a 1 % AEP with the “most likely” event (i.e. “design event”)
in order to assess the uncertainties related to the use of a sin-
gle design event when assessing flood hazards. This is com-
monly done when following the event-based approach for
compound flood hazard modeling. In terms of flood extent
and volumes (Fig. 6), most of the events with a 1 % AEP (17
and 19 of the 25, respectively) produce larger flooding than
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Figure 5. Annual king tide levels (as the maximum tidal level) at
the tide-gauge of Philadelphia used in this study. Estimated long-
term variability of king tides (a) from the combined nodal (18.6-
year) and perigean (4.4-year) cycles including prediction of future
combined peak of these long-term cycles expected for 2026; (b)
separated nodal (18.6-year) and perigean (4.4-year) cycles for the
historical and future period. Tidal levels are referenced to NAV 88
datum.

the “most likely” design event. However, there are substantial
spatial variations between events, as some can produce larger
flooding in some areas and smaller flooding in other areas
(not shown). We calculate the total flood extent and volume
of all 5000 events to estimate the empirical return periods of
these two flood metrics (Fig. 7). Based on the empirical dis-
tribution, the “most likely” event has a return period of 38
years in terms of extent and 33 years in terms of total flood
volume. 20 of the events with 1 % chance of happening in
any given year have return periods < 100 years (> 1 % AEP,
> 1% chance of happening in any given year) in terms of
total flood extent, while only 12 events have return periods
< 100 years in terms of total flood volumes. This shows that
using a single design event when assessing compound flood
hazards can lead to large uncertainties in both flood extent
and depth, often resulting in an underestimation of the extent
in our case study.
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4.2 Response-based flood hazard

We estimate the response-based flood hazard map by cal-
culating the empirical distributions of water depths at each
model cell (of 1 m?) and show the water depth with a 1 %
chance of happening in any given year (1 % AEP; Fig. 6).
This 1 % AEP response flood hazard can thus be produced by
different events in different regions. Comparing the response
flood hazard to the flood hazard of the different events with
a 1% AEP, the response flood hazard has generally larger
flood extents and water depths, with a few exceptions. In
the 1% AEP response flood hazard map, there is a larger
area in the south of Gloucester City facing the Delaware
River (Fig. 6) with water depths up to 1 m. However, this
region is only flooded by a few of the events with a 1%
1 % AEP (Fig. 4). In contrast, the flood hazard in the north-
ern Delaware region from the response-based flood hazard
map is similar to the region flooded by all the events with
a 1% AEP. In this region, the event with a 1% AEP that
causes the largest overall flooding (Fig. 2¢) also produces
more extensive flooding. This might be caused by the rel-
atively longer hydrograph of that event combined with a
larger-than-average king tide. Comparing the differences be-
tween the response-based and event-based flood hazard in
the pluvial hotspots (areas not hydrologically connected to
the Delaware River), only one of the events with a 1 % AEP
causes larger flooding than the response-based approach. In
the northeast region of the domain, ten of the events with a
1% AEP (1 % chance of happening in any given year) pro-
duce larger flooding than the response-based 1 % AEP flood-
plain. This can point to effects of the spatial variability of
rainfall fields between events, which are masked in the joint
probabilities because these are based on the 18 h accumulated
average rainfall in the catchment.

We trace the events that produce the response-based flood
hazard of 1 % AEP and group them by their corresponding
return periods based on the joint probabilities of flood drivers
(Fig. 8). This helps identifying the types of events causing
the 1 % AEP water depth in different areas of our study site.
Across most of the study domain, and especially in the urban-
ized region in the centre of the city, events with joint AEPs
much higher than 1 % can lead to the 1 % AEP water depth
as identified from the response-based approach. Most of the
water depths with a 1 % AEP along the south coastal region
of the city are produced by a single compound event with a
~ 50 % AEP (50 % chance of happening in any given year
or 2-year return period; yellow) and another event with a
~ 7% AEP (7 % chance of happening in any given year or
14-year return period; light orange) based on the joint proba-
bility distribution of NTR and 18 h accumulated rainfall. Al-
though the NTR peak of these events is around 1 m, and thus
much smaller than other events, these two events have long
hydrographs with sustained water levels for several hours and
combined with tidal levels of around 1m can produce the
1 % AEP water depths in that area (Fig. S7). The tidal lev-

https://doi.org/10.5194/nhess-26-571-2026

els of these two events (#605 and #3354 in Fig. 3) exceed
the MHHW but remain below the mean spring tides, making
them likely to occur on a fortnightly basis. The 1 % AEP wa-
ter depths in regions that are only affected by pluvial flood
events are generally also caused by events with > 2 % AEPs.
Notably, there are two pluvial hotspots in the city region pro-
duced by events with > 10% chance of happening in any
given year (less than 10-year return period or > 10 % AEPs).
These are produced by two different events, both with AEPs
of ~ 12 % based on the joint probability distribution. More
detailed assessment of the rainfall fields of these events re-
veals that they have larger rainfall over that area of the model
domain, which gets masked when averaging the rainfall over
the entire catchment (Figs. S8-S9).

5 Discussion

Much of the research has been dedicated to improving ex-
treme statistics of compound events and to quantifying the
uncertainties of extreme value analysis of flood drivers (e.g.,
Lucey and Gallien, 2024), assuming that the probability of
the event approximates the probability of the resulting flood-
ing. However, little research has been focused on analyz-
ing the latter, specifically for compound flooding, in which
more than one driver is involved, and thus different combi-
nations of flood driver magnitudes have the same joint prob-
abilities. Here, we have assessed how linear is the relation-
ship between the probability of the event and the probability
of flooding for a case study in Gloucester City (NJ, U.S.)
by comparing the flood hazard with a 1 % AEP (1 % chance
of happening in any given year) based on the event- and
response-based approaches. We find that the 1 % AEP water
depth can be produced by different events in different parts
of the city and that the AEPs of these events are often much
larger than 1 %. This means that the relationship between the
probability of the event and the probability of flooding does
not follow a one-to-one relationship. These results are in line
with previous studies that addressed the same question for
rainfall-driven flooding (Baer, 2025; Perez et al., 2024; Win-
ter et al., 2020). We find that the region of Gloucester City
with the largest 1 % AEP flood hazard is the coastal zone
and it is caused by events with > 5% chance of happen-
ing in any given year (> 5 % AEP and less than 20-year re-
turn period) based on the joint probability distribution of 18 h
rainfall accumulation and NTR peaks. However, these events
(Fig. S7) exhibit sustained high NTR levels, which, when
combined with tidal levels larger than MHHW, can result in
greater water depths than most of the analyzed events with
1 % chance of happening in any given year (1 % AEP). Simi-
larly, the regions impacted mainly by pluvial flooding also
tend to experience the 1% AEP water depths from events
with > 10 % AEP (> 10 % chance of happening in any given
year or less than 10-year return period). In this case, the
events producing the 1 % AEP water depths in the city show
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spatial variations in their rainfall fields, with larger precipi-
tation rates over the urbanized city region. However, the spa-
tial variability of the rainfall fields is smoothed when calcu-
lating the average rainfall in the catchment to perform the
extreme value analysis, and together with small NTR peaks,
these events get assigned high AEP values (or short return
periods).

These results show that the response-based approach leads
to better representation of flood hazard at the household
level. It accounts for the temporal variability of NTR hydro-
graphs, combination with tides and mean sea level, and the
spatial variability of rainfall fields. All of those are not ex-
plicitly accounted for in extreme value models to derive joint
AEPs or joint return periods for the event-based approach.
Nevertheless, some applications, such as emergency manage-
ment, might need event-based flood hazard maps.

Event-based flood assessments commonly use a single de-
sign event with specific temporal and spatial structure, thus
neglecting the variability in the temporal and spatial evolu-
tion of the flood drivers between different events. We have
shown that using a single design event with a 1 % chance of
happening in any given year (1 % AEP) can introduce large
uncertainties in both flood extents and water depths that arise
from the different combinations of the drivers’ magnitude but
are mostly due to differences in temporal and spatial evolu-
tion between events. Events of almost equal magnitude but
different spatial rainfall fields and temporal distribution of
the water level hydrographs can produce very different flood
extents and water depths. The disparities in resulting flood-
ing are more pronounced in the coastal areas of our study
domain, where both flood drivers interact and are further in-
fluenced by changes in tidal variability. Considering the vari-
ability of the tide, rather than relying on a single MHHW
level is also crucial, as tidal fluctuations over longer time
scales (such as spring and king tides) can influence coastal
flooding. This is especially relevant now, as tides are in the
ascending phase of their long-term cycles, which are pro-
jected to reach their peaks within this decade, with the first
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peak expected as soon as 2026 at our study site. This finding
highlights the necessity of taking into account the variability
in the tidal levels.

Ignoring the variability in the spatio-temporal structure be-
tween extreme events by relying on a single design event can
lead to significant uncertainties in flood exposure, which in
turn can result in substantial uncertainties in flood risks. One
way to address this limitation when using the event-based
approach is to employ ensembles of events that account for
variations in the spatial and temporal structure of the flood
drivers. From that one can produce an ensemble of flood haz-
ard maps for a desired return period, similar to probabilistic
flood maps but for a given AEP (or return period).

Our study has several limitations that highlight areas for
further research. We focused on a small study site with a
particular topography that is affected by two flood drivers
with associated variabilities. Thus, the results cannot be ex-
trapolated to other coastal regions. However, we expect that
our general conclusions are transferable to other regions.
For example, the importance of temporal and spatial vari-
ations of the flood drivers has been pointed out by other
studies in Germany (Kupfer et al., 2024; Santamaria-Aguilar
et al., 2017) and in the UK (Quinn et al., 2014), showing
that changes in water level hydrographs can produce large
changes in flood hazards. Likewise, differences in rainfall-
induced flooding between the event-based approach and the
use of synthetic storms that capture the temporal and spa-
tial variability of rainfall fields between events have been
shown to significantly influence flood hazard estimates in
the East and Gulf coasts of the US (Baer, 2025; Perez et
al., 2024) and Austria (Winter et al., 2020). Another limi-
tation of our study is that we use a synthetic event set devel-
oped using a data-driven statistical framework, which is lim-
ited to observed events. Although the statistical framework
used to generate the synthetic events account for more de-
pendencies between parameters that characterize the events
(e.g. time lags) than other previous frameworks (Couasnon
et al., 2018; Moftakhari et al., 2019), it may not fully cap-
ture the full range of the potential spatio-temporal variabil-
ity of flood drivers. Tropical cyclones might also be under-
represented in the historical sample since their frequency of
occurrence is very low. This limitation can be overcome by
using synthetic tropical cyclones that are dynamically down-
scaled to the study site (e.g., Gori et al., 2020) Methods
such as the JPM, which expand the storm climatology, en-
able the generation of a larger set of tropical cyclones, and
capture greater variability in their spatio-temporal character-
istics compared to historical records. However, these meth-
ods are computationally demanding, as flood drivers must be
generated in advance of the flood assessment using hydro-
dynamic models (see e.g. Bartlett et al., 2025; Gori and Lin,
2022; Grimley et al., 2025). Further research is needed to
evaluate how different synthetic event generation approaches
affect flood hazard estimates. Given the high computational
demands of JPM, its application across large coastal areas
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may be impractical, making data-driven approaches like the
one used in this study a more efficient alternative. Simi-
larly, other data-driven techniques, such as stochastic storm
transposition, are increasingly being adopted to generate syn-
thetic rainfall fields for assessing rainfall-driven flood haz-
ards (Baer, 2025; Lehman, 2023; Perez et al., 2024; Winter et
al., 2020). However, further investigation is needed to ensure
that this method adequately preserves the interdependencies
between coastal and rainfall processes when generating syn-
thetic compound events for coastal flood assessments. A po-
tential source of uncertainty in the variability captured by our
synthetic event set arises from not disaggregating river- and
coastal-driven components of the NTR. In our mid-estuarine
study area, both processes contribute to the NTR, along with
their nonlinear interactions. Separating these contributions
would introduce considerable complexity due to their tightly
coupled dynamics. Our approach is supported by recent work
from McKeon and Piecuch (2025), who investigated the rel-
ative influence of coastal and fluvial drivers in the Delaware
Estuary above flood thresholds. They found that most events
observed at the Philadelphia tide gauge were primarily driven
by coastal processes (e.g., tides and storm surge), but oth-
ers resulted from river discharge alone or a combination of
both mechanisms. Another limitation of the synthetic event
set used is the reliance on mathematically defined thresh-
olds for event selection, rather than thresholds based on ac-
tual flood impacts. This approach may exclude relatively fre-
quent, lower-magnitude events that fall outside the statisti-
cal tails of the drivers’ distributions but are still capable of
causing localized flooding, potentially influencing response-
based flood estimates. In our study, we evaluated the flood re-
sponse of events near the selected thresholds and found that
several produced no flooding, while others resulted in only
minor inundation, with empirical return periods between 1
and 2.8 years. As a result, the selected thresholds did not af-
fect our response-based flood estimates; however, this may
not hold true in other regions with different hydrologic or
exposure characteristics.

Our flood model approach also has some limitations. First,
we are neglecting the stormwater system and thus we might
overestimate flooding and neglect the fact that some areas
might experience flooding due to backwater effects in the
system. Stormwater systems are typically designed for events
with low to moderate return periods (often the 10-year event,
or 10 % AEP event) while we have focused on the 1 % AEP
(100-year) flood hazard. Such events would likely exceed the
capacity of the stormwater system. Nevertheless, the exclu-
sion of stormwater infrastructure may have a greater impact
on the results for smaller, more frequent events, potentially
leading to an overestimation of flooding in cases where the
existing drainage system would likely manage the runoff.
However, this should not affect the response-based estimates
for the 1% AEP since the empirical distribution will not
change for rare large events. In addition, we neglected in-
filtration based on the validation of the model for one single
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event for which we have information on reported flooding at
a single location. Although most of our study domain is ur-
ban and thus covered by impervious surfaces, we might un-
derestimate infiltration in areas with larger amounts of veg-
etation such as areas around the creeks. The bathymetry of
the creeks might also not be very accurately represented in
the CoNED DEM used (Fig. S1). The limited depth repre-
sentation of creek channels, combined with the exclusion of
infiltration processes, likely results in an overestimation of
floodwater depths along the margins of the creeks. Both the
validation of the flood model and calibration of parameters
and processes such as infiltration can be improved if more
observed flood data from past events is available. The lack
of this data is a common problem worldwide (Merz et al.,
2024; Molinari et al., 2019) and it can be overcome by sys-
tematically collecting flood data after flood events or making
available datasets such as claims from the National Flood In-
surance Program (Sebastian et al., 2021).

6 Conclusions

Coastal communities are experiencing growing flood hazards
due to rising sea levels, more frequent extreme events, and an
increase in population and assets in flood prone areas. Con-
sequently, more robust flood hazard estimates are required
to develop effective adaptation strategies to mitigate flood
impacts. Although significant attention has been focused on
reducing uncertainties in the estimation of probabilities of
flood drivers, little is known about how well the probability
of compound events approximates the probability of flood-
ing. Here, we addressed this issue by comparing flood hazard
derived from the event- and response-based approaches for a
case study in Gloucester City (NJ, U.S.), which is frequently
affected by pluvial and coastal flooding.

Our findings reveal that the 1 % AEP flood hazard derived
from the response-based approach can be caused by dif-
ferent events in various parts of the city, with AEPs much
larger than 1 % (return periods < 100-year). In the coastal
area, events with > 5% chance of occurring in any given
year (> 5 % AEP or less than 20-year return period) can pro-
duce a 1 % AEP water depth if the NTR hydrograph leads to
prolonged high water levels when combined with tidal lev-
els between the MHHW and average spring tides. In this
context, our findings are in line with previous studies that
highlighted that the long-term variability of tides can modu-
late both minor and extreme flooding (Enriquez et al., 2022;
Thompson et al., 2021). We find that considering tidal vari-
ability is crucial, rather than relying on the assumption of
a constant MHHW, as flooding from both low and high re-
turn period events can differ substantially depending on the
tidal level considered. Tides are currently in the ascending
phase of the nodal and perigean cycles, which are expected
to peak in 2026 in our study region, making it more likely
that storm surges coincide with high tide levels, thus increas-

Nat. Hazards Earth Syst. Sci., 26, 571-586, 2026

ing the probability of flooding. Similarly, not accounting for
the variability in the spatial pattern of rainfall fields between
events, which is masked when using catchment average val-
ues for extreme value analysis, can underestimate pluvial
flood hazards. This study highlights the importance of con-
sidering the variability of the temporal and spatial structure
of extreme events in flood hazard estimates. The traditional
method of using a single design event in event-based assess-
ments can lead to considerable uncertainties in flood extent
and water depth, especially due to varying combinations of
flood drivers. The response-based approach, which accounts
for factors like tidal variations and the full range of the vari-
ability of temporal and spatial distributions at event scale,
provides a more robust representation of flood hazards. How-
ever, event-based maps remain essential for some applica-
tions such as emergency management. Using ensembles of
events that account for these variations would enhance flood
hazard estimates derived from the event-based approach.

While our results are not directly applicable to other re-
gions, we expect similar conclusions elsewhere regarding the
impacts on compound flood hazards from neglecting the tem-
poral and spatial variability of flood drivers. Future work
should focus on producing more robust flood hazard esti-
mates by using many compound events including their tem-
poral and spatial evolution rather than focusing on single de-
sign events for given AEPs or return periods. Similarly, fu-
ture projections of flood hazards should also account for po-
tential changes in the temporal and spatial evolution of events
rather than focusing only on changes in their magnitude. Ad-
ditionally, future research should aim to evaluate how dif-
ferent methods for generating synthetic events influence the
resulting flood hazard estimates. Such comparisons can help
inform best practices for generating more reliable flood haz-
ard assessments under both current and future climate condi-
tions.

Code availability. The SFINCS model is available at
https://sfincs.readthedocs.io/en/latest/example.html#executable
(last access: 3 December 2025). The codes used for these analyses
are available on GitHub (https://github.com/CoRE-Lab-UCF/
MACH-Compound-Flooding/tree/main/Santamaria- Aguilar_et_
al_2025_Event_Response, last access: 4 November 2025). The
codes used for generating the synthetic events are available on
Zenodo (https://doi.org/10.5281/zenodo.18216090, Maduwantha,
2026).

Data availability. The hydrologic units are avail-
able https://gisdata-njdep.opendata.arcgis.com/datasets/
0259929424254a4ea33e689941559¢3c_17/explore (New
Jersey  Department of Environmental Protection, Bu-
reau of Geographic Information Systems, 2021). The
DEM is available at https://www.usgs.gov/special-topics/
coastal-national-elevation-database- applications- project/data

(U.S. Geological Survey, Earth Resources Observation and
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Science (EROS) Center, 2018), and land cover data is available
at https://gisdata-njdep.opendata.arcgis.com/documents/njdep::
land-use-land-cover-of-new-jersey-2015-download/about  (New
Jersey Department of Environmental Protection, Division of Infor-
mation Technology, Bureau of Geographic Information Systems,
2020).

The SFINCS model files generated and used in this study are
available at https://doi.org/10.5281/zenodo.14251309 (Santamaria-
Aguilar, 2024), and the 5000 flood simulations are available
at https://doi.org/10.5281/zenodo.15047845 (Santamaria-Aguilar,
2025a) and https://doi.org/10.5281/zenodo.15065555 (Santamaria-
Aguilar, 2025b).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/nhess-26-571-2026-supplement.
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