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Abstract. When coastal and river floods occur concurrently
or in close succession, they can cause a compound flood
with significantly higher impacts. While our understanding
of compound flooding has improved over the past decade, no
studies to date have assessed the spatial correlation of com-
pound flooding. To address this gap, we develop a frame-
work that captures dependence between coastal total water
level and river discharge across a set of locations along the
US coastline. Using 41 years of observed data from 41 sta-
tion combinations, we stochastically model 10 000 years of
spatially-joint events of extreme sea level and river discharge
based on their dependence structure and cooccurrence rate.
We define potential compound flooding as events in which
both drivers exceed their respective 99th percentile thresh-
olds. Results based on our simulated large event set show that
the US West coast shows high spatial correlation of potential
compound flooding. Among all three coasts, the West coast
has the highest frequency of widespread potential compound
flooding, with around 50 % of compound events arising at
multiple locations simultaneously. We identify two clusters
with mutually high joint occurrence rates of simultaneous
compound events on this coast, namely (1) Charleston –
Crescent City – North Spit, and (2) Santa Monica – Los An-
geles – La Jolla. Widespread compound events are less fre-
quent on the East coast where approximately 30 % of poten-
tial compound flooding may affect multiple locations. Mod-
erate spatial dependence is observed in the central region and
weaker spatial dependence for the remaining locations on
this coast. In contrast, the Gulf coast shows the weakest spa-

tial correlation, where over 82 % of compound events only
affect single locations. Our findings highlight the importance
of accounting for spatial dependence in compound flood as-
sessments. Our large set of stochastic spatially-joint events
can be used as boundary conditions for the hydrologic-
hydraulic models to simulate the surface inundation and fur-
ther assess risks of compound flooding in low-lying coastal
and estuarine areas.

1 Introduction

In the contiguous United States, coastal counties are home
to nearly 129 million people (NOAA, 2020) and often serve
as important economic centres (McGranahan et al., 2007).
In these low-lying, densely populated areas, flooding can
cause widespread adverse socioeconomic and environmen-
tal impacts, with an estimated annual damage of more than
USD 180 billion (JEC, 2024). Despite continued investments
in flood adaptation and management, recent flood events,
such as Hurricanes Milton, Helene, and Ida, have demon-
strated the ever-present threat of serious flood impacts in
coastal regions. Flood water levels in these areas can be in-
fluenced by both coastal drivers (e.g. high tides, wave action,
and storm surges) and riverine drivers (i.e. heavy precipita-
tion and high river discharges). When multiple drivers coin-
cide or occur in close succession, they can result in a com-
pound flood event that intensifies the overall flood hazard and
causes significantly higher impacts than when they occur in
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isolation. Moreover, these flood drivers are projected to co-
occur more frequently in the US due to climate change fac-
tors including sea level rise (Ghanbari et al., 2021), poten-
tial changes in tropical cyclone climatology (Gori and Lin,
2022), and projected shifts in future river flow regimes (Mof-
takhari et al., 2017). Together with projected shoreline defor-
mation (Woodruff et al., 2013) and socio-economic growth
(Hallegatte et al., 2013), these changes are expected to es-
calate compound flood risk in most US coastal areas in the
future.

Compound flooding in coastal and estuarine regions can
be driven by several mechanisms (Jane et al., 2025). First,
both storm surge and rainfall (or river discharge) are extreme
to cause flooding and their interaction can increase the flood
extent and depth. Second, storm surge and rainfall are mod-
erate and do not cause flooding individually but their inter-
action may initiate flooding. Third, extreme sea levels alone
can cause flooding and additional rainfalls can further inten-
sify the flooding. Fourth, high water levels (not necessarily
being extreme) can (1) create backwater effects and block
free river flows to the sea (Ghanbari et al., 2021), and (2) im-
pede efficient drainage of heavy rainfall (Wahl et al., 2015),
thereby prolonging or increasing flooding. Synoptic weather
patterns, both tropical cyclones (TCs) and extra tropical cy-
clones (ETCs), are the main drivers of these compound flood-
ing mechanisms worldwide (Lai et al., 2021). While TCs
tend to cause extreme flooding, ETCs are found to be respon-
sible for more frequent and moderate events (Booth et al.,
2016; Gori and Lin, 2022). Besides synoptic weather pat-
terns, coastal and river floods can also co-occur by coinci-
dence (Couasnon et al., 2020); however, such incidents are
considered statistically independent according to probabil-
ity theory (Martius et al., 2016). Traditional flood risk as-
sessments do not consider these interactions between flood
drivers and may therefore underestimate the overall flood
hazard and associated risk (Wahl et al., 2015; Ward et al.,
2018). Having more accurate assessments of compound flood
risk could help in the development of effective adaptation
measures to reduce current and future risks.

A key step in compound flood risk assessment is ac-
curately quantifying the dependence and joint probabilities
among flood drivers. These quantifications can provide es-
sential boundary conditions for flood hazard and risk assess-
ments (Eilander et al., 2023; Moftakhari et al., 2019), and
are important for designing flood protection measures in re-
gions prone to compound flooding (Salvadori et al., 2016;
Ward et al., 2018). In recent years, there has been a growing
body of research assessing the dependence between coastal
and riverine flood drivers over a range of spatial scales. Most
of these studies (e.g. Bevacqua et al., 2017; Couasnon et al.,
2018; Rueda et al., 2016) are focused on specific locations
due to the complexity of the applied multivariate statistical
models. At larger spatial scales (regional to global), depen-
dence assessments are often limited to bivariate cases involv-
ing two flood drivers (e.g. Bevacqua et al., 2019; Couasnon

et al., 2020; Ward et al., 2018), while a few studies (e.g.
Camus et al., 2021; Nasr et al., 2021) considered three or
four drivers. For the entire US coastline, compound flood-
ing potential has been evaluated by several studies in terms
of statistical dependence between storm surge and rainfall
(Wahl et al., 2015), joint probabilities of coastal water level
and river discharge under sea level rise scenarios (Ghanbari
et al., 2021; Moftakhari et al., 2017), and seasonal patterns
in the dependence structure among storm surge, wave, river
discharge, and rainfall-runoff (Nasr et al., 2021).

While these studies have improved our understanding of
compound flooding, no studies to date have looked into the
spatial correlation of compound flooding between locations.
Significant spatial dependence has been identified for both
coastal (Enríquez et al., 2020; Li et al., 2023) and riverine
flooding (Metin et al., 2020; Quinn et al., 2019) in the United
States. Moreover, the storm events TCs and ETCs that may
drive compound flooding can have a large spatial footprint.
Therefore it is likely that compound flooding may poten-
tially arise across multiple locations. A recent example of
widespread compound flooding is Hurricane Harvey in 2017.
It caused record-breaking rainfall, river discharge, and run-
off, combined with a moderate but long-lasting storm surge,
resulting in disastrous flooding in Houston (Valle-Levinson
et al., 2020). Simultaneously, other regions including Galve-
ston Bay, Rockport, and Richmond also saw flooding.

Therefore, the overall aim of the paper is to assess the spa-
tial correlation of potential compound flooding from extreme
sea level and river discharge along the US coastline. Poten-
tial compound flooding is defined as events during which
both extreme sea level and river discharge exceed the cor-
responding 99th threshold. To this end, three objectives are
addressed. First, we estimate the statistical dependence be-
tween extreme sea level and river discharge across different
locations, while accounting for relevant time lags. This in-
cludes a multivariate statistical sampling for identifying ob-
served spatially joint events with potential compound flood-
ing (i.e. cooccurring events across different locations), and
applying a multivariate conditional statistical model to these
events to estimate the dependence structure both spatially
and between extreme sea level and river discharge. The sec-
ond objective is to develop an equivalent of 10 000 years
of stochastic spatially joint events based on the estimated
dependence, which can be used as boundary conditions for
physical flood inundation models. Based on the stochastic
events, the third objective is then to assess the spatial corre-
lation of compound flood potential by looking into the co-
occurrence of extreme sea level and river discharge at differ-
ent locations.

2 Data and Methodology

To investigate the spatial correlation of potential compound
flooding events around the US coasts, we assess dependence
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between coastal and riverine flooding drivers, specifically ex-
treme sea levels and river discharges in this study. The de-
pendence structure is also assessed between these drivers
across different locations. This study involves the following
five steps, which are described in the subsections:

1. Selecting datasets and station combinations of tidal
gauges and river discharge stations along the US coast-
line;

2. Infilling missing values of sea level and river discharge
time series;

3. Identifying joint extreme events of sea levels and river
discharges at different locations;

4. Estimating the dependence structure from the identified
events and generating 10 000 years of stochastic spa-
tially joint events using a multivariate conditional sta-
tistical model;

5. Assessing the co-occurrence of different extreme events
at different locations from the generated stochastic
events.

2.1 Datasets and selection of station combinations
along the coastal US

For sea levels, we use the observed hourly total water levels
for the period 1980–2020 from the Global Extreme Sea-level
Analysis Version 3 database (GESLA-3) (Haigh et al., 2023).
These coastal water levels consist of mean sea levels, astro-
nomical tides, and non-tidal residuals (i.e. storm surges). For
the river component, we use river discharge because it rep-
resents near-term runoff from a storm event that contributes
to the riverine water levels (Bevacqua et al., 2020). There-
fore, daily mean discharge observations between 1980 and
2020 are extracted from the United States Geological Sur-
vey (USGS) network (https://waterdata.usgs.gov/nwis/rt, 5
March 2025).

For a spatially extensive coverage of coastal locations,
we select 41 GESLA-3 tidal gauges by combining stations
used in previous studies (Feng et al., 2023; Ghanbari et al.,
2021; Nasr et al., 2021; Wahl et al., 2015). These 41 tidal
gauges are then paired with nearby USGS river stations,
following the selection criteria based on Nasr et al. (2021)
and Ward et al. (2018): (1) minimum data completeness of
80 % during 1980–2020 in the daily mean discharge time
series; (2) minimum upstream catchment area of 1000 km2;
(3) maximum Euclidean distance of 500 km from the tidal
gauge; and (4) maximum distance of 55 km (0.5°) between
the river outlet and the tidal gauge. For some tidal gauges,
several USGS river discharge stations satisfy these rules. In
these cases, we select the ones with the most complete data
records preferably in the downstream area. The full selection
procedure results in 13, 7, and 21 station combinations for
the West coast, Gulf of Mexico, and East coast, respectively.

Figure 1 shows the locations of these station combinations
and further information can be found in Table S1 in the Sup-
plement.

When characterising dependence, standard extreme-value
theory statistical models require that the input datasets con-
sist of independent and identically distributed (i.i.d) vari-
ables. To satisfy this assumption, we first detrend the hourly
total water level records by removing the long-term mean
sea level signal. This is achieved by subtracting the annual
mean sea level using a moving window, thereby filtering out
the inter-annual to multi-decadal sea level variability (Valle-
Levinson et al., 2017). River discharges do not show such
long-term variations, and so no detrending is applied to the
daily mean records. To prepare for the independence process-
ing and maintain temporal consistency between total water
level and river discharge, we further aggregate the hourly sea
levels into daily maxima. The independence is then ensured
by applying a 5 d de-clustering window (Camus et al., 2021;
Maduwantha et al., 2024) with the maximum value centred
in each window.

2.2 Infilling missing values of sea levels and river
discharges

Gauge observation records often suffer from data gaps and
may preclude a robust statistical dependence analysis be-
tween flood drivers. Compound flood studies (e.g. Nasr et al.,
2021; Wahl et al., 2015; Ward et al., 2018) that only estimate
the dependence structure between pairs of stations are less
affected by these data gaps and do not attempt to infill miss-
ing observations. As this study also investigates dependence
across locations, constraining the analysis to common time
periods without missing data would likely result in very few
overlapping events. We calculate the length of the 41 year ob-
servational data with removed gaps. The data length sharply
decreases from 41 years to 11.4 years for the West coast and
to 3.2 years for the combined Gulf and East coasts when only
gap-free records are used, see Table S3. Using such short
overlapping data would be insufficient to robustly estimate
the dependence structure.

To address this issue, other studies (e.g. Jane et al., 2020;
Quinn et al., 2019) infill data gaps or missing values us-
ing simultaneous values from nearby stations. This prepares
complete time series for dependence estimation, but this ap-
proach may introduce artificial signals such as increased cor-
relation between locations. To preserve sufficient data cov-
erage across locations, we infill missing values in the time
series at those 41 combinations of tidal gauges and river sta-
tions. Across all locations, the averaged infilling percentage
is 1.73 % (i.e. equivalent to 0.71 years) for the 41 observation
years between 1980 and 2020, see Table S3. For daily max-
imum total water levels, each of these 41 tidal gauges has
missing values in daily maximum sea levels, with 33 gauges
missing less than 1 year of data. Two gauges, Santa Mon-
ica and Bar Harbor, show the lowest data completeness, with
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Figure 1. The location of station combinations on the US (a) West, (b) Gulf, and (c) East coasts. The red triangles and blue circles represent
the selected NOAA tidal gauges and USGS river discharge stations in this study.

3.2 and 3.6 years of missing values, respectively. For daily
river discharges, 10 stations contain missing values where
six stations have gaps of less than one month, two stations
have missing data up to two years, and one station (Cowlitz
River) is missing 7.5 years of data.

To infill missing total water levels, long data gaps are first
imputed using linear regression based on simultaneous wa-
ter levels from nearby tide gauges located within 50 km. We
start the infilling process with the nearest available gauge and
retain only the values estimated from regressions with a coef-
ficient of determination (R2) greater than 0.5. For some tide
gauges where no gauges or only a few ones without available
data exist within the 50 km radius, we increase the search
distance to 150 km. The remaining non-consecutive gaps are
subsequently filled using linear interpolation.

Missing daily mean river discharges are first translated
from the corresponding gage height observations using rat-

ing curves. These curves describe the empirical linear cor-
relation between gage height and mean river discharge for
individual stations and are available from the USGS web-
site (https://waterwatch.usgs.gov/index.php?id=ww_toolkit,
last access: 15 March 2025). The remaining missing values
are then infilled using linear regression with daily mean dis-
charges from the nearest upstream river station. If there are
more than one upstream river inlets, multi-linear regression
is applied to estimate the missing discharges based on simul-
taneous data records at all upstream stations. Lastly, any re-
maining discrete missing discharges are calculated through
linear interpolation. As an example, Fig. S1 in the Supple-
ment shows the data infilling result at the tidal gauge Santa
Monica (3.2 years of missing data) and the river station
Cowlitz River (7.5 years of missing data), as well as the
methods adopted to impute specific missing values.

Nat. Hazards Earth Syst. Sci., 26, 391–409, 2026 https://doi.org/10.5194/nhess-26-391-2026

https://waterwatch.usgs.gov/index.php?id=ww_toolkit


H. Li et al.: Assessing the spatial correlation of potential compound flooding 395

2.3 Identifying spatially joint extreme events of sea
levels and river discharges

Storm events can impact a large stretch of coastline (En-
ríquez et al., 2020; Li et al., 2023) and may cause compound
flooding at multiple locations. However, individual storms
are not likely to affect all parts of the US coastline. To ac-
count for this trade-off and spatial dependence, we develop
datasets of spatially joint extreme events of total water lev-
els and river discharges for two coastal regions: (1) the West
Coast, and (2) the combined Gulf of Mexico and East Coast.
We group the Gulf and East coasts together because hurri-
canes can make landfalls in close succession across these two
regions. Prime examples of such events are Hurricanes He-
lene (2024), Ian (2022) and Katrina (2005).

For each region, we first define joint extreme events that
may potentially cause compound flooding at individual lo-
cations/station combinations. This analysis involves a two-
sided conditional sampling where bivariate events are se-
lected conditioned on one of the two drivers (i.e. total water
levels and river discharges) being extreme (Jane et al., 2020).
Due to the relatively short data records used in this study, we
use the peak-over-threshold (POT) approach for this process
as POT generally samples more extreme events compared to
the annual maxima approach (Camus et al., 2021). However,
the POT approach introduces subjectivity in threshold selec-
tion: the threshold should be high enough to drive a good
fit of marginal distributions, yet low enough to ensure suffi-
cient samples for robust parameter estimation of these distri-
butions. To reduce this subjectivity, we apply the automated
threshold estimation approach of Solari et al. (2017) to to-
tal water level and river discharge time series to sample joint
extreme events at each station combination. We account for
potential time lags between the peak water level and river
discharge by allowing a± 3 d lag. When conditioned on total
water levels, a peak water level is paired with the maximum
river discharge occurring within a 7 d window centred on that
water level; the same procedure is used for cases conditioned
on river discharges. When identifying these extreme events,
we follow previous studies (e.g. Couasnon et al., 2020; Ghan-
bari et al., 2021; Jane et al., 2020; Wahl et al., 2015; Ward
et al., 2018) and assume that all events arise from a single
population. This simplifying assumption therefore does not
account for the mixed-population effects caused by events
generated by different storms (e.g. TCs and ETCs) and hy-
drological processes (e.g. snowmelt and convective rainfall).

These bivariate extreme events at individual locations are
then grouped into a large dataset for each study region.
To do this, we consider a set of m locations (i.e. 13 and
28 station combinations for the West and the combined Gulf
and East coasts). At location i, we use a bivariate vector
Xi = (TWLi,Qi) where TWLi and Qi represent time se-
ries of paired total water level and river discharge. The set
of these components for each study region is then defined as
X= {Xi, i ∈ {1, . . .,m}}.

We further transform X onto a common marginal scale.
Laplace margins are adopted in this study because they have
been shown to outperform other common marginals such
as Gumbel distributions in the subsequent dependence mod-
elling framework (Keef et al., 2013). For the set X, the trans-
formation is achieved by:

Yi =

{
log{2Fi(Xi)},Xi < F−1

i (0.5)

−log{2[1−Fi(Xi)]},Xi ≥ F−1
i (0.5)

(1)

where Fi is the marginal distribution ofXi . The marginal dis-
tribution Fi is semi-parametric and estimated independently
per component at individual locations. For each water level
or river discharge component, a generalised Pareto distribu-
tion (GPD) is fitted to detrended and de-clustered peak values
above a specified threshold while an empirical distribution
is used for those below the threshold. We use the previously
identified thresholds for this process and the underlined GPD
fitting is performed through penalised likelihood estimation
using a Gaussian prior. To assess the sensitivity of the trans-
formation results to different marginal distributions; we also
test Gumbel marginals and find that the results are insensitive
to this choice.

From each transformed set Ytrans = {Yi, i ∈ {1, . . .,m}},
we identify spatially joint events across the entire coastal re-
gion, see Fig. 2 for an example of constructing one such event
for a region with 7 locations. To do this, we first identify the
primary variable with the largest marginal value (e.g. the wa-
ter level at location 4, marked in orange) among all variables
from the entire dataset, and retrieve the occurrence date and
location. At this primary location, we then obtain the corre-
sponding value for the other variable (e.g. the river discharge
in the hatched orange cell) from the sampled bivariate events.
For instance, if the largest extreme water level event occurs at
a coastal station, we obtain the corresponding river discharge
value at the paired river station from the bivariate event set
developed for individual locations.

Next, we match this primary event at the primary loca-
tion to potential bivariate events at all other locations. Since
peaks at different locations do not necessarily occur simul-
taneously, we apply a time window of 7 d (± 3 d around the
peak for the primary variable) in the matching process. In
other words, we assess whether a compound event occurs at
another location within this time window. This process may
result in multiple bivariate events identified for a single lo-
cation (e.g. the three extreme water level identified at loca-
tion 7); in these cases, we retain the event with the largest
marginal peak (e.g. the event marked by a green square at lo-
cation 7). If no event is found for a particular location (e.g.
the case for location 2), we instead select the maximum to-
tal water level or river discharge (e.g. the blue cells at loca-
tion 2) within the 7 d window. This process samples one spa-
tially joint event for the entire coastal region centred around
the peak of the primary variable. Once this event is identi-
fied, we remove all peaks across all variables and locations
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Figure 2. Schematic of the construction of one spatially joint events across the 7 locations of an exemplary coastal region. SWL refers
to total water level while Q refers to river discharge. The orange cell indicates the primary variable with the largest marginal value at the
primary location. For other locations, matched extreme variables are marked in green where the maximum of either TWL or Q within the
matching window is selected. Dark grey cells are the available extremes within the window but they are not the largest. Hatched cells are the
paired peaks to the matched variable from the bivariate events identified for individual locations. Blue cells indicate the matched non-extreme
variables; they are not from paired bivariate peaks and are marked by a blue dashed box.

that fall within the associated event window (ranging from 7
to 13 d, depending on the timing of the matched peaks). We
then repeat the process with the updated event set, identify-
ing the next largest remaining marginal value to define the
corresponding spatially joint event. This iterative sampling
continues until no peaks can be found in the event set.

This approach generates a separate dataset Y of spatially
joint events of total water level and river discharge from the
large transformed dataset Ytrans with time series of paired
peaks for the two study regions in this study. Each sam-
pled event represents a peak bivariate event at a single loca-
tion (the primary station combination) matched appropriately
with potential peak bivariate events at all other locations. The
validity of these spatially joint events is ensured by perform-
ing several measures (see Sect. S1 in the Supplement), and
results of these measures can be found in Figs. S2 and S3.

2.4 Estimating the statistical dependence structure and
generating a 10 000 year of spatially joint events of
total water level and river discharge

2.4.1 Dependence calculation

To assess the dependence structure between a set of vari-
ables, two main classes of statistical models have been typ-
ically used: (1) copulas, and (2) the multivariate conditional
model of Heffernan and Tawn (2004). Standard copulas are
used to describe the bivariate dependence while pair-copula
construction (e.g. vine copula) is developed to assess higher-
dimensional dependence. Although the copula approach has
been widely used in compound flooding analyses, standard
copulas impose one type of extremal dependence in the joint

tails between variables (Heffernan, 2001). Therefore, a priori
selection of the best-fit copula is often performed for paired
variables of interest (e.g. Jane et al., 2020; Wahl et al., 2015).
In contrast, the multivariate conditional model captures the
dependence structure between a set of variables by estimat-
ing the conditional distribution for the remaining variables
given that a primary variable exceeds a high threshold. This
approach therefore provides more flexibility in modelling the
tail dependence structures; it is however more sensitive due
to the added complexity of selecting suitably high thresh-
olds (Tilloy et al., 2019). Nevertheless, the multivariate con-
ditional model has been applied to model the dependence be-
tween drivers of compound flooding at a single location (e.g.
Jane et al., 2020), as well as the dependence in the variables
contributing to extreme sea levels at multiple sites (e.g. Li
et al., 2023; Wyncoll et al., 2016). As a result, we choose
the multivariate conditional model of Heffernan and Tawn
(2004) to estimate the dependence between total water levels
and river discharges across different locations in this study.

The multivariate conditional model works by (1) estimat-
ing the univariate marginal distribution for each variable;
and (2) calculating the pairwise dependence structure based
on regression functions. We use the same marginal distribu-
tions X as estimated in Sect. 2.3. To estimate the dependence
between total water levels and river discharges across differ-
ent locations, we apply the multivariate conditional model to
the transformed datasets of identified spatially joint extreme
events Y= {Yi, i ∈ {1, . . .,m}} (Sect. 2.3). The model then
calculates the conditional distribution of the remaining vari-
ables from the sampled events where a specified variable (i.e.
the conditioning variable) exceeds the threshold. This proce-
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dure is repeated by taking each variable as the conditioning
variable in turn. The resultant dependence is therefore a se-
ries of pairwise regressions with estimated residuals, based
on the following equation:

Y−i |Yi = aYi +Y
b
i Z−i for Yi > v (2)

where Y−i is a vector of all the variables excluding vari-
able Yi (here the model considers two variables per loca-
tion, namely (1) total water level and (2) river discharge),
v is a high threshold above which the dependence is esti-
mated (we use the same thresholds as identified in Sect. 2.3),
a is a vector of parameters (−1< a < 1) for overall depen-
dence strength with positive and negative values referring to
positive and negative dependence, respectively, b is another
vector of parameters describing how the dependence changes
(b < 1, with positive values meaning the variance increases
as y increases), Z−i is a vector of residuals. For a station
of interest Yi and the j th station of Y−i , their dependence
is characterized by Eq. (2) using parameters aj |i , bj |i , and
residuals Zj |i .

2.4.2 Stochastic event set generation

Multivariate extremes, such as the spatially co-occurring
events with potential compound flooding in this study, are
scarce in observational records. Therefore, accurate fre-
quency analyses for such events require simulations of large
event sets capturing dependence between a set of vari-
ables (Brunner, 2023). The estimated dependence structure
(Sect. 2.4.1) describes the conditional distribution of vari-
ables at other locations when one of the two variables (i.e.
total water level and river discharge) at a given location is ex-
treme. This information can be used to develop an event set
of a large number of spatially co-occurring events, whereby
for individual events at least one variable at one location is
extreme.

We apply a Monte Carlo procedure to generate a
10 000 years of spatially joint events of total water levels and
river discharges across different locations. For a given study
region with m locations, we denote the 10 000 years event
set as E = {y ∈ Rm : ∃i ∈ {1, . . .,m},yi > u} where u is a
high threshold. We use the same thresholds as identified in
Sect. 2.3. The event set E can be separated into subsets of
events conditioned on a given variable following Ei = {y ∈
ÊRm : yi > u and yi =max(y)}. To quantify the number of
events to be generated for each subset Ei , we use a multi-
nomial distribution with the total event number ns of the
10 000 years and a probability vector P(Y ∈ ÊEi |Y ∈ ÊE)
for i ∈ Ê{1, . . .,m}.

To construct the multinomial distribution, we first calcu-
late the empirical distribution of annual event counts us-
ing the dataset of identified spatially joint extreme events Y
(Sect. 2.3). For the 10 000 simulation years, the total event
number ns is approximated by summing up 10 000 val-
ues randomly sampled from the annual event count distri-

bution. The next step is to estimate the probability vector
P(Y ∈ ÊEi |Y ∈ ÊE) for i ∈ {1, . . .,m}. From the identified
spatially joint extreme events Y, we obtain the conditioning
variable for each event, which is defined to have the largest
marginal value among all variables. We then calculate the
likelihood of each variable being the conditioning variable.
The probability vector is then combined with ns to calculate
the event number ni for each subset Ei . Lastly, Ei is gener-
ated by repeating the following simulation steps until ni is
satisfied:

1. Sample the value for the conditioning variable Yi from
its marginal distribution, conditional on Yi > u;

2. Independently sample a joint residual Zi ;

3. Estimate the value for the remaining variables Y−i from
Eq. (2) using the estimated parameters ai , bi ;

4. Reject the sample Yi if Yi is not the largest among all
variables on the marginal scale, and repeat the above
steps until a sample is obtained in which Yi is the
largest.

2.4.3 Validation of simulated stochastic events

To validate the stochastic events, we first compare the ob-
served and simulated peak total water levels and river dis-
charges over a 41 year period at all station combinations.
The simulated peak value is estimated by taking the me-
dian of 250 model realisations of 41 years of values ran-
domly sampled from the 10 000 year event sets. A second
validation analysis is conducted by comparing water level
and river discharge return periods per station combination
between observations and simulated event sets. The observed
return levels are estimated from the fitted GPD distribution of
the marginal distribution for each variable (Sect. 2.4.1). The
simulated return values are the median return levels obtained
from 100 model realisations, each representing 1000 years
of randomly sampled values from the 10 000 year event sets.
For each realisation, return levels are calculated empirically
using the Weibull’s plotting formula (Makkonen, 2006). We
also estimate the 5th–95th confidence intervals (CIs) for both
observed and simulated return levels. For the observed val-
ues, symmetric CIs are computed based on the estimated
standard errors from 1000 random samples. For the simu-
lated return levels, the CIs are given by the 5th and 95th per-
centiles of the estimated return levels from the 100 realisa-
tions.

2.5 Assessing the joint occurrence of compound
flooding potential across locations

From the generated stochastic sets of spatially joint events,
we assess the joint occurrence of compound flooding poten-
tial across locations. First, we quantify the joint occurrence
of compound flood potential by simply counting the number
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of events where both total water level and river discharge (i.e.
and hazard scenario) at individual locations exceed a range of
thresholds including the 99th, 1 and 2 year return levels. We
use these relatively high thresholds to avoid spurious consid-
eration of minor events for calculating the joint occurrences,
as we do not further model the inundation and impact of these
events in this study. Each location has varying compound
flooding potential since the number of joint occurrences may
be different at individual locations. To account for this differ-
ence and ensure comparability across locations, we therefore
standardise the results using the number of joint occurrences
per year.

Second, we assess the spatial correlation of compound
flood potential by estimating the relative occurrence rates.
This is done by calculating the occurrence rate of simultane-
ous potential compound flood events at other locations given
a location of interest experiences a potential compound flood
event. A higher relative rate at a location indicates a stronger
spatial correlation of compound flooding between this loca-
tion and the location of interest.

Compound flooding may occur when only one flood driver
is extreme at a given location (or hazard scenario), we refer
to such events as “coastal driven” or “river driven” events in
this study. Since these events may also lead to (compound)
flooding, we are interested in their occurrence probabilities.
For all compound flood events at a location of interest, we
calculate the relative number of: (1) compound (both drivers
exceed the threshold); (2) coastal driven (only water level
exceeds the threshold); (3) river driven (only water level ex-
ceeds the threshold); and (4) non-extreme (no drivers exceed
the threshold) events for the other locations.

3 Results and Discussions

3.1 Validation of simulated stochastic event sets

In Fig. 3, we show the validation results on the generated
stochastic coastal water levels. Figure 3a compares the max-
imum simulated water levels against observations over a
41 year period for all 41 tidal gauges along the US coast-
lines used in this study. Results show that the simulated
41 year maximum water levels show good agreement with
observations, with an overall coefficient of determination
(R2) of 0.91 and a root mean square standard error (RMSE)
of 0.4 m across all the gauges. The highest agreement is
found at gauges on the West coast (blue). On the Gulf
of Mexico (orange) and East coast (green), our model is
found to underestimate the 41 year maximum water level for
some gauges such as Battery, Sandy Hook, and Galveston
(Pier 21), while the maximum water level is overestimated
at Cedar Key. These misestimations are likely caused by the
different approaches for estimating maximum water levels.
The observed maximum water levels over a 41 year period
may have a return period of larger than 40 years according to

the extreme value analysis (e.g. see the water level compar-
ison for Rock Port and Charleston in Fig. 3b). However, the
obtained values, based on many realisations of 41 year wa-
ter levels from the stochastic set, are approximately identical
to the estimated 1-in-41 year water level. This case typically
occurs at gauges in TC-prone areas. Due to the stochastic
nature of TCs, observation records of a limited length, such
as 41 years in this study, may contain too few TCs that made
landfall to drive a good fit of extreme distributions to robustly
estimate water level return periods (Dullaart et al., 2021).

Figure 2b compares the water level return periods esti-
mated from the stochastic events (orange) and observations
(blue) at nine randomly selected gauges (three per coast). The
return periods calculated from simulated water levels corre-
spond well with those derived from observed data, with nar-
rower confidence intervals associated with the former mostly
located within the confidence bounds associated with the ob-
servational data. This indicates that our approach can sim-
ulate water levels close to the marginal distributions of the
observations with greater confidence, especially for high re-
turn periods. For North Spit and Los Angeles, our approach
overestimates the water levels for relatively low return peri-
ods compared to estimated return levels using observations,
which may be due to the sampling procedure used to iden-
tify spatially joint events. As this process tends to pair the
peaks of the primary variable with maximum values of the
remaining variables within a lagged window, the dependence
structure may be overestimated and therefore higher values
are generated.

Compared to total water levels, we find higher agreement
between observed and simulated maximum river discharge
over a 41 year period at all stations, see Fig. 4a. The coeffi-
cient of determination (R2) is 0.98 and the root mean square
standard error (RMSE) is 511 m3 s−1 across all stations. Fig-
ure 4b shows good correspondence between the return peri-
ods estimated from the stochastic events and observations for
the river stations paired with the nine selected tidal gauges.
At most stations, the simulated stochastic return levels show
a narrower confidence interval. Overall, these validation re-
sults show that our approach can generate a much longer set
of spatially joint events with similar marginal distributions
compared to historical observations.

3.2 Frequency analysis of simultaneous potential
compound flooding with the number of affected
locations

Figure 5 shows the percentage of simulated events that
may potentially cause compound flooding, categorised by
the number of affected locations for the US coastal re-
gions. These events are those with both total water level
and river discharge exceeding the respective 99th percentiles.
Our analysis reveals that the Gulf coast shows the highest
frequency of localised compound flood events among the
three US coasts, with over 82 % of all potential events af-
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Figure 3. Validation of the generated synthetic coastal water levels. (a) Maximum observed versus simulated peak total water levels over
a 41 year period at tidal gauges on the West coast (blue), Gulf of Mexico (orange), and East coast (green). The maximum observed peaks
are extracted from the 41 year observations, while the simulated peaks refer to the median of total water levels from 250 random model
samples of 41 years length. The red dashed line represents the identity (1 : 1) line. (b) Comparison between observed and simulated water
level return periods for nine selected gauges (three per coast; see the locations in Fig. 1). Red dots are the empirical return periods from
observed peak water levels, while blue curves represent the return periods from the GPD fit to the observations. Orange curves refer to the
empirical estimates from the 10 000 year simulation. Shaded areas are the confidence intervals corresponding to the 5th and 95th percentiles.

fecting only a single location. Nevertheless, it is still likely
(around 12 %) that potential compound flood events may af-
fect two locations on the Gulf coast, while events that may
affect more locations become increasingly rare (e.g. less
than 3 % for three locations and 3 % for more than three lo-
cations). In contrast, the west coast shows higher frequen-
cies of widespread potential compound flooding. For exam-
ple, about 50 % of the events may result in potential com-
pound flooding at one location while the chances of affecting
multiple locations are 23 % for two locations, 13 % for three
locations, 7 % for four locations, and 3 % for five locations.
The east coast shows slightly lower frequencies of potential
compound flooding events affecting multiple locations. The
frequency of events affecting a single location is 61 %, fol-
lowed by 21 %, 9 %, and 4 % for two, three, and four loca-
tions, respectively.

3.3 Joint occurrence of extreme sea levels and river
discharges at individual locations

We first assess the compound flooding potential at individ-
ual locations based on the annual number of joint occur-
rences of total water level and river discharge above a spe-
cific threshold. Figure 6 shows the result using a threshold
equivalent to the 99th percentile of the 41 year total water

level and river discharge time series. The regional patterns
of compound flooding potential largely align with those re-
ported in previous studies (e.g. Couasnon et al., 2020; Ghan-
bari et al., 2021; Ward et al., 2018). For example, most lo-
cations on the US west coast show a high compound flood-
ing potential, with an annual number of joint occurrences ex-
ceeding 0.3. This high potential is associated with the inter-
play between synoptic weather systems (e.g. ETCs) and re-
gional orographic features, which causes simultaneous high
storm surge and intense precipitation (Couasnon et al., 2020).
These storm surges elevate the total water level, and the in-
tense rainfall results in high river discharges in a short time as
most river basins on this coast are relatively small and steep
(Ward et al., 2018). At a few locations such as Seattle, Port
San Luis, Santa Monica, and La Jolla, the compound flood-
ing potential is relatively low and the annual number of joint
occurrences is typically smaller than 0.2. The dependence be-
tween riverine and coastal drivers in these locations is found
weak or statistically insignificant by previous studies. For ex-
ample, Ward et al. (2018) found weak dependence between
river discharge and skew surge at La Jolla, while Ghanbari
et al. (2021) confirmed independence between total sea level
and river discharge at Seattle and Santa Monica.
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Figure 4. Validation of the generated synthetic river discharges. (a) Maximum observed versus simulated peak river discharges over a 41 year
period at paired river stations on the West coast (blue), Gulf of Mexico (orange), and East coast (green). The maximum observed peaks are
extracted from the 41 year observations, while the simulated peaks refer to the median of river discharges from 250 random model samples
of 41 years length. The red dashed line represents the identity (1 : 1) line. (b) Comparison between observed and simulated water level return
periods for the nine stations (paired with the nine coastal gauges; see the locations in Fig. 1). Red dots are the empirical return periods
from observed peak water levels, while blue curves represent the return periods from the fitted GPD using these observations. Orange curves
refer to the empirical estimates from the 10 000 year simulation. Shaded areas are the confidence intervals corresponding to the 5th and
95th percentiles.

Figure 5. Event percentage diagram with the number of locations affected by simultaneous potential compound flooding for the West Coast,
Gulf of Mexico, and East Coast. Potential compound flooding is defined by events where both total water level and river discharge exceed
their respective 99th percentiles. Over the 10 000 year simulation period, the total number of potential compound flooding events is 24 086,
15 540, and 28 635 for the West, Gulf, and East coasts, respectively.

For the Gulf of Mexico, both stations on the western
part show a high compound flooding potential with an an-
nual number of joint exceedances of 0.38 and 0.53 for Rock
Port and Galveston, respectively. However, the eastern part
except St. Petersburg has a much lower joint exceedance

value. This regional difference is due to seasonal patterns in
river discharge and storm surge characteristics. High storm
surges/sea levels on the Gulf coast are often driven by hur-
ricanes (i.e. TCs). For the western part of this coast, maxi-
mum river flows also occur during hurricane seasons, while
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Figure 6. Number of joint occurrences per year between extreme total water levels and river discharges from simulated 10 000 year event
sets for (a) the West coast and (b) the combined Gulf of Mexico and East Coast. Joint occurrences are defined for events where both water
level and river discharge are above the 99th percentile threshold. The state borders are marked in white.

the river flow on the eastern part is often at its largest between
late winter and early spring (Berghuijs et al., 2016).

The eastern coast of the US has a more complex spatial
pattern of compound flooding potential with varying annual
numbers of joint occurrences. For the southeastern coast, a
low joint occurrence number (< 0.1) of total water level and
river discharge is found for most locations except Wilming-
ton. Although statistical dependence is found for these loca-
tions by other studies (e.g. Ghanbari et al., 2021; Ward et al.,
2018), the dependence coefficient Kendall τ is generally low
(e.g. ranging from 0.1–0.2 in Ghanbari et al., 2021)). The low
annual number of joint occurrences may also be contributed
to by the sampling method, which is based on automated
thresholds in this study. For most locations on the southeast-
ern coast, the identified thresholds are relatively high (see
Table S2), which leads to much fewer sampled events from
observations (see Fig. S2) and further a much smaller number
of generated stochastic events. For the northeastern coast, we
find a high compound flooding potential for the mid-Atlantic
region while locations at the far northeastern coast generally
show low compound potential. These results largely agree
with previous findings (e.g. Wahl et al., 2015; Ward et al.,
2018). On the eastern US coast, it is known that TCs can
drive concurrent high storm surge and precipitation (Wahl
et al., 2015). However, other mechanisms such as snow melt
and convective storms that can generate riverine floods are
also at play (Berghuijs et al., 2016), which could explain the
regional difference in the compound flooding potential be-
tween the southern and northern parts.

3.4 Joint occurrence of extreme sea levels and river
discharges across multiple locations

Moving from assessing compound flooding potentials at in-
dividual locations, we then assess the likelihood of simulta-

neous compound flooding arising across different locations.
Figure 7 maps the relative occurrence rate of potential com-
pound flood events at individual locations on the West coast
of the United States, given the location of interest is experi-
encing an event with compound flooding potential. Here po-
tential compound flood events are defined as events with both
total water level and river discharge exceeding the 99th per-
centile. Results show that for the west coast, when a given
location sees potential compound flooding, other locations
are likely to experience potential compound flooding simul-
taneously. As one may expect, the relative occurrence rate
shows asymptotic patterns across space: These rates are rela-
tively high at locations near the primary location and start to
decrease when the distance increases. For example, when a
potential compound flood event occurs in Seattle, the chance
that Friday Harbor is also affected is relatively high (0.54)
while the joint rates for other locations are much lower (e.g.
Toke Point: 0.39, Astoria: 0.27, Charleston: 0.16). At most
locations, a relatively high joint occurrence rate (> 0.5) can
be observed at one or two nearby locations. However, there
are a few locations where three nearby locations show a high
relative occurrence rate; this is case for Astoria, Crescent
City, and Los Angeles.

We also observe two clustering patterns where more than
two locations show mutually high relative occurrence rates.
The first cluster is Charleston – Crescent City – North Spit;
the relative occurrence rates for the other two locations are
(1) 0.50 and 0.51, (2) 0.56 and 0.62, and (3) 0.47 and 0.40
given each of these three locations experience potential com-
pound flooding. The second cluster covers the southwestern
US coast (Santa Monica – Los Angeles – La Jolla). These
clusters correspond with clustering results of storm surges
(Enríquez et al., 2020) and total water levels (Li et al., 2023)
based on in-depth statistical analyses. This indicates that syn-
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Figure 7. Relative occurrence rate of potential compound flooding at individual locations given potential compound flooding occurs at a
primary location for the West Coast. The top-left panel shows the individual locations and the state borders are marked in white. Potential
compound flood events are defined by events with both total water levels and river discharges exceeding the 99th percentile threshold. Small
black solid circles refer to the relative occurrence rate lower than 0.05, and the number on the lower left corner of each subplot represents the
total number of stochastic events with compound flooding potential at the primary location from the 10 000 year simulated event set.

optic weather events (i.e. ETCs on this coast) may be respon-
sible for large-scale compound flooding at these locations.

To assess the sensitivity of the results to different thresh-
olds for identifying potential compound flood events, we also
apply varying thresholds equivalent to 1 and 2 year return
levels, see Figs. S4 and S5. To maintain consistency, these
varying thresholds are only applied for the primary location
while the 99th percentile is used for the remaining locations
on the west coast. We restrict this analysis up to 2 year return
levels because the number of identified stochastic events will
be very small when applying higher thresholds, and the fur-
ther quantification of relative occurrent rates would be very
biased based on such few events. We find similar patterns of
the relative occurrence rates for different thresholds. With in-
creasing thresholds, these relative occurrence rates become
significantly higher. This is primary because larger storms
are expected to have a greater spatial footprint and may there-
fore affect more locations.

For the Gulf of Mexico, we find lower relative occurrence
rates of potential compound flooding for most locations. This
shows a weak spatial correlation of compound flooding po-
tential between locations, suggesting that compound flooding
may occur at a local spatial scale on this coast. The reasons

for this may be twofold. First, TCs are responsible for the
majority of compound flood events on this coast (Lai et al.,
2021); although TCs can cause more intense storm surge and
rainfall, they have a smaller spatial footprint compared to
ETCs (Dullaart et al., 2021). This is especially the case for
the western Gulf coast (i.e. Rock Port and Pier 21) where
the relative occurrence rate is 0.18 and 0.13 given each of
these two locations sees a potential compound flood event in
turn. Despite this, there are a few historic TC events, such
as Hurricane Harvey, that resulted in compound flooding in
both locations. Second, the eastern Gulf coast has a low com-
pound flooding potential as extreme storm surge and high
river flow typically occur in different seasons (Ward et al.,
2018). Therefore, compound flooding is unlikely to arise at
different locations.

On the East Coast, the relative occurrence rate of com-
pound flooding potential shows mixed patterns. Both south-
ern and northern parts show a weak spatial correlation of
compound flooding with low relative occurrence rates, which
could be associated with the low compound flooding po-
tential in these regions. For the central part (between Swell
Point to Newport), more than 50 % of the locations show a
relatively low joint occurrence rate of potential compound
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flooding (< 0.4) for the remaining locations. Four locations,
namely Swell Point, Annapolis, Sandy Hook, and Battery
show a relatively high joint occurrence rate (> 0.4) at one
nearby location. Baltimore shows the highest spatial corre-
lation of compound flooding potential with other locations:
Two nearby locations Washington and Annapolis show a
high relative occurrence rate of 0.44 and 0.48; Swell Point
and Reedy Point has a rate of 0.16 and 0.25 while the remain-
ing locations show a lower occurrence rate (< 0.1). Com-
pound flooding on the US east coast can be triggered by
both TCs and ETCs, and the relative contribution of these
two weather events varies spatially, which may correlate to
the regional differences of spatial correlation of compound
flooding potential.

We note that some relative occurrence rates of compound
flooding potential show correlations between locations that
are far way. For example, when Panama City sees a poten-
tial compound flood, Beaufort and Portland show a relative
occurrence rate of 0.15 and 0.09, respectively (see Fig. 8).
Other similar instances can be found for several locations
(e.g. Boston and Bar Harbour) on the northeastern coast
which show a small relative occurrence rate at locations on
the Gulf coast. These correlations can be driven by the storm
events that make a landfall on the Gulf coast and then travel
into certain areas (e.g. the Carolinas) on the East coast. Prime
examples of such events are Hurricane Idalia and Tropical
storm Eta. On the other hand, these correlations can be spu-
rious due to the applied time lags in the sampling process.
A ± 3 d lag both spatially and between total water level and
river discharge at individual locations can result in a sampled
event of up to 13 d. This long duration may unintentionally
correlate individual potential compound floods across multi-
ple locations.

3.5 Relative frequency contributions of different types
of events at other locations

Compound flooding may occur when only one driver is ex-
treme. It is therefore important to estimate the simultane-
ous joint probability of different types of flood events from
exceedances over either coastal or riverine flood threshold.
When a location experiences a potential compound flood
event, we assess the relative frequency contributions of dif-
ferent types of events at other locations. We identify four
types of events: (1) compound where both drivers exceed
the respective thresholds, (2) coastal driven where only to-
tal water level exceeds the threshold, (3) river driven where
only river discharge exceeds the threshold, (4) non-extreme
events where neither of the drivers exceeds the threshold. To
keep consistent, we use the 99th threshold for both total wa-
ter level and river discharge at all locations.

Figure 9 shows the relative frequency of these differ-
ent types of events, i.e. compound (orange), coastal-driven
(blue), river-driven (green), and non-extreme events (purple),
for three selected reference locations with a relatively high

compound flood potential on the West Coast. Results for
other locations on this coast can be found in Figs. S8–S10.
Note that the relative frequency of compound events (orange)
is the same as the relative occurrence rate shown in Figs. 7
and 8.

At all three locations, the likelihood of simultaneous ex-
treme events at other locations is high, when the primary
location sees a potential compound flood event. For exam-
ple, the relative frequency of extreme events (river, coastal or
compound) is higher than 0.5 at six other locations between
Friday Harbor and North Spit when Toke Point experiences
a potential compound flood (Fig. 9a). Similarly, this high
frequency of extreme events is seen at eight other locations
when both North Spit (Fig. 9b) and Los Angeles (Fig. 9c) are
the reference location. In most cases, the relative frequency
contribution of coastal-driven events is higher compared to
the respective contribution of river-driven events. This may
suggest that total water levels exhibit stronger spatial de-
pendence than river discharges at those locations selected in
this study. The stronger dependence of total water levels may
stem from the high tide events as the spring and neap tides
occur at approximately the same time everywhere along the
coastline. On the contrary, the correlation between high river
discharges may not be fully captured by using a 3 d lag be-
tween locations as used in this study.

4 Limitations and recommendations

Our framework presents an advancement over the traditional
large-scale statistical dependence assessment of compound
flooding drivers, as it accounts for the spatial dependence of
different drivers. However, several aspects of our framework
could be further improved. Firstly, our analysis is based on
observed data that may be biased towards a few locations. For
example, no station combinations are selected for the central
Gulf coast or for most parts of the coastline of Florida due
to the relatively short time-span of the gauge records at these
locations. Some of the selected station combinations suffer
from long data gaps which are later infilled using simulta-
neous data from nearby locations. This may unintentionally
increase the correlation between these locations. Therefore,
future studies are recommended to apply our framework to
modelled time series of flood drivers (e.g. storm surges (Muis
et al., 2023) and river discharges (Harrigan et al., 2020)).
This would improve the assessment of spatial correlation of
potential compound flooding at multiple locations, although
these models cannot fully resolve the TC activities.

Secondly, our framework is limited to extreme total wa-
ter level and river discharge. However, other drivers may
also contribute to compound flooding. For example, waves
were the dominant contributor to inundation along a stretch
of coastline during Hurricane Florence (Leijnse et al., 2025).
In some regions with high connectivity between ground and
surface water hydrology, groundwater level is a paramount
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Figure 8. Relative occurrence rate of potential compound flooding at remaining locations given potential compound flooding occurs at a
primary location for the combined Gulf of Mexico and East Coast. The top-left panel shows the individual locations and the state borders
are marked in white. Potential compound flooding is defined by events with both total water levels and river discharges exceeding the
99th percentile. Small black solid circles refer to the joint occurrence rate lower than 0.05, and the number on the lower left corner of each
subplot represents the total number of stochastic events with compound flooding potential at the primary location from the 10 000 year
simulated event set.

driver to consider in the compound flooding assessment (Jane
et al., 2020). River discharge is used to represent the river-
ine component for compound flooding; however, precipita-
tion can be the predominant driver for compound flooding in
some regions (Sohrabi et al., 2025) and should be considered
in the dependence analysis. A future version of our frame-
work is therefore recommended to include relevant drivers
depending on the locations, thereby providing more robust
boundary conditions for assessing the inundation and risk of
compound flooding.

Our results are based on a large set of stochastic events
specified by spatiotemporal limits. In this study we define
events for two areas: (1) the West Coast; and (2) the com-
bined Gulf and East coasts. Given these relatively large ar-

eas, spurious correlations are observed for locations that are
far away from each other. For example, when Panama City
sees a potential compound flood, Beaufort and Portland show
a non-negligible relative occurrence rate of potential com-
pound flooding (Fig. 8). An improvement for this would be
to define the events for the identified clusters of storm surges
(Enríquez et al., 2020) and extreme sea levels (Li et al.,
2023). Moreover, these spurious correlations may also stem
from the applied time lags between flood drivers and between
locations. In this study, a 3 d window for both factors would
result in a sampled event with a time window of ranging from
7 to 13 d. Although the effects of time lags are found negligi-
ble on the dependence between different drivers at individual
locations (Camus et al., 2021), a long time window may un-
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Figure 9. Relative frequency of different types of events given potential compound flooding occurs at a primary location for (a) Toke Point,
(b) North Spit, and (c) Los Angeles on the US West Coast. Potential compound flood event (orange) is defined for events with both total
water levels and river discharges exceeding the 99th percentile. The total number of simulated compound events at the primary location is
indicated in the title of each panel. Blue refers to coastal driven events where only the total water level exceeds the 99th threshold, while
green refers to river driven events where only the river discharge exceeds the 99th threshold. Purple refers to non-extreme events where
neither of the drivers exceeds the threshold.

intentionally correlate individual potential compound floods
across different locations. Therefore, future work is recom-
mended to use different lags and to further assess the sensi-
tivity to these assumptions.

In regions where compound flooding can result from mul-
tiple synoptic weather patterns (e.g. TCs and ETCs) and hy-
drological processes (e.g. snowmelt and convective rainfall),
different generation mechanisms may produce distinct de-
pendence structures between flood drivers (Kim et al., 2023).
To capture these mixed-population effects, our stochastic
event generation could be improved by distinguishing events
based on their generation types rather than combining all
events into a single population (c.f. Maduwantha et al.,
2024). Such event stratifications require long and continu-
ous time series of flood drivers (e.g., the 122 year observa-
tions used in Maduwantha et al., 2024), which may not be
available for large-scale analyses. Future work could there-
fore consider using additional datasets for a long time series
synthetic TCs (e.g. Bloemendaal et al., 2020) and ETCs de-
rived from seasonal forecasting data (e.g. Benito et al., 2025),
as well as hydrological data generated by stochastic weather
generators (e.g. Falter et al., 2015; Ullrich et al., 2021).

The final limitation of our study is the identification of
the compound events using “and” hazard scenarios where
both total water levels and river discharges exceed a range
of thresholds. In reality, compound flooding may occur even
when neither of these two drivers is extreme. Therefore, a
more realistic identification of compound events could be
based on impact thresholds rather than hazard thresholds

(Ghanbari et al., 2021). Such impact thresholds have been es-
tablished for the United States, including impact thresholds
for both coastal (Sweet et al., 2018) and riverine flooding
(Cosgrove et al., 2024). These thresholds are used for fore-
casting purposes, enhancing public safety, and supporting ac-
tions to improve preparedness. However, these thresholds are
not available at all station combinations used in this study,
which is the further reason that we use a range of hazard
thresholds for identifying potential compound flood events.

5 Conclusions

We provide the first assessment of spatial correlation of po-
tential compound flooding from extreme sea levels and river
discharges at 41 station combinations on the US coasts. Our
results are based on a large set of stochastic events simulated
using a multivariate conditional dependence model. The val-
idation results show that our stochastic events can well cap-
ture the observed dependence structure between total water
levels and river discharges across multiple locations. Our as-
sessment of compound flood potentials at individual loca-
tions largely agrees with previous findings. Our frequency
analysis of potential compound flood events across locations
shows that potential compound flooding is likely to affect
multiple locations. On the west coast of the US, around 50 %
of potential compound events may arise at more than one
location simultaneously. Less than 30 % of potential com-
pound flooding may affect multiple locations on the East
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coast, while the frequency of widespread compound flood-
ing is low on the Gulf coast. Our analysis of relative occur-
rence rates reveals that potential compound events exhibit
strong spatial correlation particularly among neighbouring
locations along the US West coast. Two clusters where mul-
tiple locations show mutually high joint occurrence rate of
potential compound flooding are identified: (1) Charleston –
Crescent City – North Spit; and (2) Santa Monica – Los An-
geles – La Jolla. In contrast, the Gulf Coast shows the weak-
est spatial correlation while the East Coast presents mixed
behaviour with moderate spatial dependence in the central
region and weaker spatial dependencies for the remaining lo-
cations. These spatial patterns may be associated with the
major driving weather patterns of compound flooding where
ETCs have a larger spatial footprint and are more likely to
cause widespread events compared to TCs.

Our results advocate for considering spatial dependence
in compound flood risk assessment, especially for regions
prone to large-scale synoptic weather patterns, such as Eu-
rope and eastern Asia. While the focus of this study is on
the US coasts, the methodologies developed in this study
are readily transferable to other coastal and estuarine regions
facing the challenges of compound flooding. Our stochas-
tic event sets can be used as boundary conditions for cou-
pled hydrologic-hydraulic models for simulating the surface
inundation and assessing flood risk. Our results of relative
contributions of different types of events along the coastlines
can facilitate more effective trans-regional flood risk man-
agement through better flood adaptation, planning, and emer-
gency response in low-lying coastal catchments.
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