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Abstract. Severe convective storms (SCS) are important
drivers of global insured losses, and tornado outbreaks –
when many tornadoes occur within a short time span – cause
extreme and localized loss of life and property. Tornado out-
break risk estimates from observations, either storm reports
or reanalysis environments, are limited by meteorological
conditions that have occurred in the historical period. A stan-
dard approach of addressing this inadequacy is to construct
synthetic event sets that consist of unrealized but plausible
events that better represent the full range of possible out-
comes. In this study, we constructed and evaluated a syn-
thetic event set of U.S. tornado outbreaks using Global En-
semble Forecast System (GEFS) environments and a tor-
nado outbreak index. With over 800 000 daily maps of en-
vironments, over 200 000 synthetic events are generated. In a
seamless framework, the synthetic event set includes “daugh-
ter events”, constructed from short-lead forecasts and resem-
ble historical events, as well as independent physically plau-
sible events, constructed from longer-lead forecasts. With
the GEFS synthetic event set, we estimated that the 1-in-
100-year and 1-in-1000-year U.S. tornado outbreak event has
150–250 and 275–400 (F/EF1+) tornadoes per day, respec-
tively. The GEFS synthetic event set also shows robust shifts
related to ENSO – higher outbreak activity during La Niña
conditions – and trends – increased outbreak activity dur-
ing 2010–2019 compared to 2000–2009 – consistent with
reports. We also developed a subsampling procedure to es-
timate locally specific tornado outbreak risk, which we illus-
trate by generating return level curves for grid cells that cover
Dallas, Nashville, and Chicago.

1 Introduction

Severe convective storms (SCS) are thunderstorms that pro-
duce damaging winds, hail, and/or tornadoes, and they have
major socioeconomic implications. In 2023 alone, U.S. in-
sured losses from SCS reached a record USD 58 billion, and
60 % of global catastrophe losses in the first half of 2024
were from SCS (Aon, 2024). In fact, insured losses from
SCS have matched or exceeded those from hurricanes over
recent decades (Gallagher Re, 2024). Tornado outbreaks –
when many tornadoes occur within a short time span – cause
some of the most extreme impacts in regards to localized loss
of life and property. Therefore, assessments of tornado out-
break risk are of value to society.

Observation-based estimates of tornado and tornado out-
break risk have a number of limitations. The observational
record of U.S. tornadoes consists of human-based reports
from NOAA Storm Prediction Center (SPC), which began
collecting these reports in the 1950s. Between 1979 and
2021, the U.S. on average has approximately 500 tornadoes
per year rated 1+ on Fujita/Enhanced Fujita (F/EF) scale,
which rates tornado intensity from 0 to 5 based on its dam-
age (Fujita, 1971). About 320 of those 500 tornadoes per year
are associated with tornado outbreaks (depending on defini-
tion of outbreak), which occurs on ∼ 30 d of the year. The
spatial extent of tornadoes is small: The average path length
of a tornado ranges from 4–5 km for F1 to 44–55 km for F4/5,
and the average width of a tornado ranges from 64 m for F1
to 460–555 m for F4/5 (though reports reflect mean width un-
til 1994 and maximum width after 1994; Brooks, 2004). EF1
tornadoes occur almost 30 times more frequently than EF4/5.
The relatively small footprint of tornadoes means that many
locations have never reported a tornado despite presence of
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environmental/physical conditions conducive for activity. In
other words, just because a location has never reported a
tornado does not mean the tornado risk at that location is
zero; rather, the SPC report record is too short to account for
the “randomness” of tornado occurrence. Consequently, the
record is likely too short to accurately estimate the character-
istics of the most extreme tornado outbreak events, both on
a U.S.-scale and at a particular location. Another limitation
is that the SPC reports contain non-physical artifacts due to
evolving technologies (e.g., Doppler radar), reporting prac-
tices (e.g., differences from one forecast office to another,
change from Fujita to Enhanced Fujita scale; WSEC, 2006),
and population density (Verbout et al., 2006; Edwards et al.,
2021). In general, these limitations of tornado reports mean it
is difficult to assess tornado outbreak risk with only reports.

Synthetic event sets are the common strategy in catastro-
phe modeling, climate risk assessment, and insurance and
reinsurance for overcoming the limitation of observational
data in estimating the risk from rare, impactful natural haz-
ards. The idea is that synthetic events greatly increase the
sample size and event diversity in a computationally in-
expensive manner while remaining consistent with the ob-
served statistics and/or meteorology, thereby filling spatial
gaps and better sampling extremes. Essentially, strategies for
constructing synthetic event sets must balance the need that
events be physically realistic with the constraint that many
events should be generated. For instance, in the case of trop-
ical cyclone (TC) risk, high-resolution physics-based mod-
eling remains prohibitively expensive and simplified mod-
els must be used. Consequently, some studies have generated
North Atlantic TC genesis and/or tracks with purely statisti-
cal stochastic models (Hall and Jewson, 2007; Bloemendaal
et al., 2020). Others have incorporated some physics through
hybrid dynamical-statistical methods. Emanuel et al. (2006)
used simplified physics to simulate TC tracks and intensity.
Lee et al. (2018) used physics-informed inputs from reanal-
ysis and climate models to construct a statistical model for
TC genesis, track, and intensification. The synthetic event ap-
proach has also been used for tsunamis (Davies, 2019), wild-
fires (Guillaume et al., 2019), flooding (Quinn et al., 2019;
Wing et al., 2020), and windstorms (Welker et al., 2021).

For thunderstorms, especially those that produce torna-
does or hail, computational costs are even higher because
of the resolution needed to simulate its processes. Addi-
tionally, sample sizes need to be larger to account for their
small spatial extent. Synthetic event set approaches for tor-
nado risk have also been purely statistical (Daneshvaran and
Morden, 2007; Strader et al., 2016; Fan and Pang, 2019) or
have used meteorological environments to simulate tornado-
genesis favorability (Hatzis et al., 2020). In this ingredient
approach, tornado activity/favorability is related to local en-
vironmental conditions, typically as some combination of at-
mospheric instability and vertical wind shear (Brooks et al.,
2003; Thompson et al., 2003; Tippett et al., 2012; Cheng
et al., 2015, 2016). This strategy is attractive for risk as-

sessment as it fills in “gaps” where environmental conditions
were favorable for storms but none were reported. This ap-
proach has been useful in weather forecasting contexts, e.g.,
the Supercell Composite Parameter (SCP) and the Signifi-
cant Tornado Parameter (STP) are calculated from thermo-
dynamic and dynamic variables to measure the favorabil-
ity of observed and forecast atmospheric conditions for su-
percell production (Davies, 1993; Thompson et al., 2003).
This approach also has been applied to reanalysis data to ex-
plain tornado (outbreak) activity (Brooks et al., 2003; Tip-
pett et al., 2014), understand its climate signals (Malloy and
Tippett, 2024; Allen et al., 2015b; Koch et al., 2021), and
estimate future projections (Diffenbaugh et al., 2013). In the
case of climate signals, using both reports and ingredients,
La Niña has been shown to increase tornado (outbreak) ac-
tivity (Cook and Schaefer, 2008; Allen et al., 2015b; Lep-
ore et al., 2017, 2018; Tippett and Lepore, 2021; Lee et al.,
2013, 2016; Malloy and Tippett, 2024). Malloy and Tippett
(2024) detected upward trends in 1979–2021 tornado out-
break activity, especially for the winter and spring seasons,
consistent with the upward trend in 1979–2015 tornado out-
break activity from Tippett et al. (2016), the upward trend in
1960–2022 tornado outbreak days from Graber et al. (2024),
and the upward trend in 1979–2017 STP from Gensini and
Brooks (2018), especially for the winter and spring seasons.

However, synthetic event sets generated using reanalysis
environments (e.g., Hatzis et al., 2020) are still limited to
meteorological conditions that have occurred in the histori-
cal record. They fail to capture risk from physically possi-
ble but unrealized meteorological conditions, which is espe-
cially relevant for rare, high-impact events, such as tornado
outbreaks. The relatively short record may not have cap-
tured the most extreme (i.e., 1-in-100+ year) tornado events
in many locations. To overcome this limitation, some stud-
ies of other hazards have supplemented observational data
with data from climate model large ensembles or reforecast
ensembles, which are large datasets of meteorological con-
ditions produced from running a weather or climate model
from slightly different initial conditions (Squire et al., 2021;
Thompson et al., 2017; Kelder et al., 2020; Breivik et al.,
2014). In this approach, model data is treated in same manner
as observational reanalysis data, which allows for direct esti-
mation of extremes without resorting to statistical extrapola-
tion. In the case of reforecast ensembles specifically, the data
includes unrealized meteorological conditions that are con-
sistent with climatological frequency and initial conditions;
therefore, one can evaluate risk statistics for tornado out-
breaks outside the relatively short record of historical events.
This approach has been used to assess impacts from wind-
storms (Osinski et al., 2016; Meucci et al., 2018), extreme
rainfall/flood events (Kelder et al., 2020; Thompson et al.,
2017; Klehmet et al., 2024; Jain et al., 2020), heatwaves
(Coughlan de Perez et al., 2023; Kelder et al., 2022; Kay
et al., 2025), and stratospheric polar vortex events (Kolstad
et al., 2022). In this work, we use Global Ensemble Fore-

Nat. Hazards Earth Syst. Sci., 26, 433–448, 2026 https://doi.org/10.5194/nhess-26-433-2026



K. Malloy and M. K. Tippett: A Global Ensemble Forecast System (GEFS) 435

cast System (GEFS) reforecast environments (Hamill et al.,
2006) in conjunction with the tornado outbreak index from
Malloy and Tippett (2024) to construct a synthetic event set
of tornado outbreaks. Considering the 20 years of daily ini-
tializations, daily forecasts out 16–35 d, and 5–11 ensemble
members, we have over 800 000 daily maps of environments
to generate outbreak likelihood maps.

The goal of this work is to construct and validate a GEFS-
based synthetic event set of tornado outbreaks, which we use
to answer both science and insurance and reinsurance-related
questions about tornado outbreaks. We will apply tornado
outbreak synthetic event set to construct detailed return level
curves, with information about extreme scenarios of hazard
risk. The synthetic event set is verified through how it repre-
sents the physical world, e.g., we evaluate how the synthetic
event set matches observed climatology and variability. We
estimate rare events by subsampling the synthetic event set,
and we quantify uncertainty in observed and event set tor-
nado outbreak risk estimates. We also evaluate if the GEFS
synthetic event set represents climate signals in tornado out-
break activity. Compared to purely statistical approaches, a
benefit of using GEFS to construct the synthetic event set is
that each event is associated with a date, including a month
and year; thus, we can assess ENSO- and trend-related shifts
and the robustness in these shifts.

In Sect. 2, we describe the data and methods to construct
the synthetic event set. In Sect. 3, we outline results as fol-
lows: First, we evaluate tornado outbreak statistics from the
GEFS synthetic event set, including comparing short-lead
GEFS events and long-lead GEFS events. Then, we explore
ENSO-related shifts and trends using the GEFS synthetic
event data. Finally, we estimate location-specific tornado out-
break extremes using a subsampling approach with the GEFS
synthetic event data. In Sect. 4, we summarize our conclu-
sions, discuss implications of this work, and suggest poten-
tial next steps.

2 Data and Methods

2.1 Data

Tornado reports are taken from the NOAA Storm Prediction
Center (SPC) Severe Weather Database. We use the 1979–
2024 period for report data for most analysis but also com-
pare results to the 2000–2019 period for report data, which
matches the GEFS reforecast period. We define a tornado
outbreak when six or more tornadoes occur over the con-
tiguous U.S. (CONUS) with no more than 6 h between con-
secutive tornadoes (Fuhrmann et al., 2014; Malloy and Tip-
pett, 2024, 2025). Tornadoes are labeled as outbreak-level
if they meet this criterion. We exclude tornadoes rated 0 on
F/EF scale. When labeling outbreak-level tornadoes (hereby
called outbreak tornadoes), we do not impose a geographic
constraint (Doswell et al., 2006). We construct a dataset

of gridded outbreak tornado occurrence at a 6-hourly and
1°× 1° resolution from the SPC report data. The 6-hourly
and 1°× 1° resolution matches that of many weather fore-
cast models (and reanalysis datasets), and this resolution is
useful for simulating tornado outbreak activity from large-
scale meteorological environments. A one in the gridded SPC
report dataset means that an outbreak tornado occurred in
a given grid cell and 6-hourly period (00:00–06:00, 06:00–
12:00, 12:00–18:00, or 18:00–00:00 UTC), and a zero means
that an outbreak tornado did not occur. We also consider spa-
tially smoothed occurrence data where we apply a 2D Gaus-
sian kernel smoother with σ = 120 km as in Malloy and Tip-
pett (2024) and Malloy and Tippett (2025), similar to “practi-
cally perfect hindcasts” (Hitchens et al., 2013; Gensini et al.,
2020; Sobash et al., 2020).

Convective precipitation (CP), 0–3 km storm relative he-
licity (SRH), and mixed-layer convective available poten-
tial energy (CAPE) are taken for 2000–2019 from the North
American Regional Reanalysis (NARR). NARR provides
data at a 3-hourly and 32-km native grid resolution. We re-
sample as a 6-hourly sum for CP and 6-hourly average for
SRH and CAPE, and we perform a bilinear interpolation to a
1°× 1° spatial resolution.

Model data of CP, 0–3 km SRH, and mixed-layer CAPE
are taken from Global Ensemble Forecast System (GEFS)
version 12 reforecasts (Guan et al., 2022). GEFS refore-
casts were initialized once per day at 00:00 UTC over the
2000–2019 period. Reforecasts have five ensemble members
except for those initialized on Wednesdays, which have an
additional six members (eleven total). Reforecasts extend
16 d from their initialization except for those initialized on
Wednesdays, which extend 35 d. Reforecasts are originally
provided with 3-hourly output and 0.25°× 0.25° spatial res-
olution for the first 10 d of a forecast, and with 6-hourly out-
put and 0.5× 0.5° after the first 10 d of a forecast. To keep
a consistent resolution, and to match the outbreak tornado
occurrence data from reports and NARR, GEFS data is inter-
polated to 6-hourly output and 1°× 1° spatial resolution.

We use the tornado outbreak index from Malloy and Tip-
pett (2024) to generate synthetic tornado outbreak events.
The index has two parts. The first part provides a map of
the 6-hourly probability of outbreak tornado occurrence:

log
(

p

1−p

)
=−20.2+ 0.76log(CP)

+ 1.82log(SRH)+ 0.51log(CAPE) (1)

where the left-hand side is the log odds, and p is the proba-
bility. The GEFS-based index is computed from the 6-hourly
values of CP, SRH, and CAPE from individual GEFS en-
semble members. In order to compute the second part of the
index, the 6-hourly maps are aggregated to daily maps by tak-
ing the maximum value (probability/likelihood) at each grid
cell over the convective day (12:00–12:00 UTC). This results
in a probability map for each day. The NARR-based index is
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similarly computed with 6-hourly values of observed/histor-
ical CP, SRH, and CAPE and is aggregated to a daily reso-
lution. The NARR-based index represents tornado outbreak
occurrence calculated from the 20 years of historical, real-
ized meteorological environments. The index has seasonal
cycle deficiencies (Malloy and Tippett, 2024), e.g., proba-
bilities are too high during summer, that are corrected via a
post-calibration method. We also applied a post-calibration
for the NARR-based index to correct for seasonal cycle de-
ficiencies. Additional information on the processing of the
GEFS data, calculation of tornado outbreak index within
GEFS, and the post-calibration of the index can be found
in Malloy and Tippett (2025). With 20 years of reforecasts
initialized daily, each with 5–11 ensemble members and be-
ing run out to 16–35 d, GEFS provides 889 514 daily maps
(equates to over 2000 years) of outbreak tornado probabil-
ities. Hence, the GEFS-based index represents tornado out-
break occurrence from meteorological environments closely
resembling historical, realized meteorological environments
as well as unrealized meteorological environments.

The second part of the index calculates the probability dis-
tribution of the number of U.S. outbreak tornadoes using one
daily probability maps at a time from above via negative bi-
nomial regression (Malloy and Tippett, 2024). We recalcu-
lated the coefficients for the second part of the index since the
NARR-based probability maps are post-calibrated, though
results are similar if using coefficients from the second part
of the index from Malloy and Tippett (2024). The equation
for the expected number of outbreak tornadoes based on the
probability map for each day is:

µ= exp{−1.14+ 2.16log[sum(PCONUS)]

− 0.60log[max(PCONUS)]} (2)

where sum(PCONUS) is the index map sum and
max(PCONUS) is the index map maximum. In the neg-
ative binomial regression, the variance (σ 2) is related to the
mean (µ) via an overdispersion parameter:

σ 2
= µ+ 13.74µ (3)

Equation (3) makes it possible to generate random, or
stochastic, realizations of tornado occurrence based on the
same daily map of the environments/index. For each daily
map of the index, we can generate as many outbreak events
as desired, which we call nrealizations, i.e., we can draw
nrealizations samples of total U.S. outbreak tornadoes from the
probability distribution of part 2 of the index (cf. Eqs. 2 and
3) which are all physically consistent with the large-scale en-
vironment. Thus, we further increase the sample size. Then,
for each realization, we can populate tornado locations based
on map probabilities from the first part of the index (cf.
Eq. 1).

Both parts of the GEFS-based index are available on Zen-
odo. Realizations can be generated as described above using

Python scipy library and scipy.stats.nbinom.rvs function,
where the dispersion parameter is input as 1

(1+α) .
We also demonstrate the use of the tornado outbreak syn-

thetic event set for estimating ENSO variability and trends
in tornado outbreak activity. We separate, or subset, activity
based on time period, 2000–2009 versus 2010–2019, and El
Niño-Southern Oscillation (ENSO) phase. We define ENSO
by the Climate Prediction Center (CPC) Oceanic Niño Index
(ONI), which is calculated by averaging the SST anomalies
over the Niño 3.4 region (5° N–5° S, 120–170° W) and apply-
ing a 3-month running mean. We upsample monthly ONI for
a daily timescale when labeling events as falling within a par-
ticular ENSO phase. A monthly ONI value of≥ 0.5 °C would
label all the days/events valid during that month as occur-
ring during El Niño, and a monthly ONI value of ≤−0.5 °C
would label all the days/events valid during that month as
occurring during La Niña.

2.2 GEFS Synthetic Event Metrics

We calculate spatially averaged ensemble spread and fore-
cast error – predictability metrics for the ensemble system –
to better understand lead-dependent tornado outbreak index
behavior in GEFS. The equation for ensemble spread (calcu-
lated at each lead time) is:

Spread(lead)=

√√√√ 1
NM

N∑
i=1

M∑
j=1

(
xi − x

(j)
i

)2
(4)

where x(j)i is ensemble member j index value at grid cell
and time i, xi is the ensemble mean of index at grid cell and
time i, M is the ensemble size, and N is the number of grid
cell–time samples. We only consider grid cells with an ob-
served climatological tornado frequency of at least 0.01 %,
i.e., ignoring locations where tornadoes are very rare.

The equation for forecast error or root mean squared error
here (calculated at each lead time) is:

Error(lead)=

√√√√ 1
N

N∑
i=1

(xi − oi)
2 (5)

where oi is the smoothed report data at grid cell and time i.
We use frequency maps and return level curves to repre-

sent tornado outbreak activity from the synthetic event set.
Return period is approximated empirically with no assumed
underlying distribution. First, we sort and rank the data. The
non-exceedance probability, pe, is r

r−1 , where r is the rank.
Then, the approximate return period is −1

log(pe)
.

2.3 Subsampling Procedure

The number of daily maps is on the order of 105 (and close
to 106), and the stochastic component of second part of the
index increases the sample size of U.S. tornado total real-
izations nrealizations-fold (see Eq. 2 and corresponding text),
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where nrealizations is user-defined and may be ≥ 10 for risk
applications. Therefore, if one were interested in location-
dependent outbreak risk, the calculation of this estimate us-
ing all the days in the synthetic event set could be compu-
tationally expensive and needless. In catastrophe modeling,
event sets are often “boiled down”, or condensed to a rep-
resentative subset that preserves the key statistical risk char-
acteristics of the original event set, to reduce computational
cost (Mitchell-Wallace et al., 2017). Here, we provide an il-
lustration or template of a subsampling procedure designed
to obtain location-specific (rather than CONUS-wide) daily
extreme estimates:

1. We chose a threshold of 6 in expected number (µ) of
total U.S. outbreak tornadoes (corresponding to ∼ 95th
percentile). This defined the lower bound of daily maps
to keep, i.e. we only kept daily maps where the expected
value of total U.S. outbreak tornadoes was 6 or greater.
This equates to approximately 40 000 daily maps. We
converted the rest of the days that did not meet threshold
to zeroes.

2. For the remaining days with at least 6 expected U.S.
outbreak tornadoes, we computed 10 realizations of
the number of total U.S. outbreak tornadoes, i.e.,
nrealizations = 10, following part 2 of the outbreak index.
At this point, the number of daily maps is approximately
400 000.

3. From this subset, we only kept samples with at least 27
tornadoes (equates to ∼ 85th percentile of this subset),
another chosen threshold which boils down the sub-
set to approximately 55 000 daily maps. We converted
the rest of the days that did not meet threshold to ze-
roes. Considering step 1 keeps ∼ 95th percentile and
this step keeps ∼ 85th percentile, the final subsampled
set equates to non-zeros accounting for approximately
100−100(1−0.95)(1−0.85), or∼≥99.25th percentile
days.

4. With the approximately 55 000 daily maps of outbreak
likelihood and number of total U.S. outbreak tornadoes,
we randomly populated the locations of tornadoes pro-
portional to the outbreak probability. See Sect. 2a and
Malloy and Tippett (2024) for more information about
how this is done. This is the most computationally ex-
pensive part of the procedure and is why subsampling
for location-specific information is necessary.

The first user-defined threshold (step 1) manages the num-
ber of outbreak likelihood maps, and the second user-defined
threshold (step 3) boils the subset down to the most extreme
outcomes so that populating locations (step 4) is computa-
tionally manageable. The procedure is flexible depending on
the user’s goals and computational resources. For results that
require estimates at the grid point level, such as maps and
city-specific return level curves, we use this subsampling

procedure to demonstrate its effectiveness to generally es-
timate outbreak statistics, including extremes (e.g. 99.99th
percentile events) in risk.

2.4 Statistical Significance

For observational data, we calculate uncertainty by boot-
strapping with replacement for 1000 iterations. For the GEFS
data, we calculate uncertainty using the stochastic realiza-
tions, i.e., we randomly select an outcome from the distribu-
tion generated from part 2 of the tornado outbreak index for
1000 iterations.

3 Results

3.1 GEFS Synthetic Event Set Performance

Around lead times of 10 d, predictability of mid-latitude
weather diminishes (Zhang et al., 2019; Lorenz, 1982). We
label 1–9-d forecasts as “short-lead” and 10+ forecasts as
“long-lead” and test whether synthetic event statistics differ
between these two sets of GEFS simulations. For instance,
we expect that the short-lead forecasts might have relatively
reduced ensemble variance in tornado outbreak activity since
events look more like the observations and more like each
other due to the higher skill and predictability. In contrast,
the long-lead forecasts should have higher ensemble vari-
ance because they are essentially independent from observa-
tions (and each other) and represent draws from climatology.
In Fig. 1, we show lead-dependent averaged ensemble sys-
tem metrics of ensemble spread and forecast error. We ob-
serve a divide between 1–9-d forecasts and 10+ d forecasts
in terms of these averaged predictability metrics in the tor-
nado outbreak index probabilities. Around the 10-d forecast
lead, ensemble spread increases sharply, suggesting ensem-
ble members are more independent from each other after this
lead time. Additionally, the forecast error climbs steadily un-
til the 14-d forecast lead. The large variability in forecast er-
ror after 16-d forecast leads (denoted by dashed light gray
line) is likely due to smaller sample size as only forecasts
with Wednesday initializations extend past 16 d (each fore-
cast lead for day 1–15 has∼ 3.7 times more data to calculate
spread/error compared to each forecast leads for day 16–34).

An example of the GEFS forecasts and the calculated tor-
nado outbreak index valid for 12:00 UTC on 30 May 2013
through 12:00 UTC on 31 May are shown in Fig. 2. Each row
denotes a different initialization time, i.e., increasing lead
time, and each column denotes an ensemble member (only
up to 5 members here despite 16-, 23-, and 30-d forecasts
having 11 ensemble members). The tornado outbreak likeli-
hood (shading) and expected (µ) total number of (outbreak)
tornadoes (upper-left of panel) comprise the forecasted tor-
nado outbreak index. The observed reports (blue dots) for
that day – 20 in total – are overlaid. For the 1-d forecasts, the
tornado outbreak index likelihood well matches the observed
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Figure 1. Ensemble system metrics by forecast lead: (a) ensemble spread, or root mean squared error (RMSE) when comparing ensemble
mean to individual ensembles, averaged across five ensemble members, and (b) forecast error, or RMSE when comparing ensemble mean to
smoothed report data. The dashed crimson lines denote the forecast lead where we separate “short-lead” GEFS and “long-lead” GEFS. The
dashed light gray lines denote the 16-d forecast lead; GEFS forecasts with leads of 16 d or more have significantly fewer samples, as only
Wednesday initializations extend that far (see text for more details). Thicker solid line shows 7-d (lead time) smoothed spread or error after
16-d leads.

reports in regards to location and extent of event. For the 6-d
forecasts, the tornado outbreak index likelihood also matches
the observed reports in terms of predicting elevated CONUS
outbreak risk, though the risk is shifted slightly more north
compared to the observed event. In general, these shorter-
lead forecasts demonstrate relatively high prediction skill.
Moreover, these short-lead forecasts are “daughter events”
in the sense that they are other physically possible outcomes
to the historical event. Additionally, the ensemble members’
tornado outbreak index likelihoods resemble each other in
the short-lead forecasts, demonstrating high predictability. In
contrast, for the 11-, 16-, 23-, and 30-d forecasts, the region
of relatively high tornado outbreak index likelihood looks
dissimilar from the observed event, and the events between
ensemble members look dissimilar from one another. In other
words, the prediction skill and predictability are low. How-
ever, tornado outbreak activity still occurs in forecasts be-
yond day 11. The long-lead GEFS forecasts represent a re-
alistic set of independently drawn events sampled from May
climatology, a peak month for tornado activity.

Figure 3 shows the climatological spatial distribution of
tornado outbreak activity as represented by the SPC reports,
NARR-based tornado outbreak index, and the GEFS-based
tornado outbreak index, which we further split into short-lead
and long-lead forecasts. Here the locations of tornadoes are
populated only based on µ from Eq. (2) rather than also com-
puting realizations for every daily map. The report data cli-
matology (panels a–d) shows the tornado outbreak seasonal
cycle, with a peak in climatological activity during March–
May (MAM). The report data climatology is spatially noisy
due to the relatively short observational record and the spo-
radic, rare nature of tornadoes. The NARR-based tornado
outbreak index climatology (panels e–h) also has a simi-

lar spatial distribution and seasonal cycle as in the reports.
In general, summer and fall outbreak activity is lower, and
spring outbreak activity is higher, in the NARR-based index
than in reports. The NARR-based index climatology is also
spatially noisy; 20 years of subdaily environments is still in-
sufficient to account for sporadic, rare nature of tornadoes.
The GEFS-based tornado outbreak index climatology for the
short-lead forecasts (panels i–l) and long-lead forecasts (pan-
els m–p) generally matches that of the report data climatol-
ogy. However, the long-lead forecasts show greater clima-
tological outbreak activity in winter and spring compared to
the short-lead forecasts as well as the reports. This difference
is despite the fact that the long-lead and short-lead forecasts
have similar climatology in environments conditional on at
least 1 % outbreak probability (not shown). The increased en-
semble spread of long-lead forecasts (Fig. 1) might explain
the increased mean of tornado outbreak index in long-lead
versus short-lead forecasts. Larger average values of the in-
dex might be expected for long-lead forecasts even though
there is little difference in the environment climatologies be-
cause the variance is larger for the long-lead forecasts. The
reason for this expected increase is that the logistic regression
sigmoid function is approximately convex over the range of
values here, and a greater variance increases the average of
a convex function (convex ordering; Shaked and Shanthiku-
mar, 2007). The GEFS-based index climatology is spatially
smoother compared to that of the reports and NARR-based
index, suggesting that the increased sample size from the
GEFS synthetic events can interpolate tornado outbreak risk.
In other words, the GEFS-based index reflects a broader,
smoothed representation of tornado outbreak risk, where cli-
matological risk is driven by the frequency of subdaily favor-
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Figure 2. Example of GEFS synthetic events via its forecasts for 2013 12:00 UTC 30 May through 12:00 UTC 31 May, where rows indicate
corresponding forecast lead for event, and columns indicate corresponding GEFS ensemble member (only up to 5 members): tornado outbreak
index (yellow-red-black shading) versus observed reports (green-blue-purple shading). Expected number (µ) of tornadoes based on outbreak
index part 2 given in bottom-left of all panels. Total number of reports for observed event (20 reports) also in top left panel.

able environments rather than the luck of individual tornado
occurrences in a short observational record.

Next, we present extremes of U.S. tornado activity via re-
turn level curves for total number of U.S. outbreak tornadoes
per day in Fig. 4 for the (a) full year of data and then sep-
arated by (b) DJF, (c) MAM, (d) JJA and (e) SON seasons.
Return level curves highlight the right tails of the distribu-
tion. We calibrate the frequency of 6-tornado occurrence be-
tween the reports and GEFS by scaling the occurrence rate
of 6 U.S. outbreak tornadoes a day in GEFS to match the oc-
currence rate of 6 tornadoes a day in the report data, which
corresponds to a shift of the return level curve on a log-log
plot. Here the GEFS short-lead full year data for number of
outbreak tornadoes are multiplied by 1.44 and the long-lead

full year data for number of outbreak tornadoes are multi-
plied by 1.20. This calibration is also done for each season
separately (panels b–e). The observed reports can only re-
solve a∼ 40-year (or 20-year if taking same period as GEFS)
return level, whereas the GEFS data can resolve 1000+ year
return levels. GEFS synthetic events from the long-lead fore-
casts estimate the 100-year return level for total daily U.S.
outbreak tornadoes to be approximately 200 tornadoes. The
GEFS-estimated return level curves closely follow the ob-
served return level curves, though they may overestimate re-
turn levels at the most extreme events. Additionally, the long-
lead forecasts produce higher estimated return levels com-
pared to the short-lead forecasts, a similar result to Fig. 3.
However, overall, the long-lead and short-lead forecasts fol-
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Figure 3. Average expected (µ) number of outbreak tornadoes during (top row) December–February, (second row) March–May, (third row)
June–August, and (last row) September–November, calculated from (a–d) reports, (e–h) NARR-based index, (i–l) GEFS short-lead (day 1–9
forecasts) index, and (m–p) GEFS long-lead (day 10–34 forecasts) index.

low a similar slope or curvature in the return level curves
except for the most extreme events, suggesting their variance
is similar but the GEFS long-lead event distributions might
have a heavier right tail. The heavier right tail in the long-
lead forecasts might explain why the climatological index
for long-lead forecasts is larger than the short-lead forecasts
(cf. Fig. 3). When analyzing return level curves by season,
we find that this overestimation of extremes primarily stems
from the summer season (Fig. 4d). This is likely related to an
issue noted in previous studies, that summer environments
might not represent tornado outbreak activity well and over-
estimate its frequency (Malloy and Tippett, 2024, 2025). The
summer return level curves also have sleeper slopes, indicat-
ing a heavier right tail of the distribution compared to the re-
ports. The return level curves for the other seasons match the
observed return level curves well. For the remainder of the

study, we combine the short- and long-lead GEFS forecasts
to represent the full GEFS synthetic event set.

Figure 5 shows return level curves but for number of U.S.
outbreak tornadoes per year. We calibrate the frequency of
100 tornadoes per year between the reports and GEFS by
scaling the occurrence rate of 100 U.S. outbreak tornadoes a
year in GEFS to match the occurrence rate of 100 tornadoes a
year in the report data. The GEFS synthetic events generally
capture the variability in annual total of outbreak tornadoes.
For instance, both the observed reports and GEFS synthetic
events estimate the 10-year return period for annual total U.S.
outbreak tornadoes to be approximately 425 tornadoes. The
GEFS synthetic event set estimates the 100-year return level
to be approximately 575 tornadoes annually.
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Figure 4. Return level curves for number of outbreak-level tornadoes per day from (black line) 1979–2022 reports, (gray line) 2000–2019
reports, to be consistent with GEFS time period, (blue line) GEFS long-lead forecast, and (orange line) GEFS short-lead forecasts, for (a)
full year of data, and for (b) DJF, (c) MAM, (d) JJA, and (e) SON. Shading indicates sampling uncertainty. Dotted lines highlight the 10-,
100-, and 1000-year return period levels.

3.2 Climate Signals in Tornado Outbreak Activity

Next, we use the GEFS synthetic event set to examine
climate-scale influences on tornado outbreak activity. Fig-
ure 6 shows the return level for U.S. outbreak tornadoes per
day during El Niño and La Niña December–May (DJFMAM)
seasons in reports and in the GEFS synthetic event set. In
the reports, La Niña (blue curve) is associated with a greater
number of outbreak tornadoes per day during DJFMAM, es-
pecially for the events with return periods greater than 1 year
(Fig. 6a). However, the uncertainty due to sampling overlaps
for the El Niño and La Niña curves, especially for the lower
return periods. The ENSO-related shift is seen in the GEFS
synthetic event set (Fig. 6b) until events with return periods
of greater than 10 years. According to the GEFS synthetic
event set, the typical winter–spring extreme during La Niña
is ∼ 55 outbreak tornadoes per day, and the winter–spring
extreme during El Niño is ∼ 45 outbreak tornadoes per day.
Another way to describe the shift is that a return level of 20
outbreak tornadoes per day during winter-spring occurs ev-
ery 30 d on average during La Niña and every 50 d on aver-

age during El Niño. Interestingly, La Niña and El Niño return
level curves (and their uncertainty bars) overlap for the most
extreme (right tail) events. The GEFS synthetic events sug-
gest that the extreme events can still occur during El Niño.
The reports shows the opposite behavior, that the largest dif-
ferences between El Niño and La Niña occur for the most ex-
treme events; perhaps the observed record is not long enough
to have sufficient number of ENSO events to resolve details
in the ENSO-related shifts in outbreak statistics.

Figure 7 shows the return period for U.S. outbreak torna-
does per DJFMAM season between earlier (2000–2009) and
later (2010–2019) periods in reports versus GEFS synthetic
event set. In the reports, the 2010–2019 is associated with
a greater number of outbreak tornadoes per DJFMAM sea-
son (Fig. 7a), though with considerable overlap between the
two periods’ sampling uncertainties. The ten years of data
for each period is not enough to determine robustness in tor-
nado frequency shifts. In the GEFS synthetic event set, the
shift in DJFMAM seasonal totals between the two periods
is distinct, i.e., the later period is associated with more out-
break tornadoes per DJFMAM season (Fig. 7b), indicating

https://doi.org/10.5194/nhess-26-433-2026 Nat. Hazards Earth Syst. Sci., 26, 433–448, 2026



442 K. Malloy and M. K. Tippett: A Global Ensemble Forecast System (GEFS)

Figure 5. Return level curves for number of outbreak-level torna-
does per year for (black line) 1979–2022 reports, (gray line) 2000–
2019 reports, and (purple line) GEFS synthetic events. Dotted lines
highlight the 10-, 100-, and 1000-year return period levels.

an increased ability to detect trends. The 1-in-10-year return
period in winter–spring seasonal totals in 2010–2019 have al-
most 100 more outbreak tornadoes compared to 2000–2009.
Furthermore, a return level of 300 outbreak tornadoes per
winter–spring occurs every ∼ 5.5 years on average in 2000–
2009 period and every ∼ 2.5 years on average during 2010–
2019 period.

3.3 Localized Risk Information for Tornado Outbreak
Extremes

The relatively short observational record makes it especially
challenging to resolve the risk of tornado outbreaks at spe-
cific locations and cities. In Fig. 8, we demonstrate how the
GEFS synthetic event set can be used to estimate outbreak
statistics, including information about extremes, at individual
grid points. In Fig. 8a, b, we compare the 99.99th percentile
in outbreak tornadoes per day at every grid point using (a) re-
ports vs. (b) GEFS synthetic event set. The 99.99th percentile
is the 1-in-10 000 d event, or approximately equivalent to the
1-in-27 year event. We use the 1979–2021 report data for this
estimate due to having 43 years of data versus only 20 years
for 2000–2019 period. For the reports, the map of this esti-
mate in this extreme is spatially noisy and difficult to discern.
The GEFS synthetic event set better interpolates the estimate
in this extreme, showing that the regions with the greatest
99.99th percentile events are over Tennessee River Valley at
4 tornadoes per day at each grid point. Figure 8c shows the
factor by which the base rate of GEFS synthetic event set is
scaled to match the base rate of the reports. Base rate refers

to the frequency of at least 1 outbreak tornado occurring. In
general, Texas, the western Plains, and coastal North Car-
olina and Virginia have underestimated base rates with our
subsampling procedure and event numbers need to be multi-
plied by 3–6. In addition, parts of Appalachia have overesti-
mated base rates and event numbers need to be multiplied by
0.25–0.5.

In Fig. 9, we show the return level curves for outbreak
tornadoes per day for three major cities: (a) Dallas, (b)
Nashville, and (c) Chicago. As demonstrated here, because
of our subsampling procedure, the most extreme events (right
tail of distribution) are resolved better and extend further into
the extremes. As shown in Fig. 8c and described above, we
scale the occurrence rate of 1 outbreak tornado a day so that
the frequency of 1 outbreak tornado a day from the subsam-
pled synthetic event set is similar to the frequency of 1 out-
break tornado a day from the reports. After scaling of the
base rate, the GEFS synthetic event set falls within the un-
certainty range of the reports and realistically resolves the
extreme (e.g., 100- and 1000-year return levels) days for Dal-
las, Nashville, and Chicago. This scaling also corrects for
the values from the map in Fig. 8b, which shows the 99.99th
percentile or 1-in-27 year event, for Dallas, Nashville, and
Chicago area to be about 6, 6, and 4 tornadoes per day, re-
spectively. The 1-in-100 year event for Dallas, Nashville, and
Chicago area to be about 8, 8, and 6 tornadoes per day, re-
spectively. The 1-in-1000 year event for Dallas, Nashville,
and Chicago area is about 15, 17, and 12 tornadoes per day,
respectively.

4 Conclusions

U.S. SCS are an important driver of global insured losses,
and tornado outbreaks cause localized destruction of life and
property. Present-day risk assessment of U.S. tornado out-
breaks using observations has limitations. Besides the rel-
atively short record, reports have non-physical artifacts, and
reanalysis environments describe only historical meteorolog-
ical conditions, which may not represent risk from all physi-
cally possible and physically relevant meteorological condi-
tions. Here we used GEFS, a rich dataset of physically pos-
sible but unrealized environments, to construct a synthetic
event set for U.S. tornado outbreaks, and we demonstrate cal-
culating present-day tornado outbreak risk statistics. At short
leads, GEFS provides information on daughter events, which
resemble the historical events, and, at long leads, GEFS
provides information on physically independent yet realistic
events. We estimated that the 1-in-100-year and 1-in-1000-
year U.S. tornado outbreak event would have 150-250 and
275-400 (F/EF1+) tornadoes per day, respectively. In com-
parison, the observed reports can only resolve a 1-in-40-year
event of ∼ 120 tornadoes per day with large uncertainty. We
also estimated that the 1-in-10-year U.S. tornado outbreak
annual total would have ∼ 450 tornadoes, well matching the
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Figure 6. Return level curves for number of outbreak tornadoes per day during December–May (DJFMAM) season during (red line) El Niño
days and (blue line) La Niña days, for (a) reports and (b) GEFS synthetic events. Dotted lines highlight the 1- and 10-year return period
levels and their differences between El Niño and La Niña.

Figure 7. Return level curves for number of outbreak tornadoes per DJFMAM season during (green line) 2000–2009 period and (purple
line) 2010–2019 period, for (a) reports and (b) GEFS synthetic events. Dotted lines highlight the 1- and 10-year return period levels and their
differences between 2000–2009 and 2010–2019 periods.

estimate from reports. The GEFS synthetic event set rep-
resented similar La Niña-related increases in U.S. outbreak
tornadoes per day during December–May season for more
common (<1-year return period) events. It also represented
similar increases in U.S. outbreak tornadoes per December–
May season in the 2010–2019 period versus 2000–2009 pe-
riod. In general, the GEFS synthetic event set more robustly
detect trends in U.S. outbreak activity. Finally, we estimated
location-specific information on tornado outbreak risk; the 1-
in-1000 year event for Dallas, Nashville, and Chicago area is
about 15, 17, and 12 tornadoes per day, respectively.

Because GEFS does not resolve tornadoes, we represented
tornado activity based on GEFS environments and a tornado

outbreak index. Therefore, using the GEFS synthetic event
set for understanding outbreak risk for particular events re-
lies on the tornado outbreak index performance in represent-
ing that event. Other indices or methods have been proposed
to model severe weather in GEFS using its environments,
though not specific to tornado outbreaks (e.g., Hill et al.,
2020, 2023; Gensini and Tippett, 2019). The tornado out-
break index in this study performs well for most cases, and
the average of events can be corrected relatively easily. How-
ever, errors in the distribution, e.g., what happens at the tails,
are less easily corrected, so it may not work well for spe-
cific uses. Malloy and Tippett (2024, 2025) noted deficien-
cies in representing summer activity, i.e., likelihood is over-
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Figure 8. 99.99th percentile in outbreak tornadoes per day based on (a) reports and (b) GEFS synthetic event set, with (c) the scaling factor
for the base rate (1 outbreak tornado per day) of GEFS synthetic event set fit to reports base rate. Star markers indicate the cities of interest
for Fig. 9.

Figure 9. Return level curves for number of outbreak-level tornadoes per day from (black line) 1979–2022 reports, (gray line) 2000–2019
reports, and (blue line) GEFS synthetic event set for (a) Dallas, TX, (b) Nashville, TN, and (c) Chicago, IL. Shading indicates sampling
uncertainty. Dotted lines highlight the 27-year return period level (to compare to Fig. 8) as well as the 100- and 1000-year return period
levels.

estimated. In particular, in this study, we found that summer
tornado outbreak events in the GEFS synthetic event set have
higher variance and heavier right tails, i.e., extreme events
happen much more frequently. Furthermore, the tornado out-
break index may not perform well in all SCS types or con-
vective modes.

Another limitation is that, while the GEFS synthetic event
set is very large, it has a limited representation of (multi-
)decadal variability because of the relatively short number
of years (2000–2019). Overall, the GEFS synthetic event set
showed La Niña-related increases in outbreak activity, but the
specifics of the shifts were dissimilar from reports (cf. Fig. 6.
This period covers few ENSO events – 7 El Niño years and
8 La Niña years considering December–February ONI – and
may not be representative of the diversity of ENSO events
and its teleconnections (Deser et al., 2014). In addition, the

general negative PDO and more La Niña months during this
period might affect/skew the event set and, by extension, the
trends (Franke et al., 2024).

The location-specific tornado outbreak risk was depen-
dent on the parameters of the subsampling procedure. In
general, the estimates from Figs. 8 and 9 may be underes-
timated with our subsampling procedure. The subsampling
procedure “keeps” events based on user-defined thresholds in
the mean/expected estimate of the total U.S. outbreak torna-
does as well as realizations from those events. This subsam-
pling procedure uses a “keep” threshold based on CONUS-
scale activity. While this is ideal for capturing the strongest
events, we might be biasing the set by taking days with rel-
atively high outbreak likelihoods, which usually represents
events that occur over the Plains, Tennessee River Valley,
Ohio River Valley, and southeast U.S. regions. Fewer sam-
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ples are taken from “weaker” events, i.e., daily maps with
smaller expected values but still have realizations where the
event is considered an outbreak (> 6 tornadoes), which may
happen more in other regions, e.g., Northeast U.S. However,
the subsampling procedure is designed to be flexible and
user-defined, and future work can analyze other approaches
to the subsampling. We also show that calibration of occur-
rence rates to match report data can help alleviate biases in
GEFS. The calibration can also be flexible, e.g., users can
define the occurrence rate from which to match the GEFS
synthetic event set to reports.

In future work, the GEFS synthetic event set could include
information on other important outbreak tornado character-
istics, such as EF intensity and simulated tornado track. This
can be modeled purely statistically or also be dependent on
environments. For instance, Lepore and Tippett (2020) found
that tornado intensity scaling was sensitive to SRH; SRH ap-
proximates potential for rotating updrafts, important for pro-
ducing significant (EF3+) tornadoes. We also focused on
outbreak tornadoes rather than both non-outbreak and out-
break tornadoes. While this work addresses assessing risk for
the most rare, extreme events, it might not well resolve statis-
tics for the typical, less extreme events. Future work could
address physical constraints that are missing from this ap-
proach. For instance, the 100+ year return levels of tornadoes
per day in Dallas, Nashville, and Chicago in Fig. 9 might
not be physically realistic when storm-scale processes are
considered. High-resolution models, e.g., High-Resolution
Rapid Refresh (HRRR) model, could be used to determine
physical constraints that limit how many tornadoes can occur
in a grid cell per day, and storm-scale quantities used in short-
term forecasting, such as updraft helicity, could provide in-
sight into subgrid processes. The main drawback of using
high-resolution forecast models is the relatively smaller en-
semble sizes and forecast lengths, reducing the sample size
and hence the spatial smoothness of risk maps. Overall, our
approach is consistent with the use of large-scale environ-
ments, and while does not capture storm-scale processes, it
has a major advantage of generating large sample sizes for
estimating extremes.

Considering hail accounts for 50 %–80 % of SCS-related
losses (Gallagher Re, 2024), a hail synthetic event set would
also be valuable. Hail likelihood has a similar dependence
on convective and kinematic environments as tornadoes, but
the coefficients are likely to be different. For instance, Allen
et al. (2015a) found that hail occurrence was more sensitive
to CAPE compared to tornado occurrence. In Das and Allen
(2024) study, extreme hail likelihood was generated using
fitted extreme value models, a pure statistical approach. In
addition, hail report data is more sporadic and might bene-
fit from radar-based estimates of hail swaths (Brook et al.,
2021; Fluck et al., 2021).

Finally, it would be valuable to combine this hazard risk
assessment with estimates of exposure, or use exposure as a
way to subsample events. In particular, the synthetic event

set can be used to answer (re)insurance questions, such as
calculating metrics like maximum probable loss or average
annual loss from tornadoes, especially considering the GEFS
synthetic event set estimates for annual tornado totals well
matched report-based estimates (cf. Fig. 5). (Re)insurance
or other loss data is often proprietary, but there are other
ways to estimate exposure with available data. For instance,
within the CLIMADA (CLIMate ADAptation) framework
and project, their goal is to integrate hazard, exposure, and
vulnerability to assess risk (Kropf et al., 2022; Stalhandske
et al., 2024). The NASA VIIRS day-night band nighttime
composites detects man-made sources of light and – when
combined with population data – can estimate exposure
(Eberenz et al., 2020). In addition, U.S. crop loss data is
provided by the United States Department of Agriculture. In
general, this GEFS synthetic event set is a valuable dataset
for assessing tornado outbreak statistics and risk.

Code and data availability. Storm report observations are pro-
vided by NOAA/SPC at https://www.spc.noaa.gov/wcm/#data
(last access: 29 December 2025). NARR data are provided
by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA
from their website https://psl.noaa.gov/data/gridded/data.narr.html
(last access: 29 December 2025). NOAA GEFS v12 refore-
cast data are provided by Amazon Web Services at https:
//noaa-gefs-retrospective.s3.amazonaws.com/index.html (last ac-
cess: 29 December 2025). We have made GEFS synthetic event
set publicly available on Zenodo as part 1 probability map (aggre-
gated to daily) and part 2 total number U.S. outbreak tornadoes:
https://doi.org/10.5281/zenodo.15706145 (Malloy, 2025). The au-
thors can make subsampling scripts available upon request.
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