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Abstract. Appropriate management of coastal flood risk is
critical for creating resilient communities. An important part
of this is estimating what buildings will become uninhabit-
able due to a flood event such as a tropical cyclone. To in-
crease the accuracy of these estimations, habitability func-
tions are developed to quantify the relationship between hy-
drodynamic hazards and the probability of a building becom-
ing uninhabitable following Hurricane Irma. Hazards like
maximum flood depths are determined by modeling Hurri-
cane Irma flooding in Delft3D-FM coupled with the wave
model SWAN. These modeled hazard levels are then ex-
tracted at building locations where Location Based Services
(LBS) data provide information on buildings that were un-
inhabitable following Hurricane Irma. The developed habit-
ability functions provide valuable insights into how different
hydrodynamic parameters and regression models perform for
estimating building habitability, where maximum unit dis-
charge is generally the best predictor of habitability. Fur-
thermore, we find that while wooden structure habitability
is significantly influenced by hazard level, concrete structure
habitability is not. These findings provide novel methods for
estimating coastal flooding induced building uninhabitabil-
ity, enhancing how planners can prepare for floods.

1 Introduction

Coastal flooding caused by tropical cyclones is a significant
driver of structural damage, economic loss, and both short-
term and long-term migration worldwide. Sea level rise and
precipitation intensification resulting from climate change is

expected to exacerbate the damage and loss caused by trop-
ical cyclones (Gori et al., 2022; Hughes and Zhang, 2023;
Mendelsohn et al., 2012; Woodruff et al., 2013). The num-
ber of people living in low-elevation coastal zones is also
increasing, with over a billion people expected to be living
in these zones by 2060 (Neumann et al., 2015). In the United
States, tropical cyclones have resulted in almost 7000 deaths
and over USD 1.4 trillion in costs (CPI-Adjusted) since 1980
(Smith, 2020). The significant losses due to tropical cyclones
and increased risk posed by climate change highlight the
need for improved planning and adaptation for coastal areas
subject to tropical cyclones.

Common tools for managing flood risk include dam-
age functions or fragility functions to estimate and predict
the structural damage sustained during a flood event (Diaz
Loaiza et al., 2022; Pistrika and Jonkman, 2010; Suppasri et
al., 2013; Tomiczek et al., 2013; Tsubaki et al., 2016; Xu et
al., 2023). Typically, damage functions estimate the percent
of a building damaged, while fragility functions estimate the
likelihood of a building reaching a specific damaged state.
These functions most commonly estimate structural dam-
age as a function of flood depth; however, other hydrody-
namic parameters such as flow velocity, unit discharge, and
flood duration have also been used to estimate damage due
to coastal flooding (Charvet et al., 2015; De Risi et al., 2017;
Diaz Loaiza et al., 2022; Nofal et al., 2020; Xu et al., 2023).
Many of these functions also incorporate structural compo-
nents to increase the accuracy of predicting physical damage
to buildings (Charvet et al., 2015; De Risi et al., 2017; Pa-
protny et al., 2021; Tomiczek et al., 2013; Xu et al., 2023).
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While damage functions are helpful for predicting struc-
tural damage, they are generally applied to derive economic
losses following a flood event (Pistrika and Jonkman, 2010).
Paul et al. (2024) point out the use of post-disaster economic
loss to characterize risk often incorrectly emphasizes wealth-
ier people as being at greater risk from disasters, when pre-
vious studies have shown lower income groups are impacted
more by natural disasters (Fothergill and Peek, 2004; Halle-
gatte et al., 2020). Fragility functions offer an improvement
over damage functions in this context by predicting what
state a building is in following an event such as “no dam-
age”, “moderate damage”, or “complete damage” (Charvet
et al., 2015; De Risi et al., 2017), but these functions are still
focused only on structural damage. Assessing building habit-
ability rather than building damage following an event is one
option for providing a more equitable overview of coastal
flood risk and post-disaster recovery (Paul et al., 2024). Dif-
ferent factors such as structural components (number of sto-
ries, building material, etc.), power outages, school closures,
socioeconomic statuses, and access to other essential ser-
vices can influence if and when a building becomes habit-
able (Loos et al., 2023; Paprotny et al., 2021; Paul et al.,
2024; Suppasri et al., 2013; Thieken et al., 2005; Yabe et
al., 2020). However, physical damage to structures is often
the largest factor determining a building’s habitability (Paul
et al., 2024), showing the importance of flood hazard consid-
eration in predicting post-disaster building habitability.

Efforts have been made to quantify the influence of phys-
ical damages on post-disaster recovery (FEMA, 2024a, b;
Nofal et al., 2024; Yabe et al., 2020). Yabe et al. (2020)
utilized mobile phone data to estimate immediate and long-
term household displacement from Hurricane Irma, finding
that housing damage rates were strong estimators of house-
hold displacement 0d after Irma and housing damage rates
were only weakly correlated with displacement 160d after
Irma. This study relied on the Federal Emergency Manage-
ment Agency’s (FEMA) Individuals and Households Pro-
gram for estimating housing damage, neglecting the actual
flood hazard (Yabe et al., 2020). Furthermore, displacement
0d from an event is measuring evacuation rates rather than
building habitability. Nofal et al. (2024) transformed building
fragility curves to functional fragility curves by estimating
conditional probabilities of functionality states given differ-
ent damage states. While habitability is considered a part of
the functionality estimated by these curves, the conditional
probabilities used are derived from the authors’ judgement
and are not directly developed from flood depths (Nofal et
al., 2024). Hazus, a tool developed by FEMA, is capable
of estimating building habitability with hazard information
(FEMA, 2024a, b). The Hazus Hurricane Model estimates
building habitability with both demographic data and com-
puted structural damage derived from wind hazard informa-
tion (FEMA, 2024b). While the Hazus Flood Model also in-
corporates demographic data for estimating habitability, the
hazard information used is simply the area of a census tract
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with nonzero inundation (FEMA, 2024a). This exhibits a sig-
nificant knowledge gap in how varying levels of flood haz-
ards influence building habitability.

To improve coastal communities’ resilience to tropical cy-
clones, this study aims to uncover the relationship between
flood hazards and building habitability following Hurricane
Irma. Hurricane Irma made landfall in September 2017 in
the Florida Keys as a Category 4 hurricane before reach-
ing southwestern Florida as a Category 3 hurricane (Can-
gialosi et al., 2021), resulting in approximately USD 64 bil-
lion in damages (CPI-Adjusted) (Smith, 2020). In Florida,
water elevations reached 1.1 and 1.7 m above mean sea level
(MSL) at NOAA tide gages in Key West and Naples, respec-
tively. Overland, the Florida Keys and southwestern Florida
experienced maximum flood depths that exceeded 2 m (Can-
gialosi et al., 2021). In addition to storm surge, Irma caused
widespread destruction from wind and wave hazards, dis-
placing millions of people (Issa et al., 2018; Joyce et al.,
2019). Through Location Based Services (LBS) data col-
lected from cell phones, we know if and when many build-
ings were once again occupied following Hurricane Irma
(Swanson and Guikema, 2024). Combining this LBS dataset
with an integrated hydrodynamic-wave model of Hurricane
Irma, we draw upon previous methods for developing dam-
age and fragility functions and apply them to develop habit-
ability functions. These habitability functions offer new es-
timates of the probability of buildings being uninhabitable
following tropical cyclones, advancing current approaches to
quantifying flood-induced building uninhabitability.

2 Data and methods
2.1 Flood model development for Hurricane Irma

Coastal flooding caused by Hurricane Irma is modeled with
D-Flow Flexible Mesh (D-Flow FM) coupled with SWAN
(Simulating WAves Nearshore). Hydrodynamics are simu-
lated by D-Flow FM, which implements a finite volume
solver to calculate unsteady flow with the non-linear shal-
low water equations to simulate storm tide resulting from
tidal and meteorological forcings (Deltares, 2022a). The
depth-averaged approach is used for this study. SWAN is a
phase-averaged wave model that simulates wave evolution
(Deltares, 2022b). These models are integrated together in
the Delft3D Flexible Mesh modeling suite via online cou-
pling, enabling hydrodynamic parameters from D-Flow FM
and wave parameters from SWAN to be exchanged every
coupling timestep.

The model developed for this study includes both Col-
lier and Monroe Counties. The extent of the model is from
12.94 to 32.84° N and 98.01 to 63.91° W (Fig. 1a). D-Flow
FM enables the use of an unstructured mesh for simula-
tions. The unstructured mesh created for this modeling has
a coarse resolution of 10km and is refined to 80 m in areas
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Figure 1. Overview of the entire model domain (a) and two locations of refinement for Collier (b) and Monroe (¢) Counties. NOAA tide and
wave stations are indicated with diamonds and squares, respectively. USGS storm tide sensors are indicated with circles.

with both coastal flooding during Irma’s landfall and LBS
data (Fig. 1b, c). For wave modeling, SWAN requires nested
structured meshes. Our SWAN model has a coarse 10 km res-
olution mesh spanning the entire domain with nested meshes
down to a refinement of 80 m for the same areas refined in
the D-Flow FM model.

Digital elevation models (DEMs) used for this flood mod-
eling come from NOAA’s National Centers for Environmen-
tal Information’s (NCEI) DEM Global Mosaic and the Gen-
eral Bathymetric Chart of the Oceans (GEBCO). The refined
areas of the flood model utilize 3 and 1 arcsec DEMs from
the NCEI’s DEM Global Mosaic (NOAA NCEI, 2022). The
coarser portions in the model use GEBCO’s 15 arcsec dataset
(GEBCO, 2023).

Spatially varying Manning’s coefficients of roughness are
used to account for bed friction in the model. These values
are derived from the 2019 National Land Cover Database
(NLCD) for the Contiguous United States (Dewitz and
USGS, 2024). These NLCD land cover values are then con-
verted to Manning’s roughness coefficients by taking the cor-
responding minimum Manning’s value listed in the Hydro-
logic Engineering Center’s River Analysis System (HEC-
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RAS) 2D User’s Manual (Hydrologic Engineering Center,
2021).

Meteorological forcings used for the flood model are wind
and atmospheric pressure fields. These fields are generated
with the Holland model (Holland, 2008; Holland et al.,
2010), which requires information on a tropical cyclone’s
path such as the coordinates of the eye’s path, maximum
wind speeds, and radius of maximum winds. The necessary
Hurricane Irma best track data come from the National Hur-
ricane Center’s revised Atlantic hurricane database (HUR-
DAT?2) (Landsea and Franklin, 2013), supplemented by the
Tropical Cyclone Extended Best Track Dataset (EBTRK)
that provides radius to maximum winds information (De-
muth et al., 2006). Together, these datasets and the Holland
model are used to develop a symmetric profile of Irma as
a spiderweb grid. Spiderweb grids convey the atmospheric
pressures, wind velocity magnitudes, and wind directions
used in the flood model on a polar grid, where the origin of
the grid represents the eye of the hurricane at each timestep
(Deltares, 2022a). A second Irma profile is also created to
account for asymmetries in the hurricane profile. This was
done by incorporating a dependency on the azimuthal angle
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into the Holland model used (Xie et al., 2006), enabling an
asymmetric Irma profile to be generated.

The default wind drag coefficient formulation in D-Flow
FM is utilized for determining the shear stress on the flow
due to wind forcings. This drag coefficient is based on the
Smith and Banke (1975) relationship, where the drag co-
efficient varies linearly from 0.00063 to 0.00723 for wind
speeds from 0 to 100ms~!. It was determined that the de-
fault SWAN drag coefficient profile, which relies on the Wu
(1982) relationship, is insufficient for this modeling, produc-
ing unreasonably low wave heights and periods. Therefore,
an increased drag coefficient profile is needed. For SWAN,
the increased drag coefficient relationship used is as follows:

2.012 x 1073,
(0.127U10 + 1.25) x 1073,

Ujp <6

Ujp=>6 M

- |
where Cp is the drag coefficient and Uy is the wind speed
10 m above the surface inms™! (Deltares, 2022b; Wu, 1982).
Due to the difficulty in prescribing a new drag profile in
SWAN, implementing this increased drag profile was instead
done by increasing the wind speed values by 25 % in the spi-
derweb grids used by SWAN. This 25 % increase to the wind
speeds corresponds to the same wind wave growth due to the
increased drag profile described by Eq. (1).

Tidal boundary conditions for the Atlantic Ocean and Gulf
of Mexico are located around the northern, eastern, and
southern boundaries of the domain where the bed elevation is
below mean sea level. Tidal constituents at these boundaries
are generated from the Oregon State University Tidal Inver-
sion Software (Egbert and Erofeeva, 2002), which are then
used as astronomical forcings at the boundaries.

2.2 Model validation

The validity of the model is assessed using water level mea-
surement from three NOAA tide stations and five USGS
storm tide sensors (Fig. 1), which have all been previ-
ously used when validating Hurricane Irma models (Asher
and Luettich, 2025; Dobbelaere et al., 2022; Li et al.,
2021; Musinguzi et al., 2022). The measurements from the
USGS sensors are converted from NAVD88 to MSL using
NOAA’s VDatum tool (http://vdatum.noaa.gov, last access:
30 October 2025). Two USGS sensors (FLCOL03148 and
FLCOLO03089) are located outside valid tidal areas and are
instead converted to MSL using the nearest valid tidal area in
VDatum. Additionally, modeled wave parameters are com-
pared to significant wave heights and peak wave periods
measured at the National Data Buoy Center (NDBC) station
42097. First the tidal boundary conditions are validated by
comparing the modeled water levels without meteorological
forcings against the predicted water levels. Then the devel-
oped Irma wind and pressure fields are implemented into
the model and the resulting water levels and wave param-
eters are validated against observations (Fig. 2). Four com-
binations of the symmetric and asymmetric Irma profiles are
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compared: the symmetric profile is used for both D-Flow FM
and SWAN (M1), the asymmetric profile is used for both D-
Flow FM and SWAN (M2), the symmetric profile is used for
D-Flow FM and the asymmetric profile is used for SWAN
(M3), and the asymmetric profile is used for D-Flow FM and
the symmetric profile is used for SWAN (M4). The root mean
square error (RMSE) between modeled and observed water
levels and wave parameters is determined for each model at
each of the locations shown in Fig. 1 (Table 1). To remain
consistent with the 30 min time resolution of the model out-
put, RMSE is calculated using observed data for each half
hour. The difference between maximum modeled and maxi-
mum observed water levels and wave parameters is also de-
termined at each station (Table 1).

Comparison of the four different models clearly shows the
symmetric Irma profile performs the best for modeling wave
parameters, where the two models that utilize a symmetric
profile for SWAN (M1 and M4) have the lowest RMSE and
differences in maximum modeled and maximum observed
significant wave height and peak wave period (Table 1). For
the six locations compared in Collier County, M1 and M3
have the strongest agreement between maximum modeled
and observed water level. M1 and M3 also perform best in
terms of RMSE at the six Collier County locations, with the
exception of the Naples station. At the Key West and Vaca
Key stations, M2 and M4 perform the best for both metrics
analyzed.

Two models are selected for developing habitability func-
tions based on these performance metrics. The M1 model is
used for Collier County and the M4 model is used for Mon-
roe County. The M2 and M3 models are not considered for
developing the habitability functions because the symmetric
Irma profile performed significantly better than the asymmet-
ric profile for modeling wave parameters in SWAN. Since the
habitability functions are developed using maximum values
of the model output, M1 is selected for Collier County to
minimize the difference between the maximum modeled and
maximum observed water levels at the six Collier County lo-
cations. Between M1 and M4, the M4 model performed bet-
ter for the Key West and Vaca Key stations, which is why the
M4 model is used for developing habitability functions for
Monroe County.

2.3 Determining building habitability following Irma

Whether or not a building was habitable directly following
Hurricane Irma is determined using Location Based Services
(LBS) and CoreLogic property data. LBS data are provided
by Veraset LLC and consists of “pings” that represent ex-
changes between mobile phones and a cellular network or
Wi-Fi. Each ping includes an anonymized user identification
number, latitude, longitude, and timestamp, as well as esti-
mates of horizontal accuracy and device type. Pings are fil-
tered and aggregated based on frequently visited locations
and time of day to identify each user’s home and workplace
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Figure 2. Storm tide comparisons between the measured and modeled water levels relative to MSL (a=h). Comparisons between the measured

and modeled significant wave heights (i) and peak wave periods (j).

(Swanson, 2023; Washington et al., 2024). The LBS data uti-
lized span 1 August 2017, until 3 October 2017. In total, there
are 18 505 identified home and work locations available for
Collier and Monroe Counties, where 16 769 of these are for
Collier County and 1736 are for Monroe County.

The recovery period for each user following Hurricane
Irma is determined using a Bayesian belief network (BBN)
in combination with anomaly detection methods (Swanson,
2023). The BBN incorporates contextual knowledge and
time-series data of each user’s daily location visits to esti-
mate the joint probability of a user’s presence at home or
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work on a given day prior to Hurricane Irma’s landfall. By
considering dependencies — such as the day of the week, prior
appearances, and visits to other locations on the same day
— the model identifies probabilistic patterns for all Florida
users and refines these priors with individual user data to
create personalized models of each user’s “typical” behavior.
Anomaly detection methods are applied to user data during
the period surrounding Hurricane Irma’s landfall to identify
anomalous patterns of behavior, such as being absent from
home or work or exclusively staying at home, that differ from
their previously typical appearance behavior. Recovery is de-
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Table 1. Goodness of fit for different combinations of symmetric and asymmetric Irma wind profiles.

Station RMSE ‘ Max Modeled — Max Observed

Ml M2 M3 M4 | M1 M2 M3 M4
FLCOLO03294 (Delnor-Wiggins State Park)  0.7399m  0.7412m  0.7399m 0.7412m | 0.5231m 1.5580 m 0.6311m 1.4999 m
8725110 (Naples) 0.6360m  0.5263m  0.6346m  0.5223m | 0.1006 m 0.9410 m 0.1624 m 0.8998 m
FLCOLO03148 (Hendersen Creek) 0.7124m 0.7147m 0.7124m 0.7146m | 0.5554 m 1.5808 m 0.6551 m 1.5095 m
FLCOLO03176 (Goodland) 0.7971m  0.7979m 0.7972m 0.7978m | —0.6510m 0.8384m —0.5378m  0.7520m
FLCOLO03089 (Faka Union Canal) 0.9599m 09602m 0.9599m 0.9602m | —0.1415m 1.5171m —0.0205m 1.4179m
FLCOLO03237 (Everglades City) 1.0048m 1.0126m 1.0049m 1.0124m | —0.0022m 1.2243m 0.0646 m 1.1682 m
8724580 (Key West) 0.3273m 0.2742m 0.3202m  0.2756m | —0.4986m —0.2728m —0.4363m —0.3207m
8723970 (Vaca Key) 0.3790m  0.3480m 0.3771m 0.3547m | 0.1510m —0.0187m 0.1581m —0.0353m
42097 (Sig. Wave Height) 1.1343m  1.3962m 1.3995m 1.1368 m | 0.2590 m —1.2070m —1.2360m  0.2870m
42097 (Peak Wave Period) 2.1652s 3.0023s  2.9965s  2.1453s —1.6600 s —3.5120s —3.5120s —1.6600s

fined as the date when a user’s anomalous behavior ends and
their visit patterns resemble their pre-landfall behavior for at
least three consecutive days. Greater details on identifying
recovery periods from LBS data are available in Swanson
(2023). Locations where users did not recover their previous
visit patterns by the end of 28 September 2017, 18d after
Irma’s landfall in Florida, are assumed to be uninhabitable
due to damages caused by Irma since essential services such
as power and schools were recovered by this date (Hodge
and Lee, 2017; Mitsova et al., 2018; Swanson and Guikema,
2024). This assumes that the reason a user did not return to a
location is solely because that location was damaged by Irma
beyond habitability. This assumption does not account for
other socioeconomic factors that may influence if and when
someone returns to a location. From this method for estimat-
ing habitability, we find that 13.5 % of the users in Monroe
County and 6.0 % of the users in Collier County are identified
as having uninhabitable homes by the end of 28 September
2017.

Each location derived from the LBS data is then approx-
imated to the nearest building by assigning it to the near-
est CoreLogic coordinate, representing the center point of a
property. This ensures each LBS datapoint corresponds to an
actual building and provides information on the building ma-
terial. In some instances, this results in multiple LBS data-
points being linked to the same building. For these buildings
with multiple LBS datapoints, a building is assumed habit-
able if at least one LBS user returned to the building by the
end of September 2017. A building is assumed uninhabitable
if all corresponding LBS users did not return to the building
by the end of September 2017. LBS datapoints farther than
0.001 decimal degrees from the nearest CoreLogic coordi-
nate are excluded.

For each CoreLogic property location that has a habitable
or uninhabitable designation from the LBS data analysis, the
maximum depth, velocity, and significant wave height expe-
rienced are determined by matching each building’s latitude
and longitude to the nearest cell in the computational mesh
of the flood model (Figs. 3 and A1-A2). If a building’s coor-
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dinate is inundated at the initialization of the model, indicat-
ing its corresponding mesh cell’s bed level is below mean
sea level, the building is excluded from our analysis. Ad-
ditionally, buildings with a maximum depth of zero, deter-
mined from the hydrodynamic model, are removed. After
these exclusions, there are 1067 locations with assigned hy-
drodynamic parameters, where 408 of these locations are for
Collier County and the other 659 locations are for Monroe
County. From the 1067 locations included in our analysis,
123 of these buildings do not have any user returning by the
end of September 2017, indicating these 123 buildings were
uninhabitable due to Hurricane Irma. 85 of these uninhabit-
able buildings are in Monroe County and the other 38 are in
Collier County.

3 Results
3.1 Developing habitability functions

The outputs generated from the previous section are used to
develop habitability functions for Florida due to Hurricane
Irma as a function of the modeled maximum depth, flow
speed, and significant wave height (Figs. 4 and A3). Since
each datapoint’s habitability entry is binary (habitable/unin-
habitable), logistic regression is used to develop habitability
functions.

1

PO=D=1"7Fw0

2
where P(y = 1) is the probability of a building being unin-
habitable, X is the hydrodynamic hazard level, and Sy and S
are the logistic regression coefficients. Maximum likelihood
estimation is used to estimate the values of the coefficients.
Additionally, the 95 % confidence interval is determined to
assess the uncertainty of each function (Fig. 4). Goodness
of fit for the developed habitability functions is determined
with the Akaike information criterion (AIC) and Bayesian
information criterion (BIC) (Akaike, 1974; Schwarz, 1978),
where lower values of AIC and BIC indicate a better fit.
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identified.
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Figure 4. Building habitability as a function of maximum depth (a), flow speed (b), and significant wave height (c) for buildings analyzed in
Collier and Monroe Counties.
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Table 2. Coefficients for maximum depth, flow speed, and signifi-
cant wave height for buildings in Collier and Monroe Counties.

Depth Flow Speed Sig. Wave
Height
Bo —2.608** —2.558%* —2.490**
B1 0.648** 1.336™* 1.122*
AIC 751.843 747.540 756.925
BIC 761.789 757.485 766.871
x2 test p-value  1.156 x 1074 1.198 x 1075 0.002

For individual coefficients: * p-value < 0.05, ** p-value < 0.001.

All three habitability functions developed show positive
relationships between hazard level and uninhabitable prob-
ability that are significant at the 95 % confidence level (Ta-
ble 2). This indicates that buildings that experienced larger
flood depths, flow speeds, and wave heights were more likely
to be uninhabitable following Hurricane Irma. Of the three
habitability functions developed, the one dependent on flow
speed performs the best, having the lowest AIC and BIC
values. Conversely, using significant wave height to predict
building uninhabitability shows the worst fit. Another appar-
ent detail of these functions is that some buildings are unin-
habitable at relatively low hazard levels and others are habit-
able at relatively high hazard levels. This highlights some of
the uncertainty in estimating building habitability using just
hazard levels.

3.2 Influence of building material on habitability

The exterior wall material listed for each building is the
building material information available for locations in Mon-
roe County. Collier County does not have any relevant build-
ing material information from the CoreLogic dataset used;
therefore, only Monroe County locations are included in
this section’s analysis. The listed exterior wall materials
are aggregated into three categories: “Concrete”, “Wood”,
and “Other” (Fig. 5a). Habitability functions are then de-
veloped for the concrete and wood categories as functions
of maximum water depth, flow speed, and significant wave
height (Fig. 5b—g). Habitability functions are not generated
for the other category since there is no similar defining fea-
ture within the group.

The only significant trends revealed from this analysis are
for the habitability functions developed for the wood cate-
gory (Table 3). The habitability functions developed for the
concrete group are not significant at the 95 % confidence in-
terval. This can be interpreted to mean that wooden build-
ings are less likely to be habitable after sustaining a rela-
tively larger maximum depth, flow speed, or significant wave
height, while the uninhabitable probability of concrete struc-
tures is not influenced by the level of hazard. For these
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wooden buildings, the depth-dependent habitability function
has the greatest fit.

3.3 Habitability functions based on additional
hydrodynamic parameters

Habitability functions are also developed using the maximum
unit discharge (hv), flow momentum flux (ph v2), total water
depth (h + Hsig), wave energy flux ((1/16)ngszig\/g_h), and
total force ((1/16)ngszig+phv2) as the hazard level (Figs. 6
and A3), where & is the water depth, v is the flow speed, p
is the density of water (1000 kg m3), Hiie is the significant
wave height, and g is gravitational acceleration (9.81 m s72).
These additional hydrodynamic parameters have been shown
to be significant drivers of flood damage in addition to the
basic hazard parameters of depth, flow speed, and significant
wave height (Diaz Loaiza et al., 2022; Xu et al., 2023), mo-
tivating the following analysis on their influence of building
habitability.

The additional habitability functions generated for maxi-
mum unit discharge, flow momentum flux, total water depth,
wave energy flux, and total force all exhibit significant posi-
tive relationships with the probability of a building being un-
inhabitable (Table 4). Of these five parameters, the habitabil-
ity function dependent on maximum wave energy flux has the
worst fit with an AIC of 754.560 and BIC of 764.506. While
the habitability function developed for maximum wave en-
ergy flux performs relatively poorly, the other functions de-
veloped based on the additional hydrodynamic parameters
are comparable to those developed for depth and flow speed.
Habitability functions based on unit discharge, momentum
flux, and total force all exhibit better fits than the functions
generated based on either depth or flow speed (Tables 2 and
4). The function dependent on total depth performs worse
than the depth or flow speed habitability functions.

Habitability functions for these additional hydrodynamic
parameters are also developed for the concrete and wood
building material categories described in the previous sec-
tion (Figs. B1-B4). None of these habitability functions for
concrete buildings are significant at the 95 % confidence
level (Table B1), but all those for wood buildings show sig-
nificant positive relationships (Table B2). Furthermore, the
wooden structure habitability function dependent on total
depth (h + H;ie) has the greatest fit of all habitability func-
tions developed for wooden buildings, including the one de-
veloped for just depth. Therefore, predicting habitability can
be improved by incorporating information on both inunda-
tion depths and significant wave heights at wooden structures
for the buildings analyzed.

3.4 Habitability functions derived from multivariable
logistic regression

Rather than combining the three basic parameters of depth,
flow speed, and significant wave height into additional hy-
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Figure 5. Histogram of the exterior wall descriptions from CoreLogic for buildings analyzed in Monroe County and the three aggregated
categories: concrete, wood, and other (a). Building habitability as a function of maximum depth, flow speed, and significant wave height for

concrete (b—d) and wood (e-g).

Table 3. Coefficients for different building materials for buildings in Monroe County.

Concrete Wood
Depth Flow Speed  Sig. Wave | Depth Flow Speed  Sig. Wave
Height Height

Bo —2.007**  —2.239** —2.056** | —3.801** —2.964** —3.473%*
A1 0.151 0.894 0.426 1.526* 1.690* 2.780*
AIC 209.825 208.309 209.720 120.695 124.857 122.930
BIC 216.961 215.445 216.857 127.002 131.163 129.236
x2 test p-value  0.666 0.192 0.590 8.118 x 1074 0.008 0.003

For individual coefficients: * p-value < 0.05, ** p-value < 0.001.

drodynamic parameters to develop habitability functions as
in the previous section, multivariable logistic regression can
be used as an alternative to derive habitability functions. This
expands Eq. (2) into the following:

1
1 + e—BothiX1+p2Xo+...+Bi Xi) 3)

P(y=1=

where the i subscript indicates the ith parameter in the re-
gression model. Including multiple independent variables
has been shown to improve traditional depth-dependent
fragility functions (Charvet et al., 2015; De Risi et al.,
2017), making it an important consideration for the habit-
ability functions developed in this study. Four multivariable
logistic regression models are considered (R1-R4), and Ta-
ble 5 lists the hydrodynamic parameters considered for each
model. The three basic parameters of maximum depth (&),
flow speed (v), and significant wave height (Hj;g) are consid-
ered for these models. To check for multicollinearity in these
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models, the variance inflation factor (VIF) is computed. All
VIF values for these models are between 1.7 and 3.4, which
is generally accepted as an indicator that multicollinearity
problems are small (Sheather, 2009).

Of the four multivariable models developed, R1 displays
the best fit and R2 displays the worst fit (Table 6). While the
AIC of R1 is slightly smaller than the AIC of the flow speed-
dependent habitability function, the BIC shows a greater
preference for the flow speed-dependent function over R1.
Furthermore, a likelihood ratio test to statistically determine
if R1 offers significant improvements over the nested flow
speed-dependent habitability function is performed. This
likelihood ratio test accepts the null hypothesis, the nested
habitability function dependent on just flow speed, over the
alternative of R1 (p-value = 0.130). Therefore, it can be con-
cluded that the habitability function developed depending
solely on maximum flow speed is a better predictor of habit-
ability than any of the multivariable models.
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Figure 6. Building habitability as a function of maximum unit discharge (a), total depth (b), flow momentum flux (c), wave energy flux (d),
and total force (e) for buildings analyzed in Collier and Monroe Counties.

Table 4. Coefficients for buildings in Monroe and Collier Counties as a function of maximum unit discharge, total depth, flow momentum

flux, wave energy flux, and total force.

Unit Total Depth Momentum Wave Energy Total Force
Discharge Flux Flux
Bo —2.397** —2.611** —2.264%* —2.277** —2.319%*
B 0.867** 0.455%* 7.830 x 10747 4942 x 1074 6.857x 1074
AIC 742.701 752.692 742.888 754.560 743.131
BIC 752.646 762.637 752.833 764.506 753.077
x2test p-value  9.608 x 1077 1.814x107% 1.059x107®  4920x10~*  1.202x107°

For individual coefficients: * p-value < 0.05, ** p-value < 0.001.

Table 5. Hydrodynamic parameters considered for each multivari-
able logistic regression model.

R1 R2 R3 R4

X, h h v h
X2 v HSig Hsig v
X3 - - - Hsig

Habitability functions based on the four multivariable
models are also developed for the buildings in the concrete
and wood categories (Table B3). However, none of the func-
tions for concrete or wood structures based on these four
models offer any serious improvement over those developed
with the univariable models presented in Table 3.
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4 Discussion

Overall, many of the habitability functions developed show
that hydrodynamic hazard level significantly increases the
probability of a building being uninhabitable following Hur-
ricane Irma. This holds true for the first functions devel-
oped based on the three basic hazards of maximum flood
depth, flow speed, and significant wave height, where the
flow speed-dependent habitability function shows the best fit
(Fig. 4 and Table 2). In an effort to improve upon these hab-
itability functions dependent on the three basic hazards, two
methods for combining the basic hazard levels are explored.
The first method creates new habitability functions based on
five additional hydrodynamic parameters used previously to
generate damage functions (Diaz Loaiza et al., 2022; Xu et
al., 2023): maximum unit discharge, flow momentum flux,
total water depth, wave energy flux, and total force. Not only
does the probability of uninhabitability exhibit a significant
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Table 6. Coefficients for each multivariable logistic regression model for buildings in Monroe and Collier Counties.

R1 R2 R3 R4
Bo —2.707** —2.604** —2.628** —2.679**

Bi 0.320 0.672* 1.181* 0.488

B2 0.996* —0.063 0.323 1.057*

B3 - - - —0.495

AIC 747.243 753.835 749.053 748.802

BIC 762.161 768.753 763.971 768.692

%2 test p-value  2.184x 1075  5.899 x 10™% 5400x 107>  6.828 x 107

For individual coefficients: * p-value < 0.05, ** p-value < 0.001.

positive dependency on these additional hydrodynamic pa-
rameters, but the habitability functions dependent on unit
discharge, flow momentum flux, and total force offer greater
fits than the flow speed-dependent function (Tables 2 and 4).
Specifically, the unit discharge-dependent habitability func-
tion shows the greatest performance for predicting building
habitability of the univariable models. The second method
aimed at improving the developed habitability functions ex-
pands the univariable regression to multivariable regression
based on depth, flow speed, and significant wave height. The
multivariable model R1 (depth and flow speed) performs best
of the multivariable models and shows a slightly improved
AIC value to the solely flow speed-dependent function. This
potentially aligns with previous studies that have shown in-
cluding multivariable models improves fragility functions
based on a single variable (Charvet et al., 2015; De Risi et
al., 2017). However, comparison of the BIC values shows a
clearer preference for the univariable flow speed-dependent
function. This questions whether including maximum depth
with flow speed in a multivariable model actually improves
the ability to estimate building habitability. Results from the
likelihood ratio test agree with those from comparing BIC
values, suggesting the flow speed-dependent function is su-
perior to the multivariable models. This leads back to the
function dependent on unit discharge as being the best habit-
ability function developed in this study.

This study also revealed significant differences in how
varying hazard levels impact habitability probability for
wooden and concrete buildings. None of the habitability
functions developed for concrete buildings exhibit significant
relationships between hazard level and uninhabitable proba-
bility. This indicates that other factors besides hydrodynamic
hazards strongly influenced whether people returned to con-
crete structures after Irma. Conversely, the habitability func-
tions developed for wooden structures display significant
positive relationships between hazard level and uninhabitable
probability, showing that hydrodynamic hazards strongly in-
fluenced if a wooden building became uninhabitable due to
Hurricane Irma. These differences between wooden and con-
crete structures are understandable since flood hazards typi-
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cally result in greater damage to wooden buildings than con-
crete ones (Charvet et al., 2015; De Risi et al., 2017; Suppasri
et al., 2013).

While the habitability functions developed generally show
the expected dependency of hazard level on building unin-
habitable probability, there is still a good degree of uncer-
tainty in estimating which buildings people return to. This is
evident when visually inspecting the habitability functions,
where some buildings are habitable at relatively high hazard
levels and uninhabitable at lower hazard levels (Figs. 4-6).
This shows a major difference between traditional damage
and fragility functions and these new habitability functions,
where many socioeconomic factors can also influence if and
when people return to a building after a flood event. For ex-
ample, someone may not return to a completely undamaged
building if they are able to stay with friends or family for an
elongated period, and for others, returning to a highly dam-
aged building may be the best option, which may bias these
functions against people with fewer recovery options. While
previous studies have looked at some of these factors influ-
encing post-flood building habitability (Nofal et al., 2024;
Paprotny et al., 2021; Paul et al., 2024; Yabe et al., 2020),
this is the first study, to our knowledge, that directly quanti-
fies how flood hazards influence habitability.

Besides uncertainties associated with socioeconomic fac-
tors, there are other assumptions and uncertainties in this
study that could be addressed in the future. Firstly, the confi-
dence intervals of the developed habitability functions typi-
cally widen at larger hazard levels due to a smaller number of
buildings experiencing these large hazard levels, which could
be improved by including areas that experienced greater
flood impacts in future studies. Uncertainty in the developed
Hurricane Irma model is highly influenced by grid and DEM
resolution, and higher resolutions are known to improve the
flood model accuracy (Diaz Loaiza et al., 2022; Luppichini
et al., 2019; Mufioz et al., 2024). The spatially varying Man-
ning’s roughness coefficients and parameterization of Hurri-
cane Irma’s wind and pressure fields also introduce uncer-
tainties in the flood model that influence the developed hab-
itability functions (Asher and Luettich, 2025). Aside from
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the flood model, the LBS data used to determine buildings
that were uninhabitable due to Hurricane Irma bring their
own uncertainties. For example, spatial inaccuracies of the
LBS data could lead to misidentification of the associated
building. Additional uncertainties could arise if the LBS data
used is not representative of the study areas and populations
(Swanson and Guikema, 2024). Another important assump-
tion for our definition of building habitability is that essential
services such as power and schools are recovered 18d af-
ter Irma’s landfall in Florida. While this assumption is ap-
propriate for Irma (Hodge and Lee, 2017; Mitsova et al.,
2018; Swanson and Guikema, 2024), flood events that cause
longer recovery periods for essential services may create dif-
ficulties in estimating building habitability the same way. Fi-
nally, these habitability functions could be improved if addi-
tional building information such as the number of stories or
whether a building is elevated was available.

5 Conclusions

This study utilizes a Hurricane Irma flood model and LBS
data to develop habitability functions for buildings in two
Florida counties. First, we show that of the habitability func-
tions dependent on maximum depth, flow speed, or signif-
icant wave height, the flow speed-dependent function per-
forms the best. Five additional hydrodynamic parameters
are also investigated to see if improvements can be made
to the flow speed-dependent habitability function, and we
find that the habitability function dependent on maximum
unit discharge offers the greatest improvement. Then multi-
variable regression is employed, showing potential improve-
ments to the univariable flow speed function with model R1
(depth and flow speed). However, additional analysis indi-
cates these multivariable models do not offer significant im-
provements to the univariable flow speed-dependent func-
tion. Furthermore, buildings are grouped by material to eval-
uate how habitability functions compare for wooden and con-
crete structures, showing that the uninhabitable probability
of concrete buildings is not influenced by hazard level while
wooden buildings’ uninhabitable probability increase with
hazard level. These findings provide novel quantifications
of the influence of flood hazards on whether a building be-
comes uninhabitable due to a flood event. This can be used in
applications like Hazus, which currently assumes buildings
become uninhabitable for any nonzero flood depth (FEMA,
2024b).

Future work could be done to incorporate socioeconomic
factors into these habitability functions to increase the ac-
curacy of estimating which buildings become uninhabitable
during Irma due to flooding. Developing habitability curves
for different regions and flood events is another area of future
research that should be explored. Given this study focuses
on two Florida counties, it would be insightful to investi-
gate other regions both inside and outside the United States.
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Differences in building codes, zoning laws, and other poli-
cies may significantly change how flood hazards influence
building habitability, which could be compared against the
habitability functions developed here for Collier and Monroe
Counties.
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Figure A1. Maximum modeled flow speeds for Collier County (a) and the western (b) and eastern (c¢) regions of Monroe County. Building
locations and associated maximum flow speeds used for habitability functions (d—f). To preserve privacy the exact building locations are not
identified.
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Figure A2. Maximum modeled significant wave heights for Collier County (a) and the western (b) and eastern (c) regions of Monroe
County. Building locations and associated maximum significant wave heights used for habitability functions (d—f). To preserve privacy the
exact building locations are not identified.
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Figure A3. Box plots of the maximum depth (a), flow speed (b), significant wave height (c), unit discharge (d), total depth (e), flow
momentum flux (f), wave energy flux (g), and total force (h) used to develop habitability functions for Collier and Monroe Counties.
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Figure B1. Building habitability for buildings in Monroe County as a function of maximum unit discharge (a), total depth (b), flow momen-
tum flux (c), wave energy flux (d), and total force (e) for buildings in the concrete category.
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Figure B3. Box plots of the maximum depth (a), flow speed (b), significant wave height (c), unit discharge (d), total depth (e), flow mo-
mentum flux (f), wave energy flux (g), and total force (h) used to develop habitability functions for Monroe County buildings in the concrete

category.
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Figure B4. Box plots of the maximum depth (a), flow speed (b), significant wave height (c), unit discharge (d), total depth (e), flow mo-
mentum flux (f), wave energy flux (g), and total force (h) used to develop habitability functions for Monroe County buildings in the wood

category.

Table B1. Logistic regression coefficients for buildings in Monroe County as a function of maximum unit discharge, total depth, flow
momentum flux, wave energy flux, and total force for buildings in the concrete category.

Unit Total Momentum Wave Energy  Total Force
Discharge  Depth Flux Flux
Bo —2.088%*  —2.021**  —2.034** —2.005** —2.064**
B 0.510 0.114 5973x 1074 2.622x 1074 4779 x 1074
AIC 208.231 209.809 207.066 209.207 207.386
BIC 215.368 216.946 214.203 216.344 214.523
x2 test p-value  0.182 0.653 0.086 0.370 0.105

For individual coefficients: * p-value < 0.05, ** p-value < 0.001.

Table B2. Logistic regression coefficients for buildings in Monroe County as a function of maximum unit discharge, total depth, flow
momentum flux, wave energy flux, and total force for buildings in the wood category.

Unit Total Depth Momentum Wave Energy  Total Force
Discharge Flux Flux
Bo —2.899%* —4.035%* —2.513%* —2.766** —2.682%*
B1 1.269%* 1.202% 9.261 x 1074"  0.001* 9.269 x 10~4"
AIC 120.709 119.615 122.000 123.047 120.384
BIC 127.015 125.921 128.307 129.354 126.691
%2 test p-value  8.176 x 10™*  4.543 x 10~%  0.002 0.003 6.866 x 1074

For individual coefficients: * p-value < 0.05, ** p-value < 0.001.
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Table B3. Coefficients for each multivariable logistic regression model for buildings in the concrete or wood categories in Monroe County.

Concrete ‘ Wood
RI R2 R3 R4 | R1 R2 R3 R4

Bo —2.173%  —2,053%F  —2.193*F  —2.189%* | —4.059%*  —4.051*%* = —3.922%F 4277
Bi —0.139  —0.036  0.980 —-0212 | 1.232% 1.014 1.183 0.816

B> 1.040 0.494 —-0.187  1.022 1.023 1.571 2.279* 0.925

B3 - - - 0.207 - - - 1.404
AIC 210.196 211717 210270 212179 | 120983  121.638  122.166 122236
BIC 220901 222422 220975 226453 | 130443 131.098  131.626  134.850
x? test p-value  0.404 0.863 0.419 0.608 0.002 0.002 0.003 0.003

For individual coefficients: * p-value < 0.05, ** p-value < 0.001.

Data availability. Elevation models are available from
NOAA’s National Centers for Environmental Informa-
tion and the General Bathymetric Chart of the Oceans
(https://www.gebco.net/data-products/gridded-bathymetry-data,
GEBCO, 2023; https://noaa.maps.arcgis.com/home/item.html1?id=
c876e3c96a8642ab8557646a3b4fa0ff, NOAA NCEI, 2022). Land
cover data comes from the 2019 National land Cover Database for
the Contiguous United States (https://doi.org/10.5066/P9KZCM54,
Dewitz and USGS, 2024). Meteorological data for Hurricane
Irma is retrieved from the National Hurricane Center’s revised
Atlantic hurricane database (https://www.nhc.noaa.gov/data/, last
access: 13 January 2026) and the Tropical Cyclone Extended
Best Tract Dataset (https://rammb?2.cira.colostate.edu/research/
tropical-cyclones/tc_extended_best_track_dataset/, last access:
13 January 2026; Demuth et al., 2006; Landsea and Franklin,
2013). Tidal constituents are available from the Oregon State
University Tidal Inversion Software (https://www.tpxo.net/home,
last access: 13 January 2026; Egbert and Erofeeva, 2002). NOAA
station data is available from NOAA'’s National Data Buoy Center
(https://www.ndbc.noaa.gov/, last access: 13 January 2026).
The developed Hurricane Irma flood model can be shared upon
reasonable request. Location Based Services (LBS) data, provided
by Veraset LLC, and CoreLogic property data are not publicly
available.
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