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Abstract. As global climate change and human activities es-
calate, the frequency and severity of landslide hazards have
been increasing. Early identification, as an important pre-
requisite for monitoring, evaluation, and prevention, has be-
come increasingly critical. Deep learning, as a powerful tool
for data interpretation, has demonstrated remarkable poten-
tial in advancing landslide identification, particularly through
the automated analysis of remote sensing, geological, and
topographic data. This review systematically examines and
synthesizes over 400 studies, with a primary focus on lit-
erature from the last six years (2020-2025), alongside key
foundational works. It provides a comprehensive overview
of recent advancements in the utilization of deep learning for
potential landslide identification. First, the sources and char-
acteristics of landslide-related data are summarized, includ-
ing satellite observation data, airborne remote sensing data,
and ground-based observation data. Next, commonly used
deep learning models are classified based on their roles in
potential landslide identification, such as image analysis and
time series analysis. Then, the role of deep learning in iden-
tifying rainfall-induced landslides, earthquake-induced land-
slides, human activity-induced landslides, and multi-factor-
induced landslides is summarized. Although deep learning
has achieved considerable success in landslide identification,
it still faces several challenges, including data imbalance,
limited model generalization, and the inherent complexity
of landslide mechanisms. Finally, future research directions
in this field are discussed. It is suggested that integrating
knowledge-driven and data-driven approaches for potential
landslide identification will further enhance the applicability
of deep learning, offering broad prospects for future research
and practice.

1 Introduction

Landslides are complex geological hazards triggered by both
natural processes and human activities, involving intricate in-
teractions among geological, hydrological, topographic, and
meteorological factors (Fidan et al., 2024). Globally, land-
slides cause significant loss of life and property each year,
particularly in mountainous areas with intense rainfall, seis-
mic activity, and fragile geological conditions (Askarine-
jad et al., 2018; Ehsan et al., 2025; Marin-Rodriguez et al.,
2024). According to United Nations Office for Disaster Risk
Reduction (2023), more than 1000 landslide-related disasters
occur annually, resulting in thousands of fatalities and sub-
stantial economic damage. With the intensification of climate
change, extreme weather events are becoming more frequent,
further increasing global landslide risks (Wang et al., 2023c).

Faced with these escalating threats, the focus of landslide
risk management should shift from post-disaster response to-
ward proactive identification and prevention. Potential land-
slides refer to slopes that exhibit early signs of instability
and may evolve into landslides under external triggers such
as rainfall or earthquakes. They represent the precursor stage
of landslide development (Lin et al., 2024; Yang et al., 2020).
Timely identification and monitoring of such slopes are cru-
cial for disaster prevention and risk mitigation (Strzabala et
al., 2024).

However, the inherent uncertainty and dynamic nature of
potential landslides make their identification challenging. On
the one hand, it is not possible to determine that a landslide
will definitely occur just because there are signs of deforma-
tion on the slope (Peres and Cancelliere, 2014; Zhang et al.,
2019). Multiple factors need to be comprehensively consid-
ered to assess the possibility of its instability. On the other
hand, the uncertainty of external factors increases the dif-
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ficulty of judgment. Sudden events such as heavy rainfall
and earthquakes may instantly change the stress state of the
slope and trigger signs of deformation (Yang et al., 2024c).
Given the dynamic characteristics of potential landslides, it
is also essential to conduct long-term monitoring of the land-
slides with potential hazards after identification (Lakhote et
al., 2025).

Conventional approaches to potential landslide identifica-
tion, including field surveys, geological analysis, and inter-
ferometric radar techniques, have contributed substantially to
hazard assessment but remain costly, time-consuming, and
limited in spatial coverage (Akosah et al., 2024; Zhao and
Lu, 2018). Machine learning has partially improved effi-
ciency but still depends heavily on manual feature engineer-
ing, requiring expert knowledge to design relevant predictors
(Sheng et al., 2023). These limitations restrict the scalabil-
ity and adaptability of conventional approaches in complex
geospatial environments.

In contrast, deep learning provides an effective data-driven
alternative for landslide research. As a subfield of machine
learning, deep learning performs hierarchical feature extrac-
tion through multiple nonlinear transformations (Janiesch et
al.,2021; Navaet al., 2023). By leveraging large-scale, multi-
source data, deep learning models can automatically ex-
tract representative features, capture nonlinear dependencies,
and conduct pattern recognition in high-dimensional datasets
(Aslam et al., 2021; Wang et al., 2023a; Zhou et al., 2023).
These capabilities make deep learning particularly suitable
for identifying and characterizing potential landslides across
diverse spatial and temporal scales (Nava et al., 2021; Yang
et al., 2024d).

Within this research context, potential landslide identifi-
cation can be broadly categorized into two main types. The
first focuses on post-event regional assessments, which are
conducted after major rainfall or earthquakes but prior to
large-scale slope failures, using remote sensing data to detect
deformation, topographic changes, or vegetation anomalies.
The second involves retrospective analyses of historical land-
slides to establish relationships between triggering factors
and failure characteristics, thereby identifying other slopes
that exhibit similar instability patterns. Despite their differing
temporal focuses, both types share common methodological
foundations and depend on the integration of multi-source
environmental data for reliable assessment.

Building on these foundations, this review aims to provide
a comprehensive synthesis of deep learning applications in
the field of potential landslide identification. Specifically,

1. we categorize commonly used heterogeneous data into
three major types to support research on potential land-
slide identification. These data sources form the foun-
dation for applying deep learning in this field.

2. we introduce the roles and mechanisms of widely used
deep learning models in potential landslide identifica-
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tion, and conduct a comparative analysis of their respec-
tive advantages and limitations.

3. we examine the performance of these models across dif-
ferent application scenarios through representative case
studies, highlighting their adaptability and effectiveness
in potential landslide detection.

4. we summarize the key challenges currently faced in ap-
plying deep learning to potential landslide identification
and outline emerging opportunities and promising fu-
ture directions for further advancement.

Through our analysis, we identified several key trends in
the application of deep learning to potential landslide iden-
tification. First, researchers are increasingly adopting multi-
source data fusion approaches, integrating information from
diverse sources to construct a more comprehensive repre-
sentation of the geological environment (Guo et al., 2025;
Liu et al., 2020b; Wang et al., 2024d). Second, deep learn-
ing models have been successfully applied across multiple
scales, ranging from large-scale landslide susceptibility map-
ping with Convolutional Neural Networks (CNNs) to real-
time slope deformation monitoring with Recurrent Neural
Networks (RNNs) (Azarafza et al., 2021; Soni et al., 2025;
Xie et al., 2024; Zhao et al., 2024f). Despite these advances,
the field continues to face critical challenges that will shape
its future trajectory. Addressing these challenges requires a
paradigm shift, future research is expected to place greater
emphasis on integrating physical knowledge with data-driven
approaches, thereby advancing the field from conventional,
reactive post-disaster responses toward intelligent, proactive
pre-disaster risk management.

2 Deep Learning for Potential Landslide Identification:
Data Source

Accurate identification of potential landslides is the primary
step in effectively preventing and mitigating the impacts of
landslide hazards. Data sources are the cornerstone of achiev-
ing this objective. Different types of data provide indispens-
able information for potential landslide identification from
various perspectives, and drive ongoing advancements in re-
lated research and practices.

In potential landslide identification, the richness and reli-
ability of data sources directly determine the accuracy and
effectiveness of research. Data sources not only provide fun-
damental information to outline the landslide environments,
but also enable dynamic monitoring and precise analysis.
This section will comprehensively review the critical roles
played by three main types of data sources: satellite obser-
vation data, airborne remote sensing data, and ground-based
observation data (see Fig. 1).
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Figure 1. Data sources for potential landslide identification. Satel-
lite observations (e.g., Landsat, Sentinel, SPOT, and Envisat) pro-
vide optical and radar imagery with varying spatial resolutions for
detecting and mapping landslides. Airborne observations (LiDAR,
UAV) deliver high-resolution topographic and photographic data,
while ground-based observations (TLS, GBSAR, GNSS, rainfall
and groundwater sensors) offer continuous in-situ monitoring of
slope dynamics.
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2.1 Satellite Observation Data

Since the launch of Landsat-1, the first Earth observation
satellite dedicated to surface research and monitoring, on
23 July 1972, satellite data have become widely accessible.
Their applications have long extended beyond single-purpose
analysis or results (Wulder et al., 2022). With the continuous
development of satellite observation, its immense potential
for application in landslide research has become evident (Liu
etal., 2021d). At present, satellite observation data mainly in-
clude space-borne Synthetic Aperture Radar (SAR) and op-
tical remote sensing data, both of which are widely used as
inputs for deep learning models in landslide identification.

2.1.1 Space-borne SAR

SAR is an active microwave remote sensing system
(Franceschetti and Lanari, 2018). It is not only capable of
acquiring data on demand by actively emitting microwave
signals but also facilitates partial penetration of vegetation
cover through its longer wavelength bands (such as the L-
band), thereby allowing the retrieval of surface deformation
information beneath vegetated areas.

A critical operational advantage of SAR lies in its capac-
ity to image regardless of illumination (day or night) and
weather conditions (Koukiou, 2024). The continuous, unim-
peded time series data this provides is essential for serving
as input to deep learning models, allowing these models to
be trained to identify long-term patterns of terrain change.
For this reason, SAR is widely employed for the crucial task
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of continuous monitoring in high-risk environments, where
cloud cover and the timing of a disaster are unpredictable.

Notably, the NASA-ISRO SAR Mission (NISAR), jointly
developed by the National Aeronautics and Space Adminis-
tration (NASA) and the Indian Space Research Organisation
(ISRO), was successfully launched in 2025 (Indian Space
Research Organisation, 2025; NASA, 2025). The satellite
carries both L-band and S-band SAR systems, enabling more
precise and frequent measurements of surface deformation.
With a revisit period of approximately 12 d, it delivers glob-
ally consistent coverage with a balanced spatial and temporal
resolution. This capability provides researchers with abun-
dant and continuous observations, supporting large-scale,
high spatiotemporal resolution landslide early detection and
dynamic monitoring.

Interferometric SAR (InSAR) has been developed based
on the principle of measuring phase differences between two
or more SAR images of the same area (Dai et al., 2022; Ma
et al., 2023b; Zeng et al., 2024). By coherently processing
these images, InSAR obtains high-precision surface eleva-
tion information and can be further applied to detect ground
deformation.

In contrast, SAR mainly provide backscatter information
of ground objects. Although some features of ground objects
can be identified according to the scattering characteristics,
their ability to obtain topographic elevation information is
relatively weak. InSAR, on the other hand, can directly gen-
erate topographic elevation data, which is of great signifi-
cance for analyzing the topography and geomorphology in
the identification of potential landslides, and determining key
elements such as the topographic undulation and slope of po-
tential landslide areas.

When screening for potential landslides over a large area,
InSAR has higher efficiency (Dun et al., 2021; Tang et al.,
2025; Zhang et al., 2021). When monitoring large poten-
tial landslide areas such as mountainous regions, InSAR can
quickly obtain topographic deformation information over a
large area, promptly detect potential areas with potential
landslides, and reduce the workload and blind spots of man-
ual inspections.

Recent studies have integrated InSAR-derived deforma-
tion velocity fields with deep learning models to automat-
ically detect slow-moving or latent landslides. For exam-
ple, Liu et al. (2022d) employed an InSAR-CNN frame-
work to map active landslides in the Eastern Tibet Plateau
area, achieving a detection accuracy of over 90 %. Similarly,
Zhang et al. (2022d) proposed a two-stage detection deep
learning network (InNSARNet) for detecting anomalous de-
formation areas in Maoxian County, Sichuan Province, with
a recognition accuracy of 93.88 %. Targeting the complex
deformation mechanisms of multi-type landslides in Zigui
County, Three Gorges Reservoir Area, Hu et al. (2025b) used
InSAR time-series displacement as the core data, develop
a deep learning architecture based on the integrated frame-
work of EMD and GRU, break through the limitations of
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conventional models such as single-type, single-target, and
low-accuracy, and achieve dual-accurate prediction of dis-
placement and failure time for multi-type landslides.

Differential InNSAR (D-InSAR) is an advancement of In-
SAR that eliminates topographic phase through differential
processing, focusing specifically on deformation information
extraction (Shen et al., 2022). The emergence of D-InSAR
not only enables the transition from mixed deformation-
topography signals to pure deformation signal extraction
but also extends its applicability from detecting discrete de-
formation events to identifying slow-moving landslide pro-
cesses, significantly enhancing the reliability of landslide
monitoring (Zhong et al., 2024).

2.1.2 Optical Remote Sensing

Optical remote sensing refers to the acquisition of surface in-
formation through sensors that measure reflected solar radia-
tion. Its application in geological hazard investigations dates
back to the 1970s (Fu et al., 2024; Liu and Wu, 2016).

Optical remote sensing offers high resolution, currently
capable of achieving spatial resolutions as fine as 0.3 m or
better. For example, Maxar’s WorldView-3 delivers 0.31 m
panchromatic imagery (Hu et al., 2016; Longbotham et al.,
2014), while India’s Cartosat-3 satellite achieves panchro-
matic imagery with a resolution of up to 0.25 m (Gupta et al.,
2024). In potential landslide identification, it not only facili-
tates the retrieval of detailed surface textures and color char-
acteristics using rich spectral data but also enables the direct
identification of morphological features and object contours
via visual interpretation of imagery (Cheng and Han, 2016;
Li et al., 2022b; Ma and Wang, 2025).

Landslide formation typically follows a progressive pro-
cess from deformation to failure, accompanied by precur-
sor indicators such as tensile cracks, stepped scarps, and lo-
calized collapses. These indicators exhibit distinct spectral
signatures in optical imagery compared to their surround-
ings, enabling both manual interpretation and automated de-
tection. In deep learning applications, multispectral optical
images have been widely used to train CNN-based models
for potential landslide identification. Lu et al. (2023a) de-
veloped a method for achieving accurate landslide mapping
using medium-resolution remote sensing images and DEM
data, which has the potential for deployment in large-scale
landslide detection. Jiang et al. (2022a) proposed a TL-Mask
R-CNN for identifying a small number of old landslide sam-
ples in the area along the Sichuan-Tibet Transportation Corri-
dor. The results show that the pixel accuracy of segmentation
for new landslides and old landslides can reach 87.71 % and
75.86 % respectively.

In vegetated mountainous regions, surface vegetation of-
ten undergoes detectable changes before a landslide event.
Optical remote sensing leverages multispectral data, partic-
ularly red and near-infrared bands, to monitor vegetation
health and identify potential landslide zones (Coluzzi et al.,
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2025; Fiorucci et al., 2018). Furthermore, the calculation of
the Normalized Difference Vegetation Index (NDVI) facil-
itates the evaluation of vegetation health in potential land-
slide regions, providing critical insights into potential land-
slide precursors (Verrelst et al., 2015).

However, the broad spectral bands of multispectral sen-
sors limit their ability to detect more subtle, diagnostically
specific precursory signals. The advancement beyond broad-
band multispectral imaging to hyperspectral imaging has
opened new avenues for landslide precursor detection (Kil-
gore and Restrepo, 2025; Ye et al., 2019). Hyperspectral sen-
sors capture hundreds of contiguous spectral bands, enabling
the identification of specific mineralogies (e.g., expansive
clays like smectite that influence slope stability) and subtle
geochemical alterations on slope surfaces. For instance, the
shifting absorption features in the short-wave infrared region
can signal changes in soil water content and mineral compo-
sition that often precede failure (Thimsen et al., 2017). The
integration of these rich spectral datasets with deep learn-
ing architectures has significantly advanced automated land-
slide analysis (Huang et al., 2022c; Shahabi et al., 2021).
These models excel at learning complex patterns from high-
dimensional spectral-spatial information, enabling highly ac-
curate detection of landslide scars and even precursory fea-
tures like cracks and seepage zones that are otherwise chal-
lenging to identify.

While both space-borne SAR and optical remote sens-
ing are pivotal for large-area landslide screening, they of-
fer complementary capabilities and have distinct limitations.
Optical remote sensing provides intuitive visual interpreta-
tion of geomorphological features but is rendered useless
by cloud cover and darkness. In contrast, space-borne SAR,
with its all-weather, day-and-night imaging capability, excels
in detecting millimeter-to-centimeter-scale surface deforma-
tion through InSAR techniques, which is a direct precursor
to landslide failure. However, InSAR performance can be de-
graded in heavily vegetated areas due to temporal decorrela-
tion and in steep terrain due to geometric distortions (Lin
et al., 2022; Yan et al., 2024), areas where optical stereo
imaging for DEM generation might be less affected. There-
fore, the integration of SAR-derived deformation maps and
optical-based geomorphological maps is considered a best
practice for regional-scale landslide inventory mapping and
preliminary hazard assessment (Xun et al., 2022).

2.2 Airborne Remote Sensing Data

Airborne remote sensing data, typically acquired by manned
aircrafts, provide high-resolution imagery of localized areas.
Advanced airborne platforms equipped with oblique pho-
togrammetry and, more recently, close-range photogramme-
try technologies enable millimeter-level accuracy in 3D pho-
togrammetry, facilitating the observation of subtle surface
deformations, rock mass structures, and the construction of
highly detailed 3D models of terrain and above-ground in-
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frastructure (Macciotta and Hendry, 2021; Xu et al., 2023).
Among these technologies, airborne photogrammetry and
airborne radar are the most commonly used.

2.2.1 Airborne Light Detection and Ranging (LiDAR)

LiDAR has been used for landslide and other geological haz-
ard investigations in many regions since the late 1990s. As
an active remote sensing system, LiDAR can laterally scan a
range of 60° and capture 400 000 points per second, enabling
large-scale 3D scanning of terrain, structures, and vegeta-
tion within a short period (Mallet and Bretar, 2009). It of-
fers centimeter-level accuracy in both horizontal and vertical
dimensions.

Airborne LiDAR is irreplaceable in capturing 3D details
and penetrating vegetation, particularly in densely vegetated
areas where conventional aerial photography faces signifi-
cant limitations. Airborne LiDAR not only acquires high-
resolution Digital Surface Models (DSMs) from laser point
cloud data but also generates high-accuracy DEMs by re-
moving vegetation contributions (Fang et al., 2022; Jaboyed-
off etal., 2012; Yan et al., 2023), thereby revealing concealed
hazard features such as mountain fractures, loose deposits,
and landslide masses under vegetation cover.

Point cloud data obtained from airborne LiDAR can mon-
itor dynamic changes in mountainous terrain by detecting
deformations such as subsidence, displacement, and uplift,
while also facilitating the construction of 3D landslide mod-
els to simulate sliding directions and impact areas. Through
intuitive visualization of slope morphology and structure
from multiple perspectives, LiDAR enables researchers to
conduct a comprehensive assessment of slope conditions and
identify subtle hazard features that may not be easily dis-
cernible in 2D imagery.

These high-precision DEMs and point clouds serve as crit-
ical inputs for deep learning models. For instance, Wei et
al. (2023) proposed the Dynamic Attentive Graph Network
(DAG-Net) model to construct dynamic edge features for
enhancing point cloud representations, achieving the high-
est mean Intersection over Union (mloU) of 0.743 and an
Fl-score of 0.786. Based on the advanced PointNet and
PointNet + + architectures, Farmakis et al. (2022) devel-
oped deep neural networks for 3D point cloud learning. The
best-performing model achieved accuracies of approximately
89 % and 84 % during the final and shortest monitoring cam-
paigns, respectively. These examples demonstrate that air-
borne LiDAR data are not only suitable but have been ef-
fectively applied in deep learning-based landslide analysis.

2.2.2 Unmanned Aerial Vehicle (UAV)
UAV aerial photogrammetry provides outstanding maneu-
verability and high-precision measurements. Traversing over

steep slopes and valleys, UAVs are able to monitor areas that
are often inaccessible to satellites and manned aerial plat-
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forms (Niethammer et al., 2012), thus addressing critical ob-
servational limitations.

In large-scale and topographically complex regions, UAVs
can perform efficient aerial inspections, overcoming the lim-
itations of ground-based inspections in inaccessible or vi-
sually obstructed regions. By rapidly scanning mountain
slopes, embankments, and gullies, UAVs provide a compre-
hensive understanding of the geological conditions and en-
able timely identification of macro-scale geomorphic anoma-
lies. However, given cost-effectiveness constraints, UAVs are
currently more commonly used for periodic and continuous
monitoring in localized areas. They are particularly well-
suited for rapid and dynamic monitoring of landslides in
high-priority zones.

With the rapid advancement of UAVs, centimeter-level
vertical and oblique aerial photogrammetry is now achiev-
able (Fan et al., 2020). The high-definition cameras mounted
on UAVs are able to capture the subtle cracks on the sur-
face of the mountain. These cracks may be early signs of a
landslide (Sun et al., 2024a). By conducting a comparative
analysis of the images taken at different times, the develop-
ment and changes of the cracks can be monitored, including
the increase in the length, width and depth of the cracks, as
well as the changes in the crack orientation.

In some mountainous areas or valleys, there may be a large
number of loose accumulations. These accumulations may
trigger landslides under specific conditions. Aerial photog-
raphy by UAVs can clearly identify information such as the
distribution range, accumulation quantity and accumulation
shape of these loose accumulations, and assess their poten-
tial threats to the surrounding environment. This capability
is leveraged in deep learning applications, where time-series
UAV imagery is processed using RNNs or 3D CNNs to mon-
itor the spatiotemporal evolution of these cracks, providing a
data-driven approach for early warning (Xu et al., 2025; San-
dric et al., 2024).

Airborne platforms bridge the gap between satellite and
ground-based observations. LiDAR is unparalleled in gen-
erating high-precision DEM, revealing concealed paleo-
landslides and subtle topographic features critical for haz-
ard mapping. However, its deployment is costly and logis-
tically complex. UAVs, as a flexible and cost-effective al-
ternative, have democratized high-resolution data acquisi-
tion. They can be equipped with various sensors (e.g., op-
tical, multispectral, and even lightweight LiDAR) to con-
duct rapid response surveys following triggering events such
as earthquakes or heavy rainfall (Han et al., 2023). While
UAV-derived models have ultra-high resolution, their cov-
erage is limited per sortie compared to airborne campaigns.
The choice between them often involves a trade-off between
coverage, cost, operational flexibility, and the specific re-
quirement for vegetation penetration.

By equipping UAVs with LiDAR sensors to effectively re-
move vegetation from the data, this integrated approach com-
bines the strengths of photogrammetry and LiDAR (Mandl-
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burger et al., 2020; Wallace et al., 2012). It allows researchers
to reveal landslide boundaries, crack patterns, and other de-
formation features hidden beneath vegetation cover, enabling
rapid deployment and targeted area monitoring while miti-
gating vegetation-related challenges in landslide assessment.

2.3 Ground-based Observation Data

Satellite observation and airborne remote sensing are mainly
employed for identifying potential landslides based on sur-
face morphology. However, these approaches are often af-
fected by vegetation cover, viewing geometry, and atmo-
spheric noise, which may lead to misclassification or omis-
sion (Almalki et al., 2022; Dubovik et al., 2021). Therefore,
ground-based observation techniques play a critical comple-
mentary role, offering higher temporal resolution, accuracy,
and localized verification for potential landslide identifica-
tion. In recent years, data collected from ground-based mon-
itoring instruments have not only been used for field vali-
dation but also increasingly incorporated into deep learning
frameworks to improve temporal continuity and physical in-
terpretability in landslide detection and forecasting.

2.3.1 Ground-based Synthetic Aperture Radar
(GB-SAR)

GB-SAR is an active ground-based microwave remote sens-
ing system that has been developed over the past decade,
effectively integrating the principles of SAR imaging with
electromagnetic wave interferometry. By leveraging precise
measurements of sensor system parameters, attitude param-
eters, and geometric relationships between orbits, GB-SAR
quantifies spatial positions and subtle changes at specific sur-
face points, allowing for the measurement of surface defor-
mations with millimeter or even sub-millimeter precision.

Compared with spaceborne SAR, GB-SAR can adjust the
incidence and azimuth angles of radar waves, thereby avoid-
ing phase decorrelation caused by terrain-induced occlusion
in spaceborne observations. Consequently, they are partic-
ularly suitable for monitoring steep slopes, canyons, and
other areas with limited line-of-sight coverage from satellites
(Noferini et al., 2007).

During landslide movement, the ground experiences no-
ticeable subsidence, displacement, or cracking. GB-SAR can
be configured for high-resolution, continuous observation
to capture instantaneous deformations during the landslide
creep phase and generate corresponding displacement maps
(Liu et al., 2021a; Xiao et al., 2021). For example, Long et
al. (2018) proposed a GBSAR persistent scatterer point se-
lection method based on the mean coherence coefficient, am-
plitude dispersion index, estimated signal-to-noise ratio, and
displacement accuracy index. Han et al. (2022) proposed an
LSTM-based approach for processing GB-InSAR time series
data.
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For small-scale regional monitoring, GB-SAR can es-
tablish customized geometric configurations specifically de-
signed for target areas. Utilizing mobile rail systems or multi-
antenna setups, GB-SAR reconstructs 3D deformation vector
fields of landslide masses (Shi et al., 2025), identifying slid-
ing directions and potential failure surfaces.

2.3.2 Terrestrial Laser Scanning (TLS)

TLS emerged in the mid-1990s. It plays a unique role in local
refined monitoring by emitting laser pulses and measuring
their reflection time (Stumvoll et al., 2021; Teza et al., 2007).

The landslide often manifests as a sharp change in the
ground surface. TLS can provide data with sufficient accu-
racy, assisting researchers in identifying the features of these
landslides (Abellan et al., 2009; Teng et al., 2022).

By quickly and massively collecting spatial point position
information, TLS can automatically splice and rapidly obtain
the appearance of the measured object. It can be used to con-
struct high-precision surface models and appearance models
of buildings and structures. The 3D model can display the
shape and structure of the mountain and the detailed features
of the ground surface from different angles and in all direc-
tions (Zhou et al., 2024a), enabling geological experts and
engineers to have a more intuitive understanding of the over-
all situation of the landslide area. For example, the cracks
in the mountain, the loose accumulations, and the degree of
weathering of the rocks can be clearly seen, providing richer
information for the identification of potential landslide haz-
ards.

In the context of deep learning, TLS-derived 3D point
clouds have become critical inputs for morphological feature
extraction and automatic landslide identification. For exam-
ple, Senogles et al. (2022) integrated TLS point cloud data
to assess surface displacements induced by landslide move-
ments. Wang et al. (2025) provided a practical and adaptable
solution for landslide monitoring by integrating TLS point
clouds with embedded RGB imagery.

These examples confirm that TLS data are not only suit-
able but already actively used in deep learning-based land-
slide recognition, providing precise geometric constraints for
multi-source fusion frameworks that combine DEM, optical,
and InSAR information.

Ground-based techniques provide the highest precision for
monitoring a specific slope of interest. GB-SAR and TLS
are both non-contact remote sensing methods, but they op-
erate on different principles. GB-SAR offers continuous, all-
weather, mm-level deformation monitoring over a large area
(several km?) from a single station, making it ideal for early
warning. Its drawback is the need for a stable, opposing in-
stallation point with a clear line-of-sight (Monserrat et al.,
2013). TLS, on the other hand, provides mm-to-cm-level 3D
point clouds of the slope surface, excellent for quantifying
volume changes and detailed geometric changes. However,
it is typically used for periodic surveys rather than contin-
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uous monitoring and has occlusion shadows (Huang et al.,
2019).

2.3.3 Ground-based Sensor Devices

Compared to the aforementioned data sources, ground-based
sensors offer key advantages, including high precision, real-
time capabilities, and multi-parameter fusion (Dai et al.,
2023). They can address the limitations of remote sensing
and provide critical ground-based dynamic information for
potential landslide identification.

Ground-based sensing devices are highly diverse, and the
data they acquire directly reflect the state of landslide masses.
These datasets provide foundational inputs for deep learning
models, enabling multi-dimensional analysis and interpreta-
tion of potential landslide conditions. For example, ground
sensors (e.g., GNSS receivers and crack meters) can collect
parameters like displacement and tilt angle at frequencies
ranging from minutes to seconds, capturing transient, anoma-
lous signals just prior to landslide events, thereby filling
the temporal resolution gap in remote sensing (see Fig. 1).
These data are often used as input sources for RNN mod-
els and their variants (Bai et al., 2022; Wang et al., 2021a).
By integrating time series data with SAR imagery, deep
learning models can be trained to uncover correlation pat-
terns between surface deformations and subsurface param-
eters (Jiang et al., 2022b). Instruments such as piezometers
and soil pressure gauges can directly monitor key parame-
ters like pore water pressure and soil stress on the sliding
surface. By combining the obtained subsurface data with ge-
omechanical equations, the position of the sliding surface or
geotechnical strength parameters can be inferred.

Therefore, GB-SAR, TLS, and ground-based sensors are
not only auxiliary observation techniques but are increas-
ingly serving as key data sources for deep learning-driven
landslide identification. Their integration into CNN, LSTM,
and Generative Adversarial Network (GAN) frameworks en-
ables high-resolution spatial-temporal modeling of slope be-
havior, bridging the gap between field-scale monitoring and
large-scale hazard prediction.

2.4 Summary of Data Source for Potential Landslide
Identification

In summary, no single data source is sufficient for a
comprehensive potential landslide identification framework.
Regional-scale satellite data, particularly InSAR, is optimal
for the early detection of pre-landslide deformations over
vast areas. Airborne platforms, such as UAVs, then provide
high-resolution optical and LiDAR data to characterize the
precise geometry and activity of identified potential land-
slides. Finally, ground-based and in-situ sensors enable site-
specific, real-time monitoring of high-risk slopes, validating
remote sensing findings and supporting early warning sys-
tems. The strategic integration of these multi-platform data
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is crucial for transitioning from regional screening to mech-
anistic understanding and risk mitigation.

Beyond these general data modalities, recent years have
also witnessed the emergence of benchmark datasets that
serve as standardized testbeds for developing and evaluat-
ing deep learning methods in landslide identification. Such
datasets are essential for ensuring reproducibility, enabling
fair comparison across models, and accelerating method-
ological advances. Representative examples include the CAS
Landslide Dataset, a large-scale, multi-sensor dataset ex-
plicitly designed for deep-learning-based landslide mapping
(Xu et al., 2024); the Landslide4Sense (L4S) benchmark,
developed within an international competition, which pro-
vides multi-source satellite image patches (Ghorbanzadeh et
al., 2022b); and the Diverse Mountainous Landslide Dataset
(DMLD), which emphasizes high-resolution instances from
complex mountainous terrains (Chen et al., 2024a). In ad-
dition, slope-unit-based benchmark datasets have been con-
structed to support susceptibility mapping and regional-scale
comparisons (Martinello et al., 2021).

These datasets serve as valuable resources for pixel-level
segmentation and slope-unit-based susceptibility modeling.
However, in practice, the compilation of landslide invento-
ries faces considerable challenges, making it difficult to ob-
tain comprehensive and accurate records (Kong et al., 2025;
Lee et al., 2018). Consequently, data scarcity remains a com-
mon issue in landslide hazard identification, particularly in
remote regions or areas with limited accessibility. Therefore,
it is necessary to further expand their geographical coverage
and establish standardized evaluation protocols.

3 Deep Learning for Potential Landslide Identification:
Models

The effectiveness of deep learning in potential landslide iden-
tification largely depends on selecting an appropriate model
architecture suited to the data type and specific task. While
all deep learning models excel at automated feature extrac-
tion, their internal architectures predispose them to excel in
different aspects of the overall workflow. Therefore, this sec-
tion does not merely list models, but organizes them based on
their primary function in the potential landslide identification
pipeline. We analyze several commonly used deep learning
models by categorizing them into five functional roles: im-
age analysis and processing, time series analysis, data gener-
ation, anomaly detection, and data fusion.

3.1 Models for Image Analysis and Processing in
Potential Landslide Identification

Image data plays a critical role in potential landslide iden-
tification, especially through remote sensing, satellite, and
UAV imagery. These images enable the acquisition of large-
scale terrain data, encompassing complex geographical fea-
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tures, vegetation coverage, and ground fissures, which of-
ten serve as potential precursors to landslide occurrences.
The adoption of deep learning has facilitated a shift from
conventional manual visual interpretation to automated high-
precision segmentation.

CNNs, owing to their inherent capability to learn hier-
archical and multi-scale spatial features (Kattenborn et al.,
2021; LeCun et al., 1998; Liu et al., 2022b), have become
the core methodological framework for most image-based
deep learning applications in landslide research (see Fig. 2).
This capability directly addresses a long-standing limitation
of conventional classifiers, which struggle to simultaneously
capture fine-scale precursors (e.g., narrow ground fissures)
and large-scale landslide morphology within a unified frame-
work. Multi-scale convolutional feature extraction has been
shown to significantly enhance the sensitivity of landslide de-
tection across a wide range of spatial extents (Hussain et al.,
2019; Shi et al., 2020; Yao et al., 2021). For example, small
convolutional kernels are particularly effective in identify-
ing subtle surface disturbances, such as localized soil texture
variations and ground cracks, which often precede slope fail-
ure. Hamaguchi et al. (2018) and Wang et al. (2024a) demon-
strated that CNN-based models can detect extremely small
and subtle features, including cracks as narrow as 0.05 m, a
level of detail that is difficult to achieve using conventional
texture-based methods.

Conversely, larger convolutional kernels and multi-scale
fusion strategies enhance the identification of overall land-
slide morphology and scar boundaries, which are critical for
accurate inventory mapping. Ding et al. (2022) showed that
larger kernels improve the shape bias of CNNs, facilitat-
ing the recognition of large-scale structural patterns, while
Li et al. (2025b) demonstrated that scale-adaptive kernel fu-
sion improves global perception of landslide extents and con-
textual background information. By integrating multi-scale
feature extraction within a single model, CNN-based ap-
proaches outperform conventional machine-learning classi-
fiers that depend on fixed-scale descriptors and often exhibit
reduced generalization in heterogeneous terrain.

Beyond feature extraction, architectural innovations such
as residual and dense connections have substantially im-
proved the trainability and data efficiency of deep networks
in landslide applications (He et al., 2016). Deep networks
with increased depth generally exhibit stronger represen-
tational capacity but are prone to optimization difficulties
and overfitting, particularly under limited training samples
(Ebrahimi and Abadi, 2021).

Residual Networks (ResNet) address these challenges
through shortcut connections (Qi et al., 2020; Yang et al.,
2022), enabling stable training of very deep models and im-
proved discrimination between landslide scars and surround-
ing vegetation or bare soil in complex terrains (see Fig. 2).
However, deeper architectures also incur higher computa-
tional costs, which may constrain their practical deployment
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in large-scale or near-real-time mapping scenarios (Hasanah
et al., 2023).

Dense Convolutional Networks (DenseNet) further en-
hance feature reuse and gradient flow through dense connec-
tivity, reducing parameter redundancy and improving perfor-
mance under limited training data conditions (Huang et al.,
2017; Liu et al., 2021c). This property is particularly rele-
vant for landslide studies, where high-quality labeled sam-
ples are often scarce and spatially clustered. Empirical stud-
ies indicate that DenseNet-based models can effectively ex-
tract multi-scale landslide features in complex terrain while
maintaining computational efficiency (Cai et al., 2021; Li et
al., 2021a; Ullo et al., 2021).

With the maturation of CNN backbones, semantic seg-
mentation has emerged as the dominant paradigm for land-
slide detection, as it enables dense, pixel-level delineation of
landslide extents that is essential for inventory construction
and hazard assessment (Guo et al., 2018; Lu et al., 2023b;
Zhou et al., 2024b). Among these models, U-Net and its vari-
ants have become benchmarks due to their encoder—decoder
structure and skip connections, which preserve spatial de-
tail and improve boundary delineation (Chandra et al., 2023;
Chen et al., 2022; Meena et al., 2022; Ronneberger et al.,
2015). U-Net-based models have demonstrated strong per-
formance in challenging conditions, such as cloud-covered or
topographically complex regions using SAR imagery (Nava
et al., 2022).

However, U-Net’s relatively limited receptive field can re-
strict its ability to capture long-range contextual information
in heterogeneous geological settings. DeepLab addresses this
limitation by incorporating dilated convolutions and Atrous
Spatial Pyramid Pooling (ASPP), enabling effective fusion
of local texture and global contextual cues without sacrificing
spatial resolution (Chen et al., 2017; Huang et al., 2024). This
multi-scale contextual modeling has been shown to reduce
false positives and improve detection consistency in geolog-
ically complex environments, highlighting a key advantage
of advanced deep segmentation models over simpler pixel-
based or object-based approaches (Niu et al., 2018; Sandric
etal., 2024).

Beyond static mapping, deep learning also facilitates
multi-temporal change detection and dynamic hazard mon-
itoring. By comparing segmentation outputs across time or
directly processing multi-temporal image stacks, CNN-based
models can characterize the spatial evolution of landslides
and identify active deformation zones (Amankwah et al.,
2022). Wang (2023) demonstrates that 3D CNNs enable joint
modeling of spatial and temporal dependencies, producing
both change hotspot maps and temporal evolution curves that
capture landslide initiation and progression. Some studies
even have integrated attention mechanisms into conventional
CNN architectures to enhance the analysis of multi-temporal
remote sensing imagery, thereby enabling the identification
of landslide hazard evolution over time. For example, Meng
et al. (2024) proposed a framework based on CNN and op-
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Figure 2. Functional pipeline of CNN-based models for image analysis and processing. (a) Semantic mapping process: demonstrating the
transition from optical input to binary classification for target identification. (b) Segmentation performance: visualizing the model’s capability
to delineate precise landslide boundaries (binary masks) from optical imagery. (¢) Optimization strategies: comparing skip-connections and

dense connectivity for enhancing gradient flow and feature reuse.

timized Bidirectional Gated Recurrent Unit (BiGRU) with
an attention mechanism, designed to forecast landslide dis-
placement with a step-like curve. Dong et al. (2022) proposed
L-Unet which combines multi-scale feature fusion with at-
tention modules to improve landslide segmentation perfor-
mance, particularly at boundaries.

Overall, image-based deep learning models represent
a substantial methodological advance over traditional
machine-learning classifiers in terms of multi-scale feature
representation, mapping completeness, and robustness to
complex backgrounds. Nevertheless, their performance re-
mains contingent on data quality, sample representative-
ness, and computational resources, and they generally lack
the explicit physical interpretability of process-based mod-
els. These limitations motivate increasing interest in hybrid
framework.

3.2 Models for Time Series Analysis in Potential
Landslide Identification

Landslide occurrence is inherently a time-dependent process,
driven by the cumulative and often delayed effects of en-
vironmental forcing such as rainfall, groundwater fluctua-
tion, reservoir operation, and seismic disturbance. Time se-
ries data describing slope displacement, pore-water pressure,
rainfall intensity, or surface deformation provide critical in-
formation for identifying potential instability and forecast-
ing landslide evolution. Unlike static susceptibility mapping,
time series analysis directly targets the dynamic behavior of
slopes and therefore plays a central role in early warning and
short-term prediction (see Fig. 3).

Conventional statistical and physically based approaches
have been widely used to analyze landslide-related time se-
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ries. Statistical models typically assume linear or weakly
nonlinear relationships and often require strong prior as-
sumptions, while physically based models rely on simpli-
fied representations of hydromechanical processes and de-
tailed parameterization that is difficult to obtain at scale.
Deep learning-based temporal models offer a complemen-
tary data-driven alternative by automatically learning nonlin-
ear dependencies, cumulative effects, and delayed responses
directly from observations, without requiring explicit process
equations.

RNNS represent the earliest class of deep learning models
designed for sequential data, enabling the modeling of short-
term temporal dependencies through recursive information
flow (Elman, 1990; Ngo et al., 2021; Zaremba et al., 2014).
In landslide studies, RNNs have been applied to displace-
ment time series influenced by rainfall and groundwater vari-
ation, demonstrating their ability to capture short-term defor-
mation trends prior to failure (Chen et al., 2015; Zhang et al.,
2022c). However, standard RNNs often struggle with long-
term dependencies and cumulative effects, which are com-
mon in landslide processes driven by prolonged or intermit-
tent forcing (see Fig. 3).

To overcome the vanishing gradient problem inherent in
RNNs, LSTM introduces memory cells and gating mecha-
nisms that selectively retain relevant temporal information
(Graves, 2012; Landi et al., 2021; Sherstinsky, 2020; Smag-
ulova and James, 2019; Staudemeyer and Morris, 2019; Yu
et al., 2019). This capability is particularly well aligned with
landslide dynamics, where delayed and cumulative responses
to rainfall or reservoir level fluctuations are critical precur-
sors of instability. Empirical studies consistently demonstrate
that LSTM-based models outperform conventional regres-
sion and shallow machine-learning approaches in displace-
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Figure 3. Analytical framework of RNN-based models for time series analysis. (a) From field monitoring to predictive insight: outlining the
transformation of multi-source field monitoring data into predictive landslide intelligence. (b) Processing temporal dependencies: illustrating
the recursive logic of RNN, LSTM, and GRU in processing sequential variables.

ment prediction and early warning tasks. For example, Yang
et al. (2019) analyzed the relationships among landslide de-
formation, rainfall, and reservoir water levels, and found that
compared with static models, the LSTM approach more ac-
curately captured the dynamic characteristics of landslides
and effectively leveraged historical information. Xu and Niu
(2018) used a LSTM model to predict the displacement evo-
lution of the Baijiabao landslide using rainfall and hydro-
logical level data, achieving a higher correlation compared
with traditional regression models. In another study focused
on shallow landslides, Xiao et al. (2022) used a week-ahead
LSTM model, which exhibited stable performance and im-
proved prediction accuracy in short-term prediction scenar-
ios. Additionally, Gidon et al. (2023) constructed a Bi-LSTM
model and achieved a detection accuracy of 93 % in the
Mawiongrim area.

Despite their strong performance, LSTM models are com-
putationally demanding and may be prone to overfitting
when training data are limited. GRUs provide a streamlined
alternative by simplifying the gating structure while main-
taining comparable predictive accuracy (Cho et al., 2014).
This balance between model complexity and performance
makes GRU-based models particularly attractive for real-
time landslide monitoring and operational early warning sys-
tems, where computational efficiency and rapid updating
are critical (Chung et al., 2014; Rawat and Barthwal, 2024;
Zhang et al., 2022¢). Recent studies indicate that GRUs can
effectively identify acceleration phases in displacement time
series, enabling earlier detection of rainfall- or earthquake-
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induced slope instability (Chang et al., 2025; Yang et al.,
2025).

More recently, Transformer-based architectures have
emerged as powerful alternatives for time series modeling by
leveraging self-attention mechanisms to capture long-range
temporal dependencies in parallel (Vaswani et al., 2017).
Compared with recurrent models, Transformers are particu-
larly effective at modeling long-term and non-local temporal
relationships, which are often present in landslide processes
influenced by multi-seasonal rainfall or complex hydrologi-
cal regimes. In landslide-related applications, Transformers
can adaptively learn latent temporal features across diverse
scenarios and outperform conventional RNN-based models
in capturing complex temporal patterns (Esser et al., 2021;
Huang and Chen, 2023; Wang et al., 2024b; Zerveas et al.,
2021).

However, a key drawback of the standard Transformer is
its quadratic computational complexity with respect to se-
quence length, which becomes prohibitive for very long se-
quences (Zhuang et al., 2023). This also complicates the in-
terpretation of how the model extracts features and makes
decisions from large amounts of landslide data, posing chal-
lenges for practical deployment. It is worth noting that mit-
igating this quadratic complexity is an active research area,
with many efficient Transformer variants being developed.
For example, Zhao et al. (2024f) combined the strengths of
CNN and Transformer architectures, selecting and analyzing
nine landslide-conditioning factors to successfully achieve
accurate landslide localization and detailed feature capture.
Ge et al. (2024) proposed the LiteTransNet model based on
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the Transformer framework, effectively capturing and inter-
preting the varying importance of historical information dur-
ing the prediction process. Therefore, while powerful, the
vanilla Transformer may not be the optimal choice for all
practitioners, and its computational demands should be care-
fully considered.

In summary, deep learning-based time series models rep-
resent a significant advancement over conventional statis-
tical approaches by enabling data-driven learning of non-
linear, delayed, and cumulative deformation patterns that
are difficult to encode explicitly in physical models. RNNs
and LSTMs remain effective and interpretable for short- to
medium-term prediction tasks, while GRUs offer computa-
tionally efficient solutions for operational systems (Li et al.,
2021b; Wang et al., 2020b). Transformer-based models pro-
vide superior capacity for long-term dependency modeling
but require careful consideration of data availability, com-
putational resources, and interpretability. These trade-offs
highlight the importance of selecting temporal architectures
based on specific monitoring objectives, data characteristics,
and operational constraints.

3.3 Models for Data Generation in Potential Landslide
Identification

A fundamental challenge in potential landslide identification
lies in the scarcity, imbalance, and spatial clustering of la-
beled landslide samples. Landslide inventories are often in-
complete, biased toward large or easily detectable events, and
unevenly distributed in space and time. These limitations sig-
nificantly constrain the performance and generalization abil-
ity of both traditional machine-learning classifiers and deep
learning-based models, particularly in data-hungry settings.
Data generation aims to alleviate these issues by learning
the underlying data distribution and synthesizing new sam-
ples that are statistically consistent with observed landslide
patterns (Kingma et al., 2014; Moreno-Barea et al., 2020;
Shorten and Khoshgoftaar, 2019).

Conventional data augmentation techniques (e.g., rotation,
flipping, noise injection) provide limited diversity and do
not fundamentally address class imbalance or morphologi-
cal variability in landslide datasets. Deep generative models
represent a major methodological advance by explicitly mod-
eling the latent distribution of geospatial features, thereby en-
abling the creation of realistic and diverse synthetic landslide
samples (Alam et al., 2018; Karras et al., 2020; Ma et al.,
2024; Xu et al., 2015). Unlike discriminative models, gener-
ative models capture probabilistic representations of terrain,
deformation, or image features, making them particularly
suitable for addressing uncertainty, rarity, and heterogeneity
in landslide data. Commonly used deep generative models
include GANSs, Variational Autoencoders (VAEs), and diffu-
sion models (see Fig. 4).

GANs are among the most widely adopted generative
models for landslide-related data augmentation, particularly
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in remote sensing imagery. Through adversarial training be-
tween a generator and a discriminator, GANs can produce
visually realistic synthetic samples that closely resemble
real landslide images (Goodfellow et al., 2014; Gui et al.,
2021; Saxena and Cao, 2021). In potential landslide iden-
tification, this capability can address the shortage of la-
beled image samples that limits the performance of segmen-
tation and classification models. For example, Feng et al.
(2024) achieved the first implementation of using a GAN
to generate synthetic high-quality landslide images, aiming
to address the data scarcity issue that undermines the per-
formance of landslide segmentation models. Al-Najjar and
Pradhan (2021) proposed a novel approach that employs a
GAN to generate synthetic inventory data. The results indi-
cate that additional samples produced by the proposed GAN
model can enhance the predictive performance of Decision
Trees (DT), Random Forest (RF), Artificial Neural Network
(ANN), and Bagging ensemble models.

Despite their effectiveness, GAN-based approaches ex-
hibit notable limitations. Mode collapse may reduce sam-
ple diversity, particularly for rare landslide types or ex-
treme morphologies, and training instability often necessi-
tates careful hyperparameter tuning and substantial compu-
tational resources (Fang et al., 2020). Such constraints can
limit their applicability in operational or real-time hazard as-
sessment. Recent architectural refinements, including Condi-
tional GAN (CGAN) (Kim and Lee, 2020; Loey et al., 2020;
Mirza and Osindero, 2014), image-to-image translation with
GAN (Pix2Pix) (Isola et al., 2017; Qu et al., 2019), and
Wasserstein GAN (WGAN) (Arjovsky et al., 2017; Wang
et al., 2019), partially mitigate these issues by improving
training stability and enabling conditional or controlled sam-
ple generation. As a result, GANs are increasingly viable
for high-resolution landslide image synthesis and remote
sensing—based susceptibility analysis, particularly when vi-
sual realism is a primary requirement.

As a probabilistic variant of AEs, VAEs introduce
latent-space regularization through variational inference (see
Fig. 4). Compared with GANs, VAEs prioritize distributional
coverage and uncertainty representation over visual sharp-
ness (Hinton and Salakhutdinov, 2006; Kingma and Welling,
2013), making them well suited for probabilistic modeling
of landslide processes. For instance, Cai et al. (2024) demon-
strated that a VAE-GRU framework can generate narrow pre-
dictive intervals while maintaining high coverage probabili-
ties, representing a substantial improvement over the state-
of-the-art methods. Such probabilistic outputs are particu-
larly valuable for risk-informed decision-making and early
warning applications (Islam et al., 2021; Oliveira et al.,
2022).

Compared with GANs, VAEs produce more diverse but
slightly less detailed samples, due to their structured latent
space constraints. This characteristic is particularly benefi-
cial for exploring a wide range of potential landslide mor-
phologies and for augmenting training datasets used in sus-
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Figure 4. Comparative mechanisms of deep generative models for data generation. (a) Contrasting fundamental training objectives: VAE
(maximizing variational lower bounds), GAN (adversarial gaming), and Diffusion models (iterative noise reversal). (b) Adversarial learning:
function of the generator-discriminator competition in improving sample fidelity. (¢) Latent space modeling: highlighting the probabilis-
tic sampling layer in VAEs that enables diverse sample generation compared to standard AEs. (d) Iterative denoising: the mechanism of

reconstructing high-resolution imagery through reverse diffusion.

ceptibility prediction. However, VAEs may still struggle with
highly imbalanced datasets, as their probabilistic reconstruc-
tion tends to favor majority classes. Integrating VAEs with
stratified sampling or cost-sensitive learning could help over-
come this limitation and further enhance landslide prediction
performance.

When computational resources and training time permit,
diffusion models provide a powerful alternative for gener-
ating high-quality, diverse, and stable data (Croitoru et al.,
2023; Ho et al., 2020; Yang et al., 2023a; Zhu et al., 2023a).
These models learn the data distribution by gradually adding
noise to real samples (forward diffusion) and then recon-
structing clean data through a reverse denoising process (see
Fig. 4). The resulting models can sample new, realistic data
points that reflect complex terrain and geophysical variabil-
ity. For example, Lo and Peters (2024) proposed a Terrain-
Feature-Guided Diffusion Model (TFDM) to fill gaps in
DEM data. Similarly, Zhao et al. (2024b) employed a De-
noising Diffusion Probabilistic Model (DDPM) conditioned
on incomplete DEMs, which serves as a transitional kernel
during diffusion reversal to progressively reconstruct sharp
and accurate DEM.

Despite their successful applications in image synthesis,
denoising, and remote-sensing image enhancement (Leher et
al., 2025; Sui et al., 2024; Xiao et al., 2023; Zou et al., 2024),
diffusion models have not yet been widely applied directly to
the identification of potential landslides and remain in the ex-
ploratory stage. Nonetheless, our optimism for their applica-
tion is grounded in their potential to address key challenges
such as limited labeled data through generative augmentation
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and, more importantly, to provide uncertainty quantification
in predictions, which is vital for risk assessment.

In summary, deep generative models provide an essen-
tial complement to discriminative deep learning and con-
ventional machine-learning approaches in potential landslide
identification. Among them, GANs are effective for generat-
ing visually realistic imagery and data augmentation; VAEs
capture probabilistic geomorphic transitions; and diffusion
models ensure stability and fidelity in high-resolution terrain
synthesis. Rather than replacing predictive models, genera-
tive approaches primarily enhance data quality, diversity, and
uncertainty representation, thereby strengthening the robust-
ness and generalization of landslide identification and fore-
casting frameworks.

3.4 Models for Anomaly detection in Potential

Landslide Identification

Anomaly detection provides a complementary perspective to
supervised landslide classification by focusing not on what
constitutes a landslide, but on when and where a slope be-
gins to deviate from its normal state. In potential landslide
identification, this paradigm is particularly valuable because
catastrophic failures are often preceded by subtle, progres-
sive, and spatially heterogeneous signals. Typical anomalies
include unexpected acceleration in surface displacement, co-
herence loss in InSAR observations, or irregular fluctuations
in multi-sensor monitoring data, which may emerge well be-
fore visible slope failure (Deijns et al., 2020; Jiang et al.,
2020).
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Compared with conventional anomaly detection ap-
proaches based on empirical thresholds or predefined sta-
tistical rules, deep learning-based methods offer a critical
advantage: they can learn complex, nonlinear “normality
patterns” directly from data, without requiring explicit as-
sumptions about failure modes. This shift is especially im-
portant in landslide-prone environments, where background
variability driven by rainfall, vegetation dynamics, and sen-
sor noise often masks early instability signals. By modeling
high-dimensional spatiotemporal dependencies, deep learn-
ing enables a more adaptive and context-aware identification
of abnormal slope behavior.

AEs constitute the most widely adopted framework for
unsupervised anomaly detection in landslide monitoring.
Rather than explicitly detecting failures, AEs are trained to
reconstruct normal system states, such as stable slope dis-
placement time series or radar backscatter signatures (Saku-
rada and Yairi, 2014; Zhou and Paffenroth, 2017). When ex-
posed to abnormal inputs (such as sudden deformation ac-
celeration or coherence degradation) the reconstruction error
increases, providing an implicit indicator of potential insta-
bility. This reconstruction-based logic is particularly attrac-
tive in landslide applications, where labeled failure data are
scarce or incomplete. For instance, Shakeel et al. (2022) de-
veloped an InSAR deformation anomaly detector based on
an AE-LSTM architecture. Experimental analyses using syn-
thetic deformation test scenarios achieved an overall perfor-
mance accuracy of 91.25 %.

However, deterministic AEs implicitly assume that “nor-
mal” patterns can be represented by a single compact mani-
fold, which may be insufficient for landslide systems charac-
terized by multiple deformation regimes. VAEs address this
limitation by explicitly modeling uncertainty in the latent
space through probabilistic inference (Kumar et al., 2024;
Pol et al., 2019). By learning a distribution rather than a sin-
gle representation of normal slope behavior, VAEs are bet-
ter suited to capture the intrinsic variability of environmental
and geotechnical conditions (Kingma and Welling, 2013; Li
et al., 2020; Park et al., 2018). Recent studies indicate that
VAESs outperform conventional AEs when anomaly detection
involves multivariate inputs combining displacement, rain-
fall, and hydrological factors, enabling a more robust identi-
fication of transitional instability stages (Nawaz et al., 2024;
Han et al., 2025). Nevertheless, the probabilistic nature of
VAEs also introduces practical challenges, including higher
data requirements and the need for operationally meaningful
thresholding strategies.

GAN:Ss offer an alternative perspective on anomaly detec-
tion by exploiting the discriminator’s ability to differenti-
ate between learned “normal” patterns and unfamiliar inputs
(Kang et al., 2024; Xia et al., 2022). In landslide monitor-
ing, GAN-based approaches learn the distribution of stable
slope features, while deviations from this distribution are
interpreted as anomalies (Radoi, 2022). Extensions such as
AnoGAN further adapt this adversarial framework by explic-
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itly embedding anomaly scoring mechanisms into the latent
space (Lin et al., 2023; Thomine et al., 2023). While GAN-
based methods have shown promise in detecting subtle devi-
ations in complex data distributions, their training instability
and sensitivity to hyperparameters remain practical limita-
tions, particularly for operational early-warning systems.

Temporal models, including RNNs, LSTMs, and GRUs,
play a distinct yet complementary role in anomaly detection
by emphasizing when abnormal behavior emerges. These
models learn expected temporal evolution patterns in dis-
placement or rainfall time series and flag deviations from pre-
dicted trajectories (Zamanzadeh Darban et al., 2024; Zhang
et al., 2022a). In landslide early-warning scenarios, this tem-
poral sensitivity is crucial for identifying acceleration phases
rather than static anomalies. Hybrid architectures that inte-
grate temporal models with AEs or GANs further enhance
anomaly detection by jointly capturing spatial reconstruc-
tion errors and temporal inconsistencies, enabling multi-
source consistency checks across monitoring networks. For
instance, Geiger et al. (2020) demonstrated a growing trend
of utilizing LSTM networks as both the generator and dis-
criminator within GAN frameworks for time-series anomaly
detection. Similarly, Whitaker (2023) illustrated the appli-
cation of LSTM-GAN architectures in identifying temporal
anomalies.

Deep learning-based anomaly detection shifts landslide
identification from static classification toward dynamic state
monitoring, making it particularly suitable for early recogni-
tion of slope instability under evolving environmental condi-
tions. Although these methods do not directly predict land-
slide occurrence, they provide an essential early-warning
layer by highlighting abnormal system behavior that war-
rants further physical interpretation or intervention.

3.5 Models for Data Fusion in Potential Landslide
Identification

In practical applications, the identification of potential land-
slide hazards is a complex task that influences by multiple
factors (Zhang et al., 2018). These factors are often reflected
through different data sources. We can roughly divide het-
erogeneous data into four categories: image data, time series
data, structured data, and textual data. Given this heterogene-
ity, data fusion is essential for the accurate identification of
potential landslides (see Fig. 5).

Conventional data fusion approaches in landslide studies
(such as feature concatenation, weighted linear combination,
or statistical multivariate analysis) generally rely on prede-
fined assumptions regarding variable independence or linear
interactions. While these methods are computationally effi-
cient, they struggle to capture the nonlinear, scale-dependent,
and cross-modal relationships that characterize real-world
landslide processes. In contrast, deep learning-based data fu-
sion models provide a data-driven means to automatically
learn high-order feature interactions across heterogeneous
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inputs, thereby offering a more flexible and expressive frame-
work for potential landslide identification.

Among existing architectures, Graph Neural Networks
(GNNs) have attracted increasing attention due to their abil-
ity to explicitly represent non-Euclidean spatial relation-
ships. Landslide-related terrain units (e.g. slope units, grid
cells, or monitoring stations) are inherently interconnected
through topography, hydrological pathways, and geologi-
cal continuity (see Fig. 5). Conventional CNN-based fusion
models, which operate on regular grids, are limited in captur-
ing such irregular spatial dependencies. By contrast, GNNs
represent spatial entities as nodes and their geospatial, hy-
drological, or geological relationships as edges, enabling the
propagation of information across topologically connected
units (Scarselli et al., 2008; Ying et al., 2018; Zeng et al.,
2022).

In landslide identification and forecasting, this graph-
based representation allows geomorphic and hydrological
signals to be explicitly transmitted between adjacent or func-
tionally connected units, thereby better reflecting slope inter-
action mechanisms. For example, Kuang et al. (2022) pro-
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posed an innovative landslide forecasting model based on
GNN:ss, in which graph convolutions are employed to aggre-
gate spatial correlations among different monitoring sites.
Ren et al. (2025) introduced a novel GNN framework with
conformal prediction (GNN-CF) for landslide deformation
interval forecasting, addressing the limitations of conven-
tional models in handling predictive uncertainty.

According to the differences in message passing and ag-
gregation methods, GNNs have derived various variants. For
example, Graph Convolutional Network (GCN) is gener-
ated by generalizing the convolutional operation to graph-
structured data (Kipf and Welling, 2016; Sharma et al., 2022;
Wang et al., 2020a), and Graph Attention Network (GAT)
dynamically weights the importance of neighboring nodes
by introducing the attention mechanism (Velickovi¢ et al.,
2017; Yuan et al., 2022; Zhou and Li, 2021). The emergence
of these new architectures makes GNN variants more tar-
geted than conventional GNNs and suitable for modeling het-
erogeneous relationships. Currently, they are often used for
weighted analysis of the impacts of different geographical
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factors on landslides (Kuang et al., 2022; Li et al., 2025d;
Zhang et al., 2024e).

Beyond graph-based models, Transformer architectures
have emerged as a unifying framework for multimodal data
fusion in landslide studies. As highlighted in Sect. 3.2, the
Transformer’s self-attention mechanism and modular archi-
tecture make it a universal framework for processing sequen-
tial data and enabling multimodal fusion (see Fig. 5).

In this context, the core advantage of the Transformer
lies in its ability to integrate diverse input data (e.g., satel-
lite imagery, GPS time series, and geological maps). It
achieves this by employing independent embedding layers
to convert each modality into a unified vector representation,
which is then fused through the self-attention mechanism.
This mechanism computes the interactions and correlations
among all elements across different modalities, thereby en-
abling the model to capture cross-modal dependencies and
extract joint feature representations within a unified frame-
work. This capability makes the Transformer particularly
suitable for landslide studies (Li et al., 2025c). For exam-
ple, Piran et al. (2024) enhanced short-term precipitation
forecasting by applying transfer learning with a pre-trained
Transformer model. Zhang et al. (2024e) incorporated Trans-
former modules to build a graph-Transformer model that in-
tegrates global contextual information for the generation and
analysis of Landslide Susceptibility Maps (LSMs).

In conclusion, deep learning-based data fusion provides a
flexible and unified framework for integrating heterogeneous
landslide-related data, including spatial, temporal, and topo-
logical information. By enabling joint representation learn-
ing across multiple data modalities, fusion-oriented archi-
tectures such as GNNs and Transformers have substantially
enhanced the capability of potential landslide identification
to capture complex environmental interactions that cannot
be adequately represented by single-source or loosely cou-
pled models. As a result, data fusion has become a critical
methodological component in contemporary deep learning-
based landslide hazard studies.

4 Deep Learning for Potential Landslide Identification:
Applications

The preceding sections have laid the groundwork by dis-
cussing the data prerequisites and model architectures fun-
damental to deep learning in potential landslide research.
Building upon that foundation, this section turns to the prac-
tical applications of deep learning for identifying potential
landslides across diverse real-world scenarios.

Given that landslides are triggered by different dominant
factors, the mechanisms, data characteristics, and monitoring
strategies vary substantially among different types. To pro-
vide a systematic and targeted analysis, this section organizes
the applications according to four major triggering cate-
gories: rainfall-induced landslides, earthquake-induced land-
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slides, human activity-induced landslides, and multi-factor-
induced landslides (see Fig. 6). For each category, we briefly
outline its geological characteristics, summarize representa-
tive deep learning applications, and discuss model adaptabil-
ity and monitoring considerations. This structure allows for
a comprehensive understanding of how deep learning frame-
works can be tailored to the unique challenges posed by dif-
ferent landslide-inducing mechanisms.

4.1 Application of Deep Learning in the Identification
of Rainfall-induced Landslides

Rainfall stands as the predominant global trigger for land-
slides. Intense and short-duration rainfall events (lasting
from a few hours to several days) often induce shallow land-
slides (Ma and Wang, 2024), whereas prolonged rainfall
(lasting from several weeks to months) can lead to deeper
and larger landslides, with depths ranging from 5 to 20m
(Casagli et al., 2023). Consequently, rainfall intensity, cumu-
lative precipitation, and rainfall duration constitute critical
triggering parameters for rainfall-induced landslides (Mon-
dini et al., 2023).

Sustained or intense rainfall elevates slope unit weight and
moisture content, alters pore water pressure regimes, and
reduces shear strength via the principle of effective stress,
thereby initiating surface instability. This hydro-mechanical
coupling establishes a pronounced positive correlation be-
tween rainfall patterns and slope deformation (Li et al.,
2022a).

Temporally, landslides exhibit both abrupt failure and de-
layed responses to rainfall. Pre-existing fractures act as pref-
erential pathways for rainwater infiltration, yet the time re-
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quired for percolation to reach slip zones introduces a hys-
teresis effect in slope deformation relative to precipitation
events (Jiang et al., 2023; Liu et al., 2022c¢). During wet
seasons, intense rainfall elevates groundwater tables, induc-
ing fully saturated conditions in slope materials. This satura-
tion amplifies shear strain rates, triggering rapid acceleration
of landslide movement. Post-rainfall, groundwater levels re-
main elevated for extended periods (weeks to months), re-
sulting in sustained but decelerated sliding velocities rather
than complete stabilization. Consequently, despite concen-
trated rainfall during wet seasons, numerous landslides occur
in subsequent dry periods (Ren et al., 2023), highlighting the
delayed destabilization governed by lingering pore pressure
dynamics. The hysteresis phase reflects progressive energy
accumulation toward critical thresholds, while abrupt failure
signifies rapid energy release during instability. This transi-
tion is typically characterized by a near-instantaneous shift
from stable to unstable states when pore water pressures or
soil moisture content exceed critical thresholds, with mini-
mal intermediate deformation phases.

The spatial clustering of rainfall-induced landslides funda-
mentally arises from the coupling of moisture transport effi-
ciency and geotechnical strength degradation within specific
geomorphic units (Wicki et al., 2020; Yu et al., 2021). Spa-
tially, such landslides are concentrated in high-rainfall zones
and permeable lithologies, where hydro-mechanical feed-
back dominates slope destabilization. High-rainfall zones,
characterized by frequent and intense precipitation, impose
dual hydrological stresses on slopes: surface runoff erodes
toe regions, while infiltration elevates pore pressures, col-
lectively acting as external drivers of failure. Highly perme-
able strata, characterized by high porosity or interconnected
fractures, accelerate water migration. Combined with high
permeability, these properties regulate water retention time
within the slope and control the efficiency of pressure trans-
mission, forming an internal transport network that facili-
tates landslide progression. The superposition of these mech-
anisms drives slope stability beyond critical thresholds over
short timescales, culminating in abrupt failure.

What determines the critical threshold for rainfall-induced
landslides? First, it is essential to define the critical thresh-
old as the minimum amount of rainfall required to trigger a
landslide under specific geological and topographic condi-
tions (Naidu et al., 2018; Segoni et al., 2018b). This thresh-
old is typically classified into two types: empirical thresh-
olds, which are derived from statistical relationships between
historical landslide events and rainfall data, and physically
based thresholds, which incorporate hydromechanical mod-
els. Both approaches assume rainfall as the primary destabi-
lizing driver. To operationalize these thresholds for landslide
prediction, monitoring systems integrate rain gauge and re-
mote sensing to assess proximity to critical saturation lev-
els (Li et al., 2023a; Piciullo et al., 2018). Moreover, the
relationship between rainfall and landslides is often nonlin-
ear and influenced by multiple factors. Deep learning mod-
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els enable data-driven determination of context-specific crit-
ical rainfall values across diverse geological and topograph-
ical settings (Sala et al., 2021; Segoni et al., 2018a). For
example, Badakhshan et al. (2025) incorporated the role of
soil strength. Soares et al. (2022) utilized the U-Net model,
reveals that the inclusion of a normalized vegetation index
layer enhances model balance and significantly improves
segmentation accuracy.

Following the development of rainfall threshold mod-
els, real-time monitoring of historically rainfall-induced
landslides is imperative. First, continuous surveillance en-
ables early detection of subtle deformations and precursory
anomalies (Guzzetti et al., 2020; Zhu et al., 2023b), facil-
itating timely reactivation warnings to mitigate secondary
hazards to lives and infrastructure. Second, by continuously
monitoring rainfall, soil moisture, and groundwater levels,
we can support dynamic recalibration of threshold parame-
ters. This data assimilation enhances model adaptability to
evolving hydrogeological conditions, ensuring operational
relevance across heterogeneous terrains.

While the physical mechanisms governing rainfall-
induced slope failures have been well studied (Arnone et al.,
2011; Xiong et al., 2024), recent advances in deep learning
have significantly improved our ability to automatically iden-
tify and predict such events using heterogeneous data.

In the context of rainfall-induced landslides, spatiotempo-
ral data (e.g., rainfall intensity, cumulative precipitation, soil
moisture, and slope displacement time series) are the pri-
mary inputs. Deep learning models are selected according to
data characteristics and task objectives. For instance, CNNs
are commonly used to extract spatial rainfall-topography fea-
tures and delineate susceptible zones from remote sensing
images (Peng and Wu, 2024; Xu et al., 2022a; Zhang et al.,
2022b). The encoder-decoder architecture, such as U-Net,
enables pixel-level segmentation of rainfall-induced land-
slides (Bhatta et al., 2025), with the inclusion of vegetation
or soil moisture layers improving feature discrimination.

When temporal evolution is essential, RNNs and LSTMs
effectively model sequential dependencies between rainfall
and slope deformation (Biniyaz et al., 2022; Liu et al., 2025).
These models are capable of learning hysteretic responses
and time lags between precipitation events and ground dis-
placement, enabling early warning through time-series fore-
casting.

Deep learning also facilitates data-driven rainfall threshold
estimation. Instead of relying solely on empirical or physi-
cally based thresholds, models such as Fully Connected Neu-
ral Networks (FNNSs) and attention-based transformers can
derive adaptive rainfall thresholds from multi-year rainfall-
landslide records, capturing regional nonlinearities (Wu et
al., 2023).
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4.2 Application of Deep Learning in the Identification
of Earthquake-induced Landslides

Earthquakes not only trigger landslides during the seismic
phase but also increase the susceptibility of post-earthquake
landslides by weakening slope materials or forming co-
seismic landslide deposits (Zhang et al., 2024a; Zhao et al.,
2024a). On the one hand, the seismic vibrations can loosen
the structure of the rock and soil mass on the slope, reduc-
ing the cementation between particles. The originally intact
rock mass may develop cracks, and the density of the soil
decreases, thus reducing the overall stability of the slope and
making it more prone to landslides after the earthquake. On
the other hand, the landslides that have occurred during the
earthquake process will generate a large volume of deposits.
These co-seismic landslide deposits are usually accumulated
at positions such as the lower part of the slope or in valleys.
They are in a relatively unstable state themselves, providing
a material basis for subsequent re-sliding (Fan et al., 2019;
Yao et al., 2024).

So, what is the temporal relationship between earthquake-
induced landslides and seismic events? When an earthquake
occurs, landslides may be triggered instantaneously by seis-
mic ground motion, typically within seconds to minutes after
the earthquake. Such landslides are mainly triggered by the
Peak Ground Acceleration (PGA) or Peak Ground Velocity
(PGV) of the seismic ground motion (Kargel et al., 2016;
Zhao et al., 2023). When these values reach a certain level,
they are sufficient to enable the rock and soil masses on the
slope to overcome the frictional force and shear strength, thus
leading to the occurrence of landslides.

Earthquake-induced landslides are typically concentrated
in areas of high seismic intensity, particularly on steep slopes
or within loose accumulations (Li et al., 2024b). A fault is a
place where the rocks in the earth’s crust break and undergo
relative displacement. Its existence destroys the continuity
and integrity of the rock mass, making it more prone to de-
formation and damage under the action of seismic forces. On
the hanging wall of a reverse fault, the compressive force
usually causes the rock blocks to break, and mountain land-
slides are likely to occur during seismic events. In contrast,
on the footwall of a normal fault, the tensile force may cause
the rock blocks to fracture and loosen, thus increasing the
risk of mountain landslides.

The Newmark model is a commonly used basic model in
the research of earthquake-induced landslides (Jibson, 2007;
Newmark, 1965). Based on a simplified assumption, it re-
gards the rock and soil masses on the slope as rigid blocks.
When these rigid blocks are affected by seismic vibrations,
they slide on the slope surface. By calculating the cumu-
lative downhill displacement of the rigid blocks caused by
the continuous increase of seismic vibrations, the stability of
the slope under the action of an earthquake is measured. In
other words, the greater the cumulative downslope displace-
ment, the more unstable the slope is during the earthquake,

https://doi.org/10.5194/nhess-26-487-2026

and the higher the likelihood of a landslide occurring. How-
ever, Newmark’s model exhibits critical limitations: (1) de-
pendence on oversimplified soil or rock strength assump-
tions, and (2) inadequate integration of high-resolution seis-
mic motion data. Deep learning models address these gaps
by processing massive real-time datasets, filtering noise from
obscured remote sensing imagery (Wang et al., 2024e), and
fusing seismic parameters with multispectral satellite data
through cross-modal architectures (Dahal et al., 2024).

Within hours to days post-main shock, aftershocks can fur-
ther destabilize already loosened slope structures, triggering
secondary landslides clustered near co-seismic failure zones
or aftershock epicenters (Sun et al., 2024b; Zhang et al.,
2024c). These landslides are often concentrated around the
mainshock-induced landslide bodies or the epicentral region
of aftershocks, potentially forming disaster chains (e.g., land-
slides blocking rivers, leading to the formation and subse-
quent failure of landslide dams, which may trigger flooding).
Even years post-earthquake, relic landslide deposits may re-
activate through gradual creep or extreme climatic forcing,
necessitating long-term spatiotemporal monitoring and dy-
namic risk reassessment (Jones et al., 2021; Li et al., 2021c¢).
Moreover, earthquake-induced landslides are often associ-
ated with complex 3D topographic changes, which are dif-
ficult to capture using conventional 2D analyses. Deep learn-
ing frameworks enable precise reconstruction of landslide
geometries by processing LiDAR-derived or UAV-derived
3D point clouds, capturing volumetric deformation patterns
critical for mechanistic modeling.

Current applications of deep learning in earthquake-
induced landslides primarily focus on semantic segmenta-
tion and change detection (Chowdhuri et al., 2022; Huang
et al., 2023b; Liu et al., 2020a; Yang et al., 2024b). Liu et
al. (2021b) employed Graph Isomorphism Networks (GIN)
to model long-range dependencies among high-level features
extracted by ResNet-50. Zi et al. (2021) utilized a hybrid ar-
chitecture combining GAT's and channel self-attention mech-
anisms enhances the modeling of feature interdependencies
from ResNet-50. Yang et al. (2023b) incorporated a spatial
attention module to capture contextual dependencies and ex-
tract rich non-local spatial features, proposing a novel se-
mantic segmentation network, EGCN, to enhance landslide
recognition accuracy.

Both physics-based and data-driven model calibration rely
on earthquake-induced landslides inventories (Bhuyan et al.,
2023; Tanyas et al., 2017). Despite increased inventory avail-
ability, persistent issues of representativeness and complete-
ness limit model generalizability and mechanistic fidelity.

4.3 Application of Deep Learning in the Identification
of Human Activity-induced Landslides

Human activity-induced landslides typically arise uninten-

tionally during construction activities, where initial slope
equilibrium is disrupted by slope toe excavation or water in-
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filtration into exposed fractures (Zhao et al., 2022). Com-
pared to natural landslides, human activity-induced failures
are often more controllable, underscoring the critical impor-
tance of pre-disaster identification for risk mitigation. These
landslides are characterized by localized micro-deformation
and subsurface disturbances, necessitating integrated moni-
toring systems that combine high-resolution remote sensing
data with ground-based sensors for early anomaly detection.

Current predominant anthropogenic triggers include min-
ing and loading (Ma et al., 2023a; Xu et al., 2022b). These
activities induce severe surficial damage, with stratigraphic
movement and surface deformation leading to the formation
of ground fissures. Such fissures compromise surface ecosys-
tems and vegetation, while also penetrating subsurface min-
ing cavities, posing grave risks to operational safety. Con-
sequently, deep learning models are essential for automated
ground fracture extraction to enable real-time hazard map-
ping and preventive interventions (Huangfu et al., 2024).

Moreover, the triggers of human activity-induced land-
slides are not only related to natural conditions but also
closely associated with dynamic human activities. Conse-
quently, their analysis necessitates the integration of multi-
modal and cross-scale data to capture coupled environmen-
tal and behavioral drivers (see Fig. 6). In engineering opera-
tions such as mining or road construction, factors including
proximity to potential landslide zones, excavation depth, and
slope angles must be rigorously evaluated through geohaz-
ard risk assessments. During excavation phases, geotechni-
cal investigations are imperative to identify weak lithological
strata or fracture-dense zones predisposed to instability. Con-
tinuous slope stability monitoring requires deploying IoT-
enabled sensors to track temporal variations in surface fis-
sure dimensions and subsurface displacement vectors. Mon-
itoring data from these sensors can be integrated into deep
learning models for multimodal analytics, enabling dynamic
risk prediction and adaptive mitigation planning.

For spatial mapping and fissure extraction, CNNs and U-
Net-based segmentation models have demonstrated strong
capability in identifying artificial slope features from opti-
cal or SAR imagery. CNN-based models can capture high-
level semantic information on excavation scars, road cuts,
and spoil heaps that indicate anthropogenic disturbance. Tao
et al. (2024) employed the DRs-U-Net model to investigate
the use of deep learning for UAV-based crack identification,
the developmental patterns of fissures, and the feedback in-
teractions between underground mining progress and corre-
sponding surface conditions. Wu et al. (2021) proposed the
PU-Net model for detecting and mapping localized rapid
subsidence induced by mining activities. Meng et al. (2025)
introduced the GF-Former model to achieve precise segmen-
tation of ground fissures in remote sensing imagery.

When surface deformation time series or micro-
displacement data from GB-InSAR, InSAR, or IoT
sensors are available, RNN-based models are applied to
model the temporal evolution of slope deformation (Han et
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al., 2022; Li et al., 2025a). These models are particularly
effective in detecting precursory motion trends caused by
progressive excavation or loading activities.

To mitigate misclassification between anthropogenic sig-
natures and natural terrain, integrating multispectral data
with topographic elevation data enhances discriminative ca-
pacity (Meng et al., 2021; Selamat et al., 2023). For instance,
in mountainous regions, DEMs revealing artificially exca-
vated steep slopes combined with fractured geological strata
from structural maps provide preliminary evidence of human
influence on landslide susceptibility (Lian et al., 2024).

In fact, landslides induced solely by human activities are
relatively rare. Single human activities are typically insuf-
ficient to independently trigger landslides, with natural fac-
tors often acting in conjunction with human activities. Fur-
thermore, the prohibitive cost of acquiring subsurface distur-
bance data results in sparse historical landslide samples for
specific engineering scenarios, limiting data-driven model
training.

4.4 Application of Deep Learning in the Identification
of Multi-factor-induced Landslides

Multi-factor-induced landslides result from the synergistic
interaction of multiple natural and anthropogenic factors
(Hao et al., 2023). Their triggering mechanisms involve the
dynamic spatiotemporal coupling of these factors, driving
progressive destabilization of geomaterials through cumula-
tive strength degradation. The formation of such landslides
may involve various types of movements, including collapse,
creep, and flow phenomena. They often exhibit characteris-
tics such as complexity, nonlinearity, and suddenness. There-
fore, their identification is markedly more complex compared
to landslides induced by singular factors.

Unlike simpler landslide types, identifying composite
landslides necessitates multimodal data fusion to holistically
assess predisposing conditions (Li, 2025; Yin et al., 2023).
It further requires disentangling the nonlinear superposition
effects of multiple factors and quantifying their relative con-
tributions to failure initiation.

In multi-factor-induced landslides, earthquakes and rain-
fall often interact with other factors (Dou et al., 2019).
During heavy rainfall, the rate of landslide formation af-
ter an earthquake may be higher, possibly driven by the re-
moval of excessively steep slopes, changes in vegetation and
groundwater, and alterations in the mechanical properties of
the bedrock and weathered layers in the earthquake-induced
landslides canopy. This necessitates systematic investigation
of multi-hazard coupling effects to quantify emergent risks.

In addition to constructing physics-based models that ac-
count for multiple factors and quantify their interactions
through the solution of governing equations, GNNs can also
be employed (Lei et al., 2025). These models are capable
of capturing the spatiotemporal dependencies and nonlin-
ear couplings among various triggering factors. For exam-
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ple, Ren et al. (2025) employed a GNN to capture and model
the complex spatiotemporal dependencies among multiple
monitoring locations during landslide deformation. Zeng et
al. (2022) used the graphical representation capability of the
GNN model to analyze environmental relationships within
a study region, where nodes were defined as geographic
units delineated by terrain surface approximations, and edges
captured the interactions between node pairs. Zhang et al.
(2024d) constructed a geographically constrained relational
graph based on node features representing environmental
similarity and employed a cosine similarity approach to as-
sociate landslides with their surrounding geographic environ-
ments.

Cross-attention mechanisms can also be integrated into
the model to capture spatiotemporal dependencies among
contributing factors. For instance, Hu et al. (2025a) inte-
grated global landslide feature vectors with local feature
maps through a cross-attention mechanism to enhance the
discriminative capability between landslides and background
geomorphology. Another noteworthy fusion strategy is the
gated fusion unit. Inspired by the gating structures in re-
current neural networks (Arevalo et al., 2017; Kumar and
Vepa, 2020; Tsai et al., 2019), this mechanism learns dy-
namic weights (typically implemented through gating func-
tions such as Sigmoid) to adaptively regulate the informa-
tion flow of features from different modalities, thereby em-
phasizing salient features and suppressing noise. Compared
with cross-attention, the gated fusion mechanism is gener-
ally more lightweight and provides an alternative approach
for multimodal feature fusion (Yang et al., 2024a). For in-
stance, Liu et al. (2022a) proposed a gated fusion unit module
for multimodal remote sensing image semantic classification,
enabling early fusion of heterogeneous modality features.

With the accumulation of new data and the dynamic varia-
tions in multi-factor-induced landslides, regular model up-
dates are critical to ensuring identification accuracy and
adaptability. Existing studies predominantly apply deep
learning methods based on comprehensive historical land-
slide datasets. However, when new data becomes available, a
naive approach is to retrain the model from scratch, which is
computationally inefficient and fails to capture the connec-
tions between new observations and historical knowledge.
A common strategy from the machine learning literature to
address this is fine-tuning, where a model pre-trained on a
historical dataset is further trained on new data (Stialp and
Rezaei, 2025). While this avoids full retraining, standard
fine-tuning can still lead to catastrophic forgetting of previ-
ously learned patterns.

To better accommodate the dynamic nature of landslides,
incremental learning methods offer a more advanced and
promising solution (Huang et al., 2022a; Wang et al., 2024c).
These methods enable the model to continuously learn from
new data streams, gradually optimizing parameters while
striving to preserve knowledge from previous tasks. Com-
pared to models that require retraining or basic fine-tuning
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(Zhao et al., 2024c), models integrated with incremental
learning can more effectively leverage historical data and
adaptively incorporate new information, thereby enhancing
long-term adaptability (Zhen et al., 2025).

The diverse applications discussed in this section demon-
strate that the selection and effectiveness of a deep learning
model are fundamentally governed by the interplay between
available data types, inherent model capabilities, and spe-
cific task objectives. To synthesize these critical relationships
and provide a clear reference framework, Table 1 maps the
typical correspondences between predominant deep learn-
ing architectures, their compatible data source, suited land-
slide phenomena, and representative application tasks. This
synthesis underscores that there is no universally optimal
model; rather, a strategic alignment across the data-model-
application pipeline is key to successful implementation.

4.5 Summary on the Applications of Deep Learning for
Potential Landslide Identification

In general, the process of the applications of deep learning
for potential landslide identification involves data collection,
preprocessing, model construction, training, and validation,
followed by deploying the trained model to identify potential
landslides. Variations arise in data sources, trigger mecha-
nisms, and model handling approaches specific to each land-
slide type. For rainfall-induced landslides, the model prior-
itizes rainfall-related data, with particular emphasis on sim-
ulating rainfall infiltration effects. Earthquake-induced land-
slides require prioritization of seismic data, including earth-
quake magnitude and post-seismic geological alterations.
Human activity-induced landslides demand focused analysis
of the relationship between engineering activities and geo-
logical changes. In contrast, multi-factor-induced landslides
necessitate models that integrate multiple triggering mecha-
nisms and perform a comprehensive assessment of the cumu-
lative effects of diverse contributing factors.

Whether landslides are triggered by rainfall or earth-
quakes, gravity remains the dominant driving force (She et
al., 2024). The primary role of triggering factors lies in re-
ducing slope stability or amplifying gravitational effects. Be-
fore and during landslide occurrence, deformation of slope
geomaterials constitutes the most observable phenomenon
(Zhou et al., 2025). This deformation often manifests as the
formation and expansion of cracks.

Since landslide deformation is a dynamic process, rang-
ing from initial minor changes to eventual large-scale slid-
ing, each stage exhibits distinct characteristics. Therefore,
landslides can be classified into distinct stages based on their
deformation characteristics, enabling more accurate identifi-
cation of impending disaster warning signals (Zhang et al.,
2024b). Here, we categorize landslide evolution into three
phases: (1) creep deformation stage, (2) intermediate devel-
opment stage, and (3) progressive failure stage (see Fig. 7).
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Table 1. Typical correspondences among data source, deep learning models, and applications in potential landslide identification

Deep Learning Models ~ Typical Input Data Target Landslide Types Representative Research Tasks

CNNs Optical remote sensing imagery, Shallow landslides, rockfalls,  Landslide boundary delineation,
UAV imagery, LiDAR-derived and debris flows (with susceptibility mapping, landslide
DEMs, and InSAR-derived emphasis on morphological inventory compilation, and
deformation maps identification) pixel-level semantic segmentation

RNNs InSAR time-series data and Creeping landslides and Displacement prediction, temporal
ground-based monitoring data slow-moving landslides deformation analysis, and early
(e.g., rainfall sequences and (focusing on time-series warning systems
groundwater levels) analysis)

Transformers Multi-temporal optical imagery, Complex and multi-type Multi-modal landslide detection,
multi-sequence InSAR data, and landslides (particularly change detection, and
multi-source environmental factors  suitable for multi-source data ~ cross-domain prediction

fusion)

GANs Optical and UAV imagery, Applicable across different Data augmentation, sample
LiDAR-derived DEMs, and landslide types (primarily generation, image reconstruction,
synthetic or augmented remote used for data generation) and resolution enhancement
sensing data

AEs InSAR-derived surface Applicable across different Feature extraction, anomaly
deformation time series and landslide types (primarily detection, noise suppression, and
high-dimensional multi-source used for feature learning and dimensionality reduction
landslide-related variables dimensionality reduction)

GNNs Graph-structured spatial data Regional landslide systems, Spatial interaction modeling,
derived from terrain units, sensor clustered landslides, and landslide clustering analysis, and
networks, or landslide inventories interacting slope units network-based susceptibility

analysis

Diffusion Models Multi-source remote sensing data Currently dominated by Data denoising, generative

and synthetic datasets

exploratory and
methodological investigations

modeling, uncertainty
representation, and reconstruction

In the creep deformation stage, the slope gradually de-
forms under the influence of various factors, though surface
manifestations may not be readily observable. Small, discon-
tinuous cracks with limited width may emerge on the slope
surface or crest. High-precision measuring instruments can
detect localized minor displacements or deformations (Zhan
et al., 2024). Vegetation on the slope may exhibit tilting or
leaning patterns, with tree orientations potentially aligning in
consistent directions. In the intermediate development stage,
slope deformation progresses at a relatively stable rate. Ini-
tially observed surface cracks gradually widen and elongate,
eventually interconnecting to form larger fracture networks.
Crack widths may expand from a few centimeters to tens of
centimeters or more, accompanied by displacement between
soil or rock blocks. Monitoring systems can record slope dis-
placements at a relatively constant rate. Slope deformation
disrupts pre-existing groundwater flow paths, resulting in al-
terations to groundwater levels, volume, or quality within the
landslide mass and surrounding areas. The progressive col-
lapse stage predominantly reflects pre-sliding slope defor-
mation characteristics and is critical for identifying immi-
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nent landslides (Cascini et al., 2022; Chen et al., 2024b). In
progressive landslides, the potential sliding surface gradually
evolves into a continuous failure plane. In sudden landslides,
due to their abrupt evolutionary process, no distinct sliding
surface is evident, making it necessary to rely on other indi-
cators for identification. Physical phenomena such as crack
widening and deepening, formation of enclosed boundaries
by cracks and drainage holes, increased displacement at the
rear edge of the slope, bulging at the slope’s toe, increased
seepage at the slope foot, an increase in slope angle, and re-
verse tilting of the slope collectively aid in identifying poten-
tial landslides.

Theoretically, the unique identification markers of each
stage can serve as input features for deep learning mod-
els, enabling direct classification of landslides into distinct
stages. This facilitates the implementation of more targeted
mitigation measures for each stage. Since slope changes ulti-
mately result from displacement variations, we propose that
a landslide identification method based on deformation char-
acteristics as indicative factors holds great potential.
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After classifying landslide stages based on deformation
characteristics, different mitigation strategies should be ap-
plied to each phase. In the creep deformation stage, the focus
should be placed on landslide triggering factors, with risk re-
duction measures such as drainage systems and slope cutting.
In the intermediate development stage, monitoring should
be intensified alongside temporary reinforcement measures.
In the progressive collapse stage, emergency evacuation and
stabilization of the potential landslide mass must be priori-
tized.

5 Deep Learning for Potential Landslide Identification:
Challenges

5.1 Data Quality and Availability

In potential landslide identification, the performance of deep
learning models is critically dependent on both data qual-
ity and availability (Alzubaidi et al., 2023; Gaidzik and
Ramirez-Herrera, 2021; Whang et al., 2023). Low-quality
or unreliable data directly impair the models’ feature ex-
traction capabilities, while insufficient data availability con-
strains their generalization capacity and real-time monitoring
efficacy (Azarafza et al., 2021; Xiao and Zhang, 2023).

In the natural environment, non-landslide states are the
norm, while the landslide state is relatively rare (see Fig. 8).
This leads to the data collected mainly consisting of normal
geological conditions, with much less data representing po-
tential landslides. Such a severe skewness in the class dis-
tribution results in a serious imbalance in the data, that is,
there is a huge difference in quantity between the minor-
ity class (landslide samples) and the majority class (non-
landslide samples) (Jiang et al., 2024). Gupta and Shukla
(2023) demonstrated that this data imbalance can cause
learning algorithms to be biased towards the majority class,
perform poorly on the minority class. This bias impedes the
predictive ability of the learning algorithms, and ultimately
lead to the final model’s poor performance in identifying and
predicting the minority class of landslide samples.

Even if some landslide inventory data have been collected,
it is often difficult for these data to represent the real landslide
situations within the study area. There may be issues such
as omissions and biases, which greatly reduce the credibility
of the results derived from these data (Woodard and Mirus,
2025; Zézere et al., 2017).

The presence of irrelevant input dimensions within the
data necessitates larger training datasets for deep learning
models to achieve satisfactory generalization performance.
This can be attributed to the models’ tendency to over-
fit to noise or spurious patterns within extraneous features,
thereby failing to capture task-relevant characteristics. Such
overfitting diminishes adaptability to unseen data, reduces
prediction accuracy, and ultimately degrades data efficiency
(D’ Amario et al., 2022). As a result, deep learning models
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may exhibit inaccurate recognition or even failure when con-
fronted with novel, complex scenarios outside the training
distribution.

Different types of features vary in terms of data format, di-
mensions, and semantics, posing a key challenge in achiev-
ing high-level feature fusion for complementary and syn-
ergistic information integration (Liu et al., 2023b). For ex-
ample, different sensor data exhibit significant differences
in physical meaning and data structure (Ghorbanzadeh et
al., 2022a). Optical imagery (RGB matrices) reflects sur-
face coverage but is susceptible to cloud interference. SAR
data (complex phase) can capture deformation information
but contains speckle noise. LIDAR point clouds (3D coor-
dinates) provide high-precision terrain data but have limited
coverage. Ground sensors (temporal scalars) enable real-time
monitoring of subsurface parameters but are spatially sparse.
Direct fusion of such multi-modal data induces feature space
incompatibility, hindering cross-modal correlation extraction
(Cai et al., 2021; Jin et al., 2022). Zhang et al. (2023) high-
lights that even remote sensing data exhibits high hetero-
geneity in imaging mechanisms, illumination conditions, and
spectral characteristics.

Furthermore, multiple types of heterogeneous data will in-
crease model complexity, potentially leading to prolonged
training times, excessive computational demands, and over-
fitting risks. Simple combination of low-level detail features
with high-level semantic features may introduce contextual
noise, compromising feature robustness and semantic coher-
ence (Ji et al., 2020). When designing densely connected
convolutional networks, a balance must be struck between
model complexity and generalization capacity to mitigate
overfitting on training data and ensure robust performance
on unseen scenarios (see Fig. 8).

5.2 Limitations of Deep Learning Models

Although deep learning models have achieved success in
landslide identification (Meena et al., 2022; Su et al., 2021;
Yi and Zhang, 2020), they are plagued by several inherent
limitations. Among these, the most critical challenge is their
lack of interpretability (Li et al., 2025e), which refers to
the difficulty in explaining the internal decision-making pro-
cesses behind their predictions.

Deep learning architectures typically contain a large num-
ber of parameters and layers, making it challenging to intu-
itively interpret their internal weights and feature representa-
tions. It is often unclear whether the model’s predictions are
based on key geological features (e.g., slope gradient, litho-
logical structure, fracture distribution) or influenced by irrel-
evant factors such as vegetation color or image noise. In po-
tential landslide identification, a common issue is that models
may mistakenly classify shadows or cloud cover as potential
landslides, yet the underlying causes of such misclassifica-
tions remain opaque. When multimodal data are integrated
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Landslide stages

1 Creep deformation stage
2 Intermediate development stage
3 Progressive failure stage-shallow landslide

4 Progressive failure stage-deep seated landslide

Figure 7. The development of landslides is divided into three stages with distinctive identification markers.
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for landslide detection, it is also challenging to clarify how
the model weights different data sources.

The abstract features extracted by these models also lack
a clear correspondence to interpretable geological indicators
(see Fig. 8). Even when the model successfully identifies po-
tential landslides based on texture patterns in remote sens-
ing imagery, it remains unclear whether these patterns cor-
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respond to actual geomechanical parameters or physical pro-
cesses.

Moreover, the probability values output by the models of-
ten lack physical meaning and therefore cannot effectively
represent geological uncertainty. In practice, high-risk areas
predicted by the model may conflate “uncertainty caused by
data absence” with “risk of the geological conditions them-
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selves” (Achu et al., 2023; Feng et al., 2022). Even expe-
rienced geologists may struggle to validate the geological
plausibility of such features, thereby constraining the adop-
tion of deep learning results in practical engineering applica-
tions.

Compounding these issues, there also exists an inherent
inconsistency between data-driven feature learning and the
complexity of real-world geological processes. Deep learn-
ing models tend to capture superficial statistical patterns
rather than the governing physical mechanisms that are gen-
eralizable across different regions and environmental condi-
tions. Consequently, in potential landslide identification, sub-
stantial manual annotation efforts are often required when
transferring models across regions or sensors.

Despite the availability of diverse datasets, the lack
of standardized, high-quality annotated benchmarks has
severely hindered the development and fair comparison of
deep learning models (Fang et al., 2024). Current models
are often trained and validated on independent, task-specific
datasets, thereby preventing an objective assessment of state-
of-the-art performance and limiting our ability to evaluate
their true generalization capacity across varying geological
settings and triggering factors.

5.3 Complexity of Landslide Mechanisms
5.3.1 Multiple Factors Coupling Interactions

The formation of landslides involves the dynamic coupling
of multiple factors such as geological structures, geotechni-
cal mechanics, hydrological conditions, topography, meteo-
rological factors, vegetation coverage, and human activities
(Scheingross et al., 2020; Yi et al., 2022). Therefore, the trig-
gering mechanisms are inherently multiscale, ranging from
microscopic interparticle friction to macroscopic slope insta-
bility, and encompassing both transient dynamic responses
and long-term temporal evolution (see Fig. 8).

For example, geotechnical materials and structural fea-
tures of the geological setting influence soil stability, while
hydrological factors such as rainfall infiltration and ground-
water fluctuations alter soil mass properties, critically weak-
ening shear strength due to pore pressure variations. Ex-
treme meteorological events can alter slope stress regimes,
while topographic parameters define geomorphic susceptibil-
ity thresholds. Human activities further influence slope sta-
bility. The interactions among these factors are highly non-
linear and temporally variable, making them difficult to char-
acterize through simple mathematical formulations.

This implies that variations in individual factors may
induce cascading effects rather than linear responses.
For example, rainfall-induced landslides exhibit threshold-
dependent behavior governed by coupled hydro-mechanical
processes. When rainfall intensity or duration exceeds crit-
ical thresholds, the rapid rise of the groundwater table in-
creases pore water pressure, thereby reducing effective stress
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and weakening shear strength according to the principle of
effective stress. Such hydro-mechanical feedback often cul-
minates in abrupt slope failure.

5.3.2 Spatiotemporal Dynamic Evolution

The inducing factors of landslides are not only extremely
complex in spatial distribution but also highly dynamic in
terms of time (Gao et al., 2023). This variability makes the
research process of the landslide mechanism more difficult.

From the perspective of temporal dynamics, landslide for-
mation is not instantaneous but evolves through prolonged
stages, each governed by distinct mechanisms (see Fig. 7).
This dynamic progression across different timescales creates
a fundamental modeling challenge: since the numerical sim-
ulation of long-term creep requires a long-time step, while
the dynamic process of short-term abrupt changes requires
a time resolution in the microsecond level, it is difficult to
establish a unified model for these two situations. This will
further intensify the conflict of time scales.

In terms of spatial heterogeneity, the influence scope
of landslides usually involves geological structures ranging
from the microscopic structure of geotechnical particles to
the regional scale. Moreover, there are differences in the stra-
tum structure, slope morphology, vegetation coverage, water
content, which makes the effects of the same inducing factor
vary in different regions. For example, in loose soil layers,
heavy rainfall may lead to shallow landslides, while on rocky
slopes with well-developed joints, earthquakes or water level
fluctuations may trigger deep-seated landslides.

Through the interaction of factors at different temporal and
spatial scales, positive or negative feedback affects the evolu-
tionary trend of landslides, making the triggering, evolution
and reactivation of landslides more complex and increasing
the uncertainty of prediction (Huang et al., 2022b; Li et al.,
2023b).

5.3.3 Invisibility of Subsurface Structures

Landslide occurrence is intrinsically linked to subsurface
structures. However, due to their invisibility, obtaining com-
prehensive geological information directly is challenging,
adding significant complexity to the study of landslide mech-
anisms (Li et al., 2021d).

The occurrence of landslides is not merely linked to sur-
ficial phenomena but more critically governed by subsur-
face geological structures and hydrogeological characteris-
tics. Subterranean features such as faults and folds directly
influence the mechanical properties and stability of rock and
soil masses. However, the inherent opacity of subsurface sys-
tems limits the accuracy of delineating these structures’ spa-
tial distribution, scale, and orientation through surface sur-
veys or sparse borehole sampling, often yielding fragmented
insights. Groundwater dynamics play a critical role in mod-
ulating slope stability. Fluctuations in the water table alter
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pore water pressure and effective stress within geomateri-
als, leading to a reduction in shear strength according to the
principle of effective stress. Yet, direct monitoring of hy-
draulic head variations is inherently challenging, particularly
in heterogeneous subsurface environments where localized
aquifers exhibit divergent responses to hydrological forcing.
Despite advancements in geophysical imaging and hydrolog-
ical monitoring, the structural anisotropy and permeability
heterogeneity of subsurface formations perpetuate ambigui-
ties in mechanistic interpretations, risking oversights in land-
slide hazard assessments.

The invisibility of subsurface structures makes it difficult
to monitor the specific processes and critical points of these
dynamic changes in real time. Consequently, researchers can
only infer these processes based on surface manifestations or
limited monitoring data. This results in ambiguity and uncer-
tainty in the analysis and interpretation of acquired indirect
data. Even when model outputs exhibit qualitative agreement
with field observations, the validity of underlying assump-
tions and parameterizations cannot be definitively verified.

5.3.4 Diversity of Landslide Types

Landslides exhibit considerable typological variation, with
distinct instability mechanisms and evolutionary pathways
governed by geological settings, triggering factors, and kine-
matic behaviors. Based on material composition, landslides
can be classified into rock landslides, soil landslides, de-
bris flow landslides, and composite landslides, each exhibit-
ing distinct variations in physical properties as well as fail-
ure modes (McColl and Cook, 2024; Yu et al., 2024). For
instance, rock landslides dominated by brittle fracture dif-
fer fundamentally from soil landslides governed by plastic
shear. Kinematic categorization further distinguishes trans-
lational sliding, toppling, creep, and flow-like movements,
each involving divergent mechanical processes and trigger-
ing thresholds (Shu et al., 2021).

Due to the diversity of landslide types, with each type
having different characteristics and influencing factors, it is
very difficult to establish a universal research model for the
mechanism of landslides. For different types of landslides,
corresponding models need to be established according to
their specific characteristics and main influencing factors
(Milledge et al., 2022). This not only requires a large amount
of on-site observation data and experimental research to de-
termine the model parameters, but also requires considera-
tion of the applicability and limitations of the models.

Furthermore, cross-typological interactions among land-
slides amplify predictive challenges. For example, collapsed
debris may transition into debris flows, a process that
is governed by hydromechanical coupling and granular-
fluid dynamics. Such multi-typological and multi-process
couplings resist comprehensive characterization via single-
theory frameworks. Instead, they necessitate multi-scale nu-
merical simulations to accurately reproduce the entire pro-
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cess. Consequently, the diversity of landslide phenomena
requires interdisciplinary integration across solid mechan-
ics, fluid dynamics, and multi-physics couplings. This task
substantially increases the dimensionality and complexity
of mechanistic studies, demanding hybrid modeling frame-
works and cross-domain validation protocols.

6 Deep Learning for Potential Landslide Identification:
Opportunities

6.1 Multi-source Data Fusion

Different methods specialize in identifying specific types of
landslides, and no single method can address all potential
landslide types. Therefore, research on potential landslide
identification should gradually shift from using single-source
data toward multi-temporal, multi-source integrated analysis
(Chen et al., 2023b; Ge et al., 2022; Xu et al., 2021).

Multi-source data can comprehensively represent complex
influencing factors by integrating various datasets, thereby
enhancing information completeness. For instance, topo-
graphic and geological data reveal slope stability, remote
sensing captures surface deformations, meteorological and
hydrological data describe triggering conditions, and ground
monitoring provides high-precision dynamic information. In-
tegrating these data enables the construction of a complete
feature system covering landslide-causing factors, prone en-
vironments, and inducing conditions, while avoiding the one-
sidedness inherent to single-source observations.

In the identification of potential landslides, multi-source
data fusion specifically refers to the integration of raw data
from different sources before feature extraction. Each data
source has unique strengths in resolution, coverage, and ob-
servation scale, and their fusion achieves complementarity
and cross-verification (Liu et al., 2020b; Wang et al., 2021a).
For example, combining satellite and UAV data allows both
large-scale screening and detailed crack detection (Xia et al.,
2021), while merging geological surveys with InSAR time-
series deformation distinguishes stable slopes from creep-
ing zones. This cross-validation effectively reduces noise and
misjudgment caused by data uncertainty.

Integrating multi-source data fusion with deep learning
enables the coupling of data and model advantages (Chen
et al., 2023a; Zheng et al., 2021). The fusion reduces un-
certainty through comprehensive data representation, while
deep learning extracts nonlinear features and captures hidden
correlations. Together, they improve the accuracy of potential
landslide identification and promote a shift from experience-
driven to intelligence-driven hazard monitoring. In the fu-
ture, the development of cross-modal pre-trained models and
edge intelligence will further enhance real-time early warn-
ing and hazard simulation, forming the backbone of an inte-
grated ‘“‘aerial-space-ground-subsurface” monitoring frame-
work.
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To advance this paradigm, we advocate for a community-
driven benchmark that embodies the multi-modal philoso-
phy. Such a benchmark should include co-registered data
from optical, SAR, LiDAR, DEM, and ground-based sen-
sors, reflecting the integrated monitoring reality. Establishing
this benchmark is a crucial step toward translating data fu-
sion capabilities into reliable and reproducible Al solutions
for global landslide risk reduction.

6.2 Model Ensemble

Model performance depends significantly on the nature of
tasks, data characteristics, and specific requirements. Despite
its ability to capture specific feature dimensions, a single
deep learning model is susceptible to limited generalization,
model bias, and overfitting when confronted with data noise
and scene heterogeneity (Kavzoglu et al., 2021; Lv et al.,
2022). Given these differences, model ensemble provides an
effective approach to optimization and generalization.

In the identification of potential landslides, model ensem-
ble essentially achieves a synergistic effect through the ag-
gregation of diversity. While avoiding the limitations and
vulnerabilities of individual models, it also unleashes the
complementary potential of multiple models through de-
signed mechanisms (Zhou et al., 2022).

This approach can be implemented through several path-
ways. Feature-level integration involves processing different
data features with specialized models and fusing the results.
A more common tactic is heterogeneous model combination,
which refers to combining various types of models to im-
prove the accuracy of potential landslide identification. Each
model can exert its advantages in different feature spaces
(Fang et al., 2021), thus forming a powerful predictive com-
bination. A prominent example is the CNN-LSTM hybrid,
which capitalizes on CNNs’ spatial feature extraction and
LSTMs’ temporal dependency modeling, making it partic-
ularly suited for rainfall-terrain coupled landslide prediction
(Gao et al., 2024). Furthermore, advanced architectures like
stacking enable deeper model coupling. For instance, Guo
et al. (2024) employed a stacked framework integrating 1D-
CNN, RNN, and LSTM to form a CRNN-LSTM ensemble,
achieving significant performance gains.

Therefore, model ensemble is not a mere technical aggre-
gation but a systematic solution to core challenges like poor
generalization, feature bias, and learning from small sam-
ples. It transforms the local advantages of multiple models
into a global optimum at the system level, achieving com-
prehensive breakthroughs in identification accuracy and en-
gineering applicability. It is important to note, however, that
these performance gains come with increased computational
cost and complexity, a necessary trade-off in practice.
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6.3 Knowledge-data Dually Driven Paradigm for
Potential Landslide Identification

Conventional knowledge-driven methods, grounded in phys-
ical mechanics, rely on precise prior knowledge of geological
structures and hydrological conditions. However, landslides
are influenced by complex, coupled multi-factor interactions,
characterized by high parameter uncertainty, making it chal-
lenging to comprehensively address such scenarios (Roy and
Saha, 2019). Purely data-driven approaches, though capable
of extracting patterns from massive datasets, lack physical in-
terpretability, are susceptible to noise interference, and strug-
gle to establish causal relationships in prediction outcomes
(Qi et al., 2024). A critical challenge and opportunity, there-
fore, lies in bridging the gap between data-driven predictive
capabilities and a physically interpretable understanding of
landslide processes.

To bridge this critical gap, a fundamental shift towards a
knowledge-data dually driven paradigm is imperative. This
paradigm moves beyond simple combination to a deep inte-
gration, where physical principles actively constrain and in-
form the deep learning architecture. Future research should
focus on developing novel frameworks capable of explicitly
incorporating landslide typologies and physical laws. For in-
stance, Physics-Informed Neural Networks (PINNs) can em-
bed governing equations directly into the model’s loss func-
tion, while knowledge graphs can structurally represent the
complex relationships between predisposing factors and fail-
ure mechanisms.

This synergy, aligned with future concepts like “digital
twin” and “smart Earth”, establishes a closed-loop “theory-
practice” verification mechanism (Chen et al., 2024c; Das et
al., 2024; Huang et al., 2023a; Riahi et al., 2022; Sukor et
al., 2019; Zhao et al., 2024e). The ultimate goal is to ad-
vance landslide identification from mere pattern recognition
towards physically interpretable, causally-aware forecasting,
thereby transforming geological hazard mitigation from pas-
sive response to proactive prevention.

The overall workflow of this knowledge-data dually driven
paradigm for potential landslide identification is conceptu-
ally summarized in Fig. 9.

In the first stage, multi-source data are systematically
collected, organized, and integrated into a comprehensive
dataset through feature extraction and spatiotemporal align-
ment.

In potential landslide identification, data sources are
highly diverse. Thus, the initial step involves systemati-
cally collecting heterogeneous data and centralizing their
management. This approach mitigates the limitations of
single-source data, facilitating a more comprehensive and
robust characterization of potential landslides. These data
include high-dimensional feature information essential for
data-driven models, as well as key parameters necessary for
knowledge-based analytical frameworks.
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Figure 9. Flowchart of knowledge-data dually driven paradigm for
potential landslide identification.

Furthermore, since multi-source data may differ in acqui-
sition time and spatial coverage, spatiotemporal alignment is
required to ensure interoperability and facilitate synergistic
analysis. The collected data should be preprocessed, includ-
ing cleaning (removal of errors and outliers), standardization
(unit homogenization), and classification (based on data type
or region). These steps ensure that the data retain inherent
physical significance and maintain consistent scales before
being input into models, thereby establishing a reliable foun-
dation for subsequent knowledge-data integration.

If the objective extends beyond identifying landslide lo-
cations to distinguishing their types and scales, the dataset
must encompass information that captures these characteris-
tics. During dataset construction, feature extraction and an-
notation methods should be chosen to emphasize these dis-
tinctions. For instance, combining texture analysis of remote
sensing imagery with slope and aspect analysis of terrain data
enables the extraction of features correlated with landslide
types and magnitudes. Explicit annotations indicating each
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sample’s landslide type and scale are incorporated during la-
beling.

In the second stage, mechanistic constraints are integrated
into the data-driven model to achieve knowledge-data dually
driven fusion.

Prior knowledge can be derived from external sources,
including domain expertise, historical records, and physi-
cal principles, or mechanistic models can be employed to
preprocess raw monitoring data. These outputs serve as a
foundation for initializing parameters in data-driven models,
which is crucial because the choice of initial values substan-
tially affects both training efficiency and final performance
(Cui et al., 2024; Liu et al., 2023a; Ma and Mei, 2025).

Beyond initialization, knowledge embedding involves
translating landslide physics into model constraints to guide
learning and optimization (Dahal and Lombardo, 2025; Liu
et al., 2024). At the architectural level, physical equations
can be structurally encoded as differentiable network layers,
enabling gradient-based optimization. At the loss function
level, physical constraints can be directly incorporated into
the training objective, ensuring that predictions remain con-
sistent with established principles.

A representative example of this paradigm is the PINN
framework (Raissi et al., 2019). PINNs embed governing
equations (such as partial differential equations describing
slope hydrology or stress-strain processes) into the neural
network training objective, thereby constraining the learn-
ing process with domain knowledge. This approach not only
reduces dependence on large annotated datasets but also
enhances interpretability and cross-regional transferability
(Karniadakis et al., 2021). Although applications of PINNs in
landslide research remain limited (Moeineddin et al., 2023),
they provide a promising avenue for bridging purely data-
driven approaches with physically grounded mechanisms
(Wu et al., 2022).

In the third phase, a bidirectional mapping framework for
knowledge-data dually driven is established to facilitate dy-
namic collaborative optimization.

The model’s performance is periodically evaluated using
real-time monitoring data, enabling the reverse calibration
of knowledge analysis parameters to achieve bidirectional
feedback. Through this feedback mechanism, knowledge-
data dually driven models undergo mutual verification and
iterative refinement.

In practical applications, model validation can be per-
formed using historical or field monitoring data to evalu-
ate predictive accuracy. While optimizing model parameters
for region-specific geological conditions, fusion weights are
dynamically adjusted based on different stages of landslide
evolution. During the initial phase of a landslide, knowledge
analysis is more effective in identifying underlying factors
and developmental trends, justifying a higher fusion weight
for knowledge components. Conversely, during the acceler-
ation or sliding phases, real-time monitoring data becomes
crucial, and data-driven models excel at capturing dynamic
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changes, requiring a higher weight for data-driven compo-
nents. This dynamic weight adjustment knowledge maxi-
mizes the integration of mechanistic and data-driven ap-
proaches, enhancing the model’s ability to identify landslide
risks across different evolutionary stages.

The knowledge-data dually driven paradigm, operating
through an iterative “theory-guided data assimilation and
data-informed theoretical refinement” mechanism, has ad-
vanced potential landslide identification from empirical re-
liance to scientifically quantifiable methodologies.

Furthermore, the spatial analysis capabilities of Geo-
graphic Information System (GIS) were integrated into the
practical identification workflow, enabling the study area to
be partitioned into distinct landslide risk categories. This
risk stratification considers the combined influence of region-
specific factors, ensuring scientifically robust and practically
viable classifications.

In high-risk areas, detailed investigations can be carried
out using spatial remote sensing technologies, including
high-resolution optical satellite image change detection and
InSAR deformation analysis. Multi-temporal high-resolution
optical satellite imagery is analyzed using image change de-
tection algorithms to identify anomalous surface alterations.
SAR enables precise measurement of millimeter-scale sur-
face displacements, facilitating early detection of slope de-
formation precursors. Then, UAVs and airborne LiDAR can
then be employed for further identification of high-risk ar-
eas. High-resolution imagery can be acquired through UAV-
mounted sensors. Image interpretation and analysis facilitate
the identification of potential landslide indicators, includ-
ing irregular slope geometries, soil loosening patterns, and
anomalous vegetation growth. LiDAR enables the rapid ac-
quisition of high-precision 3D point cloud data, which ac-
curately captures topographic changes and penetrates vege-
tation canopies to reveal concealed ground surfaces, aiding
in the detection of vegetation-obscured landslide precursors.
Ground-based observations are subsequently integrated to
validate findings and acquire real-time dynamic information
of landslide bodies. A comprehensive assessment, combin-
ing expert knowledge with field-derived practical experience,
is conducted to finalize the screening and confirmation of
potential landslides. Critical parameters including location,
scale, hazard level, and potential sliding direction are de-
termined, providing an empirical foundation for subsequent
landslide mitigation strategies.

7 Conclusions

In this review, we summarized the latest advancements in the
applications of deep learning for potential landslide identi-
fication, as well as the challenges and opportunities for the
future. First, we examined seven major heterogeneous data
sources available for potential landslide identification. Next,
we introduced the five common roles of deep learning mod-
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els in potential landslide identification. Then, we reviewed
the applications of deep learning in the analysis of four typ-
ical landslides and discussed the common-used monitoring
methods. Finally, we analyzed the current challenges and fu-
ture research directions.

Several key conclusions are drawn. (1) Single data source
often fail to ensure the accuracy of identification, whereas
multi-source data fusion can address this issue to some ex-
tent. (2) Deep learning models have been widely applied
in potential landslide identification, but they still face chal-
lenges in terms of interpretability and complexity. Future re-
search should focus on further enhancing the structure and
algorithms of deep learning models. (3) Knowledge-data du-
ally driven paradigm for potential landslide identification can
improve its accuracy on both theoretical and practical levels.
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