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Abstract. Meteorological drought presents considerable
challenges to water supplies, agriculture, and socio-
economic stability, especially in areas heavily reliant on
precipitation. The Standardized Precipitation Index (SPI)
is esteemed for its efficacy in drought monitoring, ow-
ing to its straightforwardness and applicability across many
time scales. This study examines meteorological drought
dynamics in the uMkhanyakude district using the Stan-
dardized Precipitation Index (SPI) at 6-, 9-, and 12-month
timescales. Trend analysis was conducted using Mann–
Kendall (MK), Modified Mann–Kendall (MMK), and Inno-
vative Trend Analysis (ITA) methods. The study also pro-
poses a hybrid model that integrates the Savitzky–Golay
(SG) filter, Complete Ensemble Empirical Mode Decomposi-
tion with Adaptive Noise (CEEMDAN), Autoregressive In-
tegrated Moving Average (ARIMA), and Long Short-Term
Memory (LSTM) networks, referred to as SG-CEEMDAN-
ARIMA-LSTM, for forecasting of the SPI time series. Anal-
ysis of SPI trends and variability revealed statistically sig-
nificant declining trends at five monitoring stations, char-
acterized by negative Z-scores and p-values, showing a
marked downward trajectory across several SPI scales. On
the other hand, the forecasting results demonstrate that
the SG-CEEMDAN-ARIMA-LSTM methodology outper-

formed benchmark models across all temporal scales, achiev-
ing high prediction accuracy with R2 values of 0.9839
(SPI-6), 0.9892 (SPI-9), and 0.9990 (SPI-12). These find-
ings highlight the effectiveness of decomposition techniques
(SG, CEEMDAN) in enhancing model performance and con-
firm the suitability of the hybrid model for both short-term
and long-term drought forecasting. This study merges ro-
bust trend analysis with advanced hybrid forecasting tech-
niques, providing a reliable framework for early warning sys-
tems and sustainable water resource management in drought-
prone regions.

1 Introduction

Drought is a complex and recurring natural hazard with sig-
nificant economic, social, and environmental implications
globally (Bagmar and Khudri, 2021; Kalisa et al., 2021;
Song and Park, 2021). In contrast to other natural disasters,
droughts manifest gradually, often persisting for extended
periods, and their effects permeate various sectors, includ-
ing agriculture, water resources, and socio-economic sys-
tems (Wilhite and Glantz, 1985; Cunha et al., 2019). This
study specifically focuses on meteorological drought, char-
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acterized as a sustained period of below-average precipita-
tion (Taylan, 2024). Meteorological drought often serves as
the initial phase that subsequently evolves into agricultural,
hydrological, and socioeconomic drought (Malik et al., 2021;
Latifoğlu and Özger, 2023). As it is solely influenced by pre-
cipitation variability, meteorological drought can be effec-
tively quantified using precipitation-based indices.

Several indices have been established to quantify drought
conditions, including the Standardized Precipitation Index
(SPI) and the Standardized Precipitation Evapotranspiration
Index (SPEI). While the SPEI integrates both precipitation
and temperature data, its requirement for extensive datasets
and complex computations may restrict its applicability in
regions with limited data availability (Xu et al., 2020). Con-
versely, the SPI depends exclusively on precipitation, ren-
dering it widely used for analysing meteorological drought,
especially in semi-arid regions. Its versatility across multiple
timescales facilitates the robust identification of both short-
and long-term drought patterns. Accordingly, given the data
constraints in the uMkhanyakude district of South Africa,
this study adopts the SPI as the primary drought index, while
recognizing that its exclusive reliance on precipitation consti-
tutes a methodological limitation. Since SPI is precipitation-
driven, analysing rainfall trends is a necessary first step be-
fore applying SPI under climate change conditions. Without
first establishing rainfall trends, one risks misinterpreting SPI
signals as short-term anomalies when they may actually re-
flect long-term climate-driven shifts.

In this context, the escalating concerns regarding climate
change and its influence on local climates have underscored
the necessity of analyzing drought trends. Thus, trend analy-
sis of rainfall and SPI together provides a comprehensive pic-
ture of rainfall trends, revealing the climatic forcing, while
SPI trends quantify the standardized drought intensity and
persistence, which is crucial for understanding drought risk
in the context of climate change. Systematic evaluations of
drought occurrences not only contribute to the development
of evidence-based water resource management strategies but
also enhance the calibration of early warning systems and in-
form climate adaptation policies at both regional and national
levels. Furthermore, temporal analyses enable researchers to
assess the effectiveness of mitigation measures and antici-
pate emerging risks, thereby bolstering resilience in vulner-
able sectors such as agriculture and public water supply. In
the absence of structured trend analyses, drought manage-
ment remains predominantly reactive, constraining the tran-
sition towards proactive and sustainable adaptation strate-
gies. Building on trend analysis, drought forecasting is es-
sential for deepening the understanding of drought dynamics.
Effective forecasting provides early warnings that are critical
for mitigating impacts and strengthening drought manage-
ment strategies (Balti et al., 2020; Zhang et al., 2022, 2024;
Tan et al., 2023).

Accurate forecasting of the SPI is crucial in regions such
as uMkhanyakude, which is prone to recurrent and severe

drought events. Enhanced prediction capabilities support
agricultural resilience, water resource planning, and the es-
tablishment of early warning systems (Xu et al., 2020). Tra-
ditional statistical models, such as ARIMA or SARIMA,
alongside contemporary machine learning methods, have
been extensively employed for forecasting drought indices,
including the SPI. However, each approach has inherent lim-
itations. For example, Gudko et al. (2025) utilized SARIMA
to analyze precipitation dynamics in Russia, demonstrat-
ing efficacy in short-term predictions while exhibiting con-
strained accuracy for long-term forecasts. Similarly, Hussain
et al. (2025) integrated ARIMA with machine learning mod-
els to enhance SPI and SPEI predictions, achieving accura-
cies exceeding 92 %. This highlights the advantages of com-
bining statistical and machine learning techniques. Nonethe-
less, these methodologies often encounter challenges asso-
ciated with nonlinear and complex rainfall patterns, partic-
ularly over short time scales. To mitigate the limitations of
standalone models, hybrid approaches have gained preva-
lence, capitalizing on the complementary strengths of diverse
techniques. Alquraish et al. (2021) compared hybrid mod-
els such as HMM-GA, ARIMA-GA, and ARIMA-GA-ANN
against, such as HMM-GA, ARIMA-GA, and ARIMA-GA-
ANN, with conventional HMM and ARIMA models for SPI
prediction in the Arabian Peninsula, revealing that hybrid
models consistently outperformed their standalone counter-
parts. Likewise, Xu et al. (2022) and Ding et al. (2022)
demonstrated that the combination of CEEMD with ARIMA
or LSTM significantly improves SPI forecasts across mul-
tiple time scales in China, suggesting that decomposition-
based hybrid methods effectively capture intricate temporal
patterns.

Recent studies have significantly advanced hybrid method-
ologies through the implementation of sophisticated prepro-
cessing and optimization techniques. Latifoğlu and Özger
(2023) utilized phase transfer entropy (pTE) in conjunc-
tion with Tunable Q Factor Wavelet Transform (TQWT),
optimized via Grey Wolf Optimization (GWO), followed
by artificial neural networks (ANN), support vector regres-
sion (SVR), machine learning (ML), and Gaussian process
regression (GPR), resulting in superior predictive perfor-
mance. Sibiya et al. (2024) introduced the CEEMDAN-
ARIMA-LSTM model for SPI predictions in Cape Town,
demonstrating that the combination of CEEMDAN decom-
position with both linear and nonlinear models can signifi-
cantly improve forecast accuracy. Wei et al. (2025) adopted
the Informer model and developed the VMD-JAYA-Informer
hybrid, which integrates Variational Mode Decomposition
(VMD) with an optimization algorithm, thereby enhancing
short-term Standardized Precipitation Index (SPI) and Stan-
dardized Precipitation-Evapotranspiration Index (SPEI) fore-
casts.

Despite the successes achieved by hybrid models, sev-
eral challenges persist. Decomposition techniques such as
Empirical Mode Decomposition (EMD), Ensemble Em-
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pirical Mode Decomposition (EEMD), Complete Ensem-
ble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN), and Variational Mode Decomposition (VMD)
are computationally demanding, particularly when applied
to large datasets or in real-time contexts (Sibiya et al.,
2024). CEEMDAN, specifically, can yield misleading in-
trinsic mode functions (IMFs) when utilized on excessively
noisy or unstable time series, which undermines the effi-
ciency and reliability of subsequent predictions. Further-
more, existing research has not investigated the synergistic
application of advanced smoothing filters in conjunction with
decomposition techniques to mitigate noise prior to hybrid
modeling.

To address these limitations, this study proposes an in-
novative hybrid model that integrates the Savitzky-Golay
(SG) filter with CEEMDAN for preprocessing, followed by
the Autoregressive Integrated Moving Average (ARIMA)
and Long Short-Term Memory (LSTM) models for drought
prediction. The SG filter is effective in smoothing high-
frequency noise, thereby enhancing the decomposition pro-
cess and alleviating the computational burden. The integra-
tion of the Savitzky-Golay smoothing filter with CEEMDAN
substantially improves forecasting accuracy by enhancing
the quality and interpretability of the input time series prior to
modeling. This combination enables CEEMDAN to produce
IMFs that are cleaner, more distinct, and less prone to spu-
rious fluctuations, thus offering a more reliable foundation
for subsequent predictive modeling. Cleaner IMFs facilitate
the training of both linear (ARIMA) and nonlinear (LSTM)
models, resulting in more accurate and robust forecasts. This
approach capitalizes on the complementary strengths of both
statistical and machine learning models, addressing noise-
related issues inherent in raw data.

Although hybrid models have demonstrated superior per-
formance in drought forecasting, no prior study has exam-
ined:

1. The combined use of smoothing techniques (SG filter)
with CEEMDAN to enhance the quality of decomposi-
tion.

2. The implementation of an integrated SG-CEEMDAN-
ARIMA-LSTM framework for trend-based Standard-
ized Precipitation Index (SPI) predictions (SPI-6, SPI-9,
SPI-12).

3. Forecasting efforts that explicitly incorporate both trend
analysis and predictive modeling for semi-arid regions
characterized by limited meteorological data.

As a result, the proposed SG-CEEMDAN-ARIMA-LSTM
model addresses these gaps by enhancing decomposition effi-
ciency, reducing computational costs, and improving predic-
tion accuracy across multiple SPI timescales. This methodol-
ogy offers valuable insights for water resource management,
infrastructure planning, early warning systems, and the ad-
vancement of hybrid drought prediction models.

2 Material Methods

This study utilizes various time series forecasting models to
analyse the intricate dynamics of meteorological drought as
indicated by the Standardized Precipitation Index (SPI). The
foundational statistical model examined is the Autoregres-
sive Integrated Moving Average (ARIMA), which is adept at
addressing linear relationships in time series data. The Long
Short-Term Memory (LSTM) neural network is employed to
tackle nonlinear patterns, supplemented by a hybrid ARIMA-
LSTM framework that amalgamates the advantages of both
models. Additional improvements are investigated by in-
corporating a Savitzky-Golay (SG) digital smoothing filter,
which is often used to remove noise from time series or
spectral data, into the ARIMA-LSTM model, and by utiliz-
ing the Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN) before ARIMA-LSTM to
more effectively manage nonstationary signals. The work in-
troduces a unique hybrid model, SG-CEEMDAN-ARIMA-
LSTM, which integrates decomposition and hybrid model-
ing techniques to enhance the accuracy and robustness of
drought forecasts.

Therefore, the subsequent Materials and Methods section
will provide a detailed account of the study area, the data
employed, and the preprocessing steps undertaken, includ-
ing the trend extraction methods applied prior to forecast-
ing. This will be followed by an in-depth description of each
modeling approach, outlining their theoretical foundations,
implementation procedures, and parameterization strategies.
Such a structured presentation ensures transparency in model
development and establishes a comprehensive methodologi-
cal framework for the proposed forecasting system.

2.1 Study Area and Data

This study employed monthly mean precipitation records
from 1980 to 2023, obtained from the South African Weather
Service (SAWS) for the uMkhanyakude District in South
Africa. The uMkhanyakude District Municipality is located
in the far northern region of the KwaZulu-Natal (KZN)
province (coordinates: 32.014489° S, 27.622242° E). The
municipality covers a total area of 13 855 km2, making it the
second largest in the province, exceeded only by the Zulu-
land Municipality. The uMkhanyakude District was formed
immediately after the local government elections in Decem-
ber 2000, as part of the municipal demarcation process, en-
compassing some of the most destitute and underdeveloped
areas of KwaZulu-Natal. The uMkhanyakude District con-
sists of four local municipalities: uMhlabuyalingana, Jozini,
Big Five Hlabisa, and Mtubatuba. The municipality is geo-
graphically surrounded by Mozambique to the north, the In-
dian Ocean to the east, the uThungulu River to the south,
Zululand to the west, and the Kingdom of Swaziland to the
northwest. Figure 1 illustrates the spatial distribution of the
stations.
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Figure 1. Overview of the uMkhanyakude District, South Africa. Rain gauge stations are marked red.

Figure 2. The Box-Jenkins Steps Approach.
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2.2 Modified Mann-Kendall

The modified Mann-Kendall methodology is derived from
the nonparametric Mann-Kendall method (Mann, 1945;
Kendall, 1975), which is widely used to detect trends in
hydro-meteorological time series (Caloiero et al., 2011; Bard
et al., 2015; Wang et al., 2017; Mirabbasi et al., 2020). The
modified Mann–Kendall (MMK) test was employed for se-
rially correlated data exhibiting a substantial lag-1 autocor-
relation coefficient, utilising the variance correction method
proposed by Yue et al. (2002). Hamed and Rao (1998) cre-
ated this methodology to eradicate all substantial autocorre-
lation in the time series. Under the assumption that the data
are independent and identically distributed, the S statistic of
the Mann-Kendall test is computed as follows (Sharifi et al.,
2024):

S =

n−1∑
i=1

n∑
j=i+1

Sign
(
xj − xi

)
(1)

where n denotes the sample size; xi and xj denote sequential
ith and j th data points, respectively, and sign(.) is the sign
function which can be computed as

Sign
(
xj − xi

)
=

 1, if xj − xi > 0
0, if xj − xi = 0
−1, if xj − xi < 0

(2)

with the mean and variance of the S statistics in the equa-
tion are as follows (Helsel and Hirsch, 1993; Ma et al., 2014;
Ashraf et al., 2023)

E(S)= 0 (3)

Var(S)=
n(n− 1)(2n+ 5)−

∑p

i=1ti(ti − 1)(2ti + 5)
18

(4)

where p is the number of tied groups and ti denotes the num-
ber of data points in the t th group. The second term rep-
resents an adjustment for tied group or censored data. The
standardized Z statistic is calculated as

ZMK =


S−1
√

Var(S)
, S > 0

0, S = 0
S+1
√

Var(S)
, S < 0

(5)

The test statistic Z is used to measure the significance of the
trends. In the modified Mann-Kendall approach, a modified
variance of S is computed as follows (Hamed and Rao, 1998)

Var
(
S∗
)
= Var(S)

n

n∗
(6)

where n∗ is the effective sample size. The n
n∗

ratio can be
calculated as follows (Hamed and Rao, 1998)

n

n∗
= 1+

2
n(n− 1)(n− 2)

n∑
i=1

(n− i)

(n− i− 1)(n− i− 2)ri (7)

where ri denotes the lag-i significant autocorrelation coeffi-
cient of rank i in a time series. Then the standardized statistic
of the S statistic, denoted as Z, can be derived as

ZMMK =


S−1
√

Var(S∗)
, S > 0

0, S = 0
S+1
√

Var(S∗)
, S < 0

(8)

If the calculated Z values (ZMK and ZMMK) exceed the crit-
ical values of −Z1−α/2 or fall below Z1−α/2, there is no dis-
cernible trend in the time series at the significance level of
α. If the Z value is positive and exceeds Z1−α/2, the trend is
upward; conversely, if the Z value is negative and falls below
−Z1−α/2, the trend is downward.

2.3 Innovative Trend Analysis

The Innovative Trend Analysis (ITA) method, initially in-
troduced by Şen (2012), has been widely employed for de-
tecting patterns in precipitation time series. Since its de-
but, the ITA technique has experienced substantial improve-
ments in both mathematical and graphical aspects, as evi-
denced by Şen (2017) and Alashan (2018). The ITA method
does not depend on assumptions of serial autocorrelation,
normalcy, or record length, making it appropriate for both
graphical and statistical trend analysis (Zena et al., 2022).
Initially, the time series is bifurcated into two equal seg-
ments and organised in ascending order. The initial seg-
ment of the time series (xi : i = 1,2, . . .,n/2) is positioned
along the horizontal x-axis, while the subsequent segment
(xj : j = n/2+ 1, n/2+ 2, . . .,n) is situated along the ver-
tical y-axis in the Cartesian coordinate system (Ashraf et
al., 2023). The ITA approach visually represents trend anal-
ysis, specifically indicating monotonic growing, declining,
and trendless circumstances (Öztopal and Şen, 2017; Lik-
inaw et al., 2023). A monotonically growing or declining
trend can be identified when the majority of points are sit-
uated above or below the 45° (1 : 1 line), respectively. A
trendless condition arises when the data points are clustered
along the 45° line (Şen, 2012). We employ the magnitude of
the slope parameter to convey information about monotonic-
ity. The slope parameter of the ITA technique is a stochastic
property dependent on the sample means of the first half (n1)
and the second half (n2) of the time-series mean data values.
According to Şen (2017), the straight-line trend slope (SITA)
can be estimated using the following expression:

SITA =
2x
(
xj − xi

)
n

(9)

where n represents the total number of observations, xi and
xj are the arithmetic means of the first and second halves of
the sub-series, respectively. Given that xi and xj are stochas-
tic variables, the expected value of the slope can be deter-
mined by analysing the expectancies of both the first and
second halves of the time series (Alashan, 2020; Harka et
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Figure 3. Structure diagram of LSTM model.

al., 2021):

E(SITA)=
2
n

[
E
(
xj
)
−E(xi)

]
(10)

For the no trend condition, E
(
xj
)
= E(xi), the E(SITA)=

0 and standard deviation (SD) of the two half time-series(
σxj = σxi = σ/

√
n
)
, σ is the SD is of the parent series. If

E
(
xj
)
6= E(xi), the differences between E

(
xj
)

and E(xi)
gives the variance

σ 2
SITA
=

8
n2

[
E
(
xj
)
−E

(
xjxi

)]
(11)

and the SD of the slope

σSITA =
2
√

2
n
√
n
σ
√

1− ρxj xi (12)

In the stochastic processes, the term ρxj xi is the correlation
coefficient between the two mean values, and can be esti-
mated as

ρxj xi =
E
(
xjxi

)
−E

(
xj
)
E(xi)

σxj σxi
(13)

In the end, the upper and lower confidence limit (CL) of the
trend slope was calculated (Şen, 2017):

CL(1−α) = 0±
(
Z1−α/2

)
σSITA (14)

Z1−α/2 denotes the crucial slope for standardised time-series
at ±1.96 for a 95 % significance level or ±1.645 for a 90 %
significance level (Alashan, 2020). If the ITA slope value is
beyond the lower and upper confidence limits, the null hy-
pothesis of no significant trend should be rejected at the α
significance level (Şen, 2017). In a two-tailed scenario, the
null hypothesis (H0) posits the absence of a trend in time-
series data, while the alternative hypothesis (H1) asserts the
presence of a trend in time-series data at a significance level
of α. If the slope,±SITA >±CL(1−α), then (H0) is discarded
in favour of (H1). The positive and negative values of SITA
signify an upward and downward trend in the time-series
data, respectively (Şen, 2017).

2.4 The SPI Calculation

For the purpose of analysing the severity of drought, which
is caused by a lack of water supply as a result of reduced
precipitation in response to rising demand, the SPI was cre-
ated by McKee et al. (1993) and is based on probability (Zuo
et al., 2021). Based on the cumulative likelihood of a spe-
cific amount of precipitation, the SPI indicator is calculated
by fitting the precipitation throughout the same period with
a certain distribution function. At its largest point, the SPI
index represents the quantile of a normal distribution. Each
time axis has an estimated drought index for 6, 9, and 12
months. This is based on the gamma probability density func-
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tion, which accounts for the periodic distribution of precipi-
tation for the corresponding data point. The expression of the
density function for this distribution is as follows.

g (x)=
1

βα0(α)
xα−1e

−
x
β (15)

where α is the shape parameter, β is the scale parameter and
x is the precipitation amount, and 0(α)=

∫
∞

0 yα−1e−ydy is
gamma function. The maximum likelihood estimates of the
parameters α and β are:

α =
1

4A

(
1+

√
1+

4A
3

)
(16)

β =
x

n
(17)

where A= ln(x)−
∑

ln(x)
n

, x is the precipitation average and
n is the sample size. The following equation applies the ac-
quired parameters to the cumulative probability distribution:

G(x)=

x∫
0

g (x)dx =
1

βα0(α)

x∫
0

xα−1e
−
x
β dx (18)

G(x) represents the likelihood that the precipitation will be
equal to or less than x. The distribution function for pre-
cipitation needs to be adjusted because the real precipitation
samples can contain a value of 0. Based on this, we can cal-
culate the cumulative probability as:

H (x)= q + (1− q)G(x) (19)

where q denotes the probability when precipitation equals
zero. The probability of no rainfall, q, can be articulated as
q =m/r , where m represents the number of days without
rainfall and r denotes the number of days with rainfall (Song
and Park, 2021). Consequently,H(x) is converted to the con-
ventional random variable Z of the standard normal distribu-
tion, characterised by a mean of 0 and a variance of 1, result-
ing in:

SPI= Z =

 −
(
k−

c0+c1k+c2k
2

1+d1k+d2k2+d3k3

)
, 0<H(x)≤ 0.5

+

(
k−

c0+c1k+c2k
2

1+d1k+d2k2+d3k3

)
, 0<H(x)≤ 1.0

(20)

k =



√
ln
((

1
H(x)

)2
)
, 0<H (x) < 0.5√

ln
((

1
1−H(x)

)2
)
, 0<H (x),< 1.0

(21)

where c0 = 2,515517, c1 = 0.802853, c2 = 0,010328, d1 =

1,432788, d2 = 0,189269, d3 = 0,001308 are constants.
Furthermore, the SPI indicator is a standardised normalised
index, establishing a correlational relationship with likeli-
hood. Table 1 presents the probability associated with each
category of drought.

Table 1. Drought classification using SPI values and corresponding
event probability (Lloyd-Hughes and Saunders, 2002).

SPI Values Drought Category Probability (%)

2.00≤ SPI Extremely wet 2.3
1.50≤ SPI≤ 1.99 Severely wet 4.4
1.00≤ SPI≤ 1.49 Moderately wet 9.2
0.00≤ SPI≤ 0.99 Mildly wet 34.1
−0.99≤ SPI≤ 0.00 Mild dry 34.1
−1.49≤ SPI≤−1.00 Moderate dry 9.2
−1.99≤ SPI≤−1.50 Severe dry 4.4
SPI≤−2.00 Extreme dry 2.3

2.5 The Savitzky-Golay Filter

The Savitzky-Golay (SG) smoothing technique is a widely
used method for noise filtration. Savitzky and Golay (1964)
introduced the SG filter as an effective technique for sig-
nal smoothing. The SG technique attenuates noise utilising
two parameters: polynomial order and window size. By flex-
ibly adjusting these two parameters, the SG filter can achieve
exceptional performance in various pre-processing circum-
stances. The essence of this procedure involves fitting a low-
degree polynomial to the samples within a sliding window
using the least squares method, resulting in a new smoothed
value for the central point derived by convolution. The SG
filter is a specific variant of a low-pass filter that substitutes
each value in the time series with a new value derived from
a polynomial fit to 2m+ 1 surrounding points, including the
point to be smoothed, where m is equal to or larger than the
polynomial’s order. The polynomial is articulated as follows:

p(n)=

N∑
k=0

akn
k (22)

where N is the power of the polynomial and N ≤ 2M + 1.
The following equation is used to determine the error be-
tween the estimated and original values; in order to find the
desired polynomial result, this error must be minimised.

εN =

M∑
n=−M

(p (n)− x[n])2 (23)

The following form of discrete convolution can be used to
express the filter’s output:

y [n]=
M∑

m=−M

h [m] x[n−m] =
n+M∑

m=n−M

h [n−m] x[m] (24)

This work employs the SG filter for two primary reasons:
firstly, it enhances system performance by preserving the
width and height of waveform peaks in noisy SPI, and sec-
ondly, it modifies the SPI while maintaining its fundamental
qualities.
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Figure 4. Predictive flowchart of the ARIMA-LSTM hybrid model.

Figure 5. Procedure of proposed SG-CEEMDAN-ARIMA-LSTM hybrid model.
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2.6 The Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise

The model’s ability to fit functions and converge will be con-
strained by the complexity and volatility of the original time
sequence, which in turn limits the model’s predictive power.
To overcome this challenge, the complete ensemble empir-
ical mode decomposition (CEEMDAN) technique is em-
ployed to preprocess the original nonstationary and nonlin-
ear time series. Both empirical mode decomposition (EMD)
and ensemble empirical mode decomposition (EEMD), have
been enhanced by the CEEMDAN. The computational effi-
ciency is improved, and the reconstructed sequences of both
the EMD and EEMD algorithms are free of modal confu-
sion and noise residuals (Zhang et al., 2023). A residual term
and a sequence of intrinsic mode functions (IMFs) are the
building blocks of a complicated time series signal that the
CEEMDAN breaks down.

Step 1: Incorporate a constrained quantity of adaptive
white noise into the original sequence x(t)δ0ω

i(t)(t =

1,2,3, . . .,N)

xi(t)= x (t)+ δ0ω
i(t) (25)

where N denotes the number of trials, δ0 signifies a coeffi-
cient of intensity, and ωi (t) indicates the ith realisation of a
stochastic Gaussian process.

Step 2: The residual r1(t) and the first modal component
IMF1 are obtained by decomposing each Eq. (1) using EMD.

IMF1 (t)=
1
N

N∑
i=1

EMD1

(
xi(t)

)
(26)

r1(t)= x(t)− IMF1 (t) (27)

In this context, EMD1(.) denotes the initial IMF component
produced by the EMD algorithm, while r1(t) signifies the
residual associated with the first stage.

Step 3: Add white noise δ1EMD1(ω
i (t)) to the residual

r1(t) and further decomposed by EMD to obtain the second
modal component IMF2 and residual r2(t).

IMF2 (t)=
1
N

N∑
i=1

EMD1

(
r1 (t)+ δ1EMD1(ω

i (t))
)

(28)

r2(t)= r1 (t)− IMF2 (t) (29)

For the j = 3,4, . . .,N , the j th IMF component and the j th
residual can be computed as:

IMFj (t)=
1
N

N∑
i=1

EMD1

(
rj−1 (t)+ δj−1EMDj−1(ω

i (t))
)

(30)

rj (t)= rj−1 (t)− IMFj (t) (31)

where EMDj−1(.) denotes the (j−1)th intrinsic mode func-
tion component derived from the empirical mode decompo-
sition technique, and rj (t) represents the residual following
the jth decomposition.

Step 3: Continue executing step 3 until the residual rj (t)
meets a predetermined termination criterion.

The time series x(t) can ultimately be articulated as

x (t)=

N∑
i=1

IMFN (t)+ rN (t) (32)

2.7 The Autoregressive Integrated Moving Average
Model

The Autoregressive Integrated Moving Average (ARIMA)
model, pioneered by Box and Jenkins in the 1970s, serves
as a robust and effective forecasting approach for time se-
ries analysis (Box et al., 2015). The ARIMA model, often
known as the Box-Jenkins approach, is depicted through the
concepts presented by Sibiya et al. (2024) in Fig. 2. The
ARIMA models predict future values of the time series as
a linear combination of historical and residual data. This
model comprises three components: the order of seasonal
differentiation, autoregressive order, and moving average or-
der (Montgomery et al., 2015). The backward shift opera-
tor B is employed to eliminate nonstationarity. A time se-
ries, yt , is called homogeneous nonstationary if it first order
difference, ωy = (1−B)yt = yt −yt−1 or the dth difference
ωt = (1−B)dyt is also stationary time series. Furthermore,
yt is referred to as an ARIMA model with orders pd and q,
noted ARIMA(pdq). Hence, an ARIMA(pdq) is often ex-
pressed as

φ (B)(1−B)dyt = c+ θ(B)εt (33)

φ (B)= 1−
p∑
i=1

φiB
i and θ (B)= 1−

q∑
i=1

θiB
i (34)

The backward shift operators for AR(p) and MA(q) are
defined as φ (B)yt = c+ εt and yt = µ+ θ(B)εt with c =
µ−φµ, where µ and εt are the mean and white noise, re-
spectively and the εt is independent and normal distributed
with mean and variance of σ 2

ε .

2.8 The Long Short-Term Memory

Long short-term memory (LSTM) algorithms represent a
category of recurrent neural network (RNN) designs that
are proficient in handling sequential input and identifying
temporal relationships (Hochreiter and Schmidhuber, 1997).
LSTM networks incorporate specific memory cells and gates
for the efficient management and regulation of information
flow over various time steps. Consequently, they can effec-
tively represent the data input while maintaining essential de-
pendencies and patterns. The LSTM methodology addresses
the problem of vanishing gradients encountered by RNN al-
gorithms. This occurs when the gradient diminishes to a level
insufficient for effectively updating the weights throughout
prolonged sequences. The LSTM facilitates the flow of gra-
dients across time by employing memory cells and gates. The
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Figure 6. Time series plots of daily and monthly total rainfall data for uMkhanyakude district from early 1980’s to 2023. The (left) plot
shows the daily rainfall data in millimeters (mm), illustrating the high variability and intermittent nature of daily rainfall events over the
years. The (right) plot presents the monthly total rainfall data (mm), which smooths out the daily variability and reveals clearer patterns of
rainfall distribution over time.
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Figure 7. Standardized Precipitation Index (SPI) time series plots for uMkhanyakude district over 6-month (SPI-6), 9-month (SPI-9), and
12-month (SPI-12) periods from early 1980’s to 2023. Positive SPI values (blue bars) indicate wetter-than-normal conditions, while negative
SPI values (red bars) indicate drier-than-normal conditions.
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model’s foundational design primarily consists of three con-
trol gates: input, forget, and output. The activation function
is represented by σ , whereas the cell states at time t − 1 and
t are designated as Ct−1 and Ct respectively. At time t and
time t − 1, the cell possesses two concealed states, ht and
ht−1. Figure 3 illustrates the building of the LSTM unit, and
the mathematical Eqs. (35) to (40) for the LSTM method are
provided below. Initially, by employing the model’s forget
gate, we may determine the current hidden state ht−1 and the
degree to which the input xt has been preserved. The formula
is

ft = σ
(
Wf xt +Uf ht−1+ bf

)
(35)

Secondly, the input gate allows us to ascertain the volume of
content from the input variable that can be retained in the cell
state Ct

it = σ (Wixt +Uiht−1+ bi) (36)

C̃t = σc (Wcxt +Uiht−1+ bi) (37)

Ct = ft �Ct−1+ ii � C̃t (38)

The output gate of the LSTM produces outputs, and the hid-
den state of each cell is represented by the formula:

ot = σ (Woxt +Uoht−1+ bo) (39)
ht =Ot � σh (Ct ) (40)

In the aforementioned formulas, Wf , Wi , and Wo represent
the weight matrices associated with the various control gates.
The terms bf , bi , and bo correspond to the bias terms for each
respective control gate. The notation C̃t signifies the com-
plete input activation vector, while the operator� (Hadamard
product) indicates the element-wise multiplication of the ele-
ments between two vectors. The σ activation function quan-
tifies the amount of information that is transmitted through
the various control gates.

2.9 The ARIMA-LSTM hybrid Model

Achieving accurate estimates of SPI index values through a
forecasting model is essential for informed decision-making.
Zhang (2003) offers a hybrid model wherein the ARIMA
model extracts and predicts linear components, while the
residuals, representing nonlinear data subcomponents, are
then modelled by the LSTM approach. This study employs
a hybrid model that integrates ARIMA and LSTM to predict
both linear and nonlinear behaviours with optimal accuracy.

Ht = Lt +ℵt (41)

where Lt and ℵt denote the linear and nonlinear compo-
nents, respectively, for the hybrid technique which are com-
puted using the initial time series (yt ). Consider the original
dataset at time t and the forecast results obtained from ap-
plying the ARIMA model as L̂t the prediction results. Thus,

Et = yt−L̂t is the definition of the residualEt that is derived
by removing L̂t from yt . Subsequently we compute the value
ℵ̂t by feeding the series of residuals into the LSTM model,
which predicts the nonlinear component of the values. This
equation may be written as

ℵ̂t = fLSTM (Et−1, Et−2, . . ., Et−n)+ εt , (42)

where ℵ̂t is a nonlinear expression associated with the LSTM
model and εt is the random error. The combined forecasts
from the two steps were then used to determine the value for
the ARIMA-LSTM hybrid model. As illustrated in Fig. 4, the
equation Ĥt = L̂t +ℵ̂t predicts the linearity and nonlinearity
values, respectively, using ARIMA and LSTM models.

2.10 The development of the proposed
SG-CEEMDAN-ARIMA-LSTM hybrid model

Due to the great uncertainty of the drought data and the exis-
tence of complexity, nonlinearity, and nonstationary trends,
the single prediction model is greatly limited; however,
the hybrid method has better prediction accuracy. The SG-
CEEMDAN-ARIMA-LSTM algorithm that combines differ-
ent techniques for improved accuracy in predicting drought
based on the standardised precipitation index is proposed this
study. This hybrid model is designed as a sequential frame-
work where each step refines the data for subsequent mod-
elling. The SG-CEEMDAN pre-processing stage enhances
the data by smoothing and decomposing it into the mean-
ingful components. The benefits of integrating the Savitzky–
Golay smoothing filter with CEEMDAN significantly con-
tribute to the enhancement of forecasting accuracy by im-
proving the quality and interpretability of the input time se-
ries prior to modeling. The Savitzky–Golay filter acts as a
noise suppression mechanism that preserves essential fea-
tures of the time series, while eliminating high-frequency
noise. This step ensures that the input to the CEEMDAN de-
composition process is already denoised, leading to more sta-
ble and physically meaningful decomposed components. The
CEEMDAN generates IMFs that are cleaner, more distinct,
and less affected by spurious fluctuations. This results in
better mode separation, reduces signal leakage across IMFs,
and enhances the stationarity and regularity of each compo-
nent. This hybrid preprocessing pipeline can enhances model
generalization, reduces overfitting, and ultimately leads to
more reliable and accurate forecasts. The components fed
to the ARIMA-LSTM model that involves two-step process:
the ARIMA for initial prediction utilising the Box-Jekins
methodology and the LSTM model for refining and enhanc-
ing predictions. The hybrid model combines the ARIMA and
the LSTM predictions to form the final hybrid forecasts. Fig-
ure 5 illustrates the proposed hybrid model algorithm. The
process of SPI prediction based on ARIMA-LSTM com-
bined with SG and CEEMDAN as is shown in Fig. 5. The
process of the data smoothing, decomposition and prediction
include four main steps.
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Figure 8. Results of Innovative trend analysis applied to different time scales values (SPI-6 (left), SPI-9 (middle), SPI-12 (right)). The
blue shaded area represents the 95 % confidence level area. The red and blue vertical lines represent the severe drought and severely wet,
respectively.
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Table 2. Statistical summary of trend analysis for SPI-6, SPI-9, and SPI-12 using Mann-Kendall (MK) and Modified Mann-Kendall (MMK)
tests.

False Bay Park

Variables SPI-6 SPI-9 SPI-12

ZMK −10.89 −12.89 −13.82
p-valueMk < 0.00 < 0.00 < 0.00
Decision (TrendMK) Decreasing Decreasing Decreasing
ZMMK −6.27 −6.28 −6.29
p-valueMMk 3.66× 10−10 3.35× 10−10 3.13× 10−10

Decision (TrendMK) Decreasing Decreasing Decreasing

Hlabisa Mbazwana

ZMK −2.89 −3.88 −5.31
p-valueMk 3.77× 10−3 3.05× 10−4 1.10× 10−7

Decision (TrendMK) Decreasing Decreasing Decreasing
ZMMK −2.26 −2.12 −2.20
p-valueMMk 2.39× 10−2 3.36× 10−2 2.78× 10−2

Decision (TrendMK) Decreasing Decreasing Decreasing

Pongolapoort Dam

ZMK −7.19 −8.74 −9.83
p-valueMk 6.12× 10−13 < 0.00 < 0.00
Decision (TrendMK) Decreasing Decreasing Decreasing
ZMMK −8.22 −5.44 −6.51
p-valueMMk 2.22× 10−16 5.40× 10−8 7.41× 10−11

Decision (TrendMK) Decreasing Decreasing Decreasing

Mkuze Game Reserve

ZMK −3.66 −5.54 −6.67
p-valueMk 2.48× 10−4 2.99× 10−8 2.55× 10−11

Decision (TrendMK) Decreasing Decreasing Decreasing
ZMMK −2.44 −2.79 −2.22
p-valueMMk 1.46× 10−2 5.13× 10−3 2.64× 10−2

Decision (TrendMK) Decreasing Decreasing Decreasing

Ingwavuma Manguzi

ZMK −2.38 −3.72 −4.92
p-valueMk 1.72× 10−2 1.98× 10−4 8.72× 10−7

Decision (TrendMK) Decreasing Decreasing Decreasing
ZMMK −1.61 −2.48 −2.27
p-valueMMk 1.08× 10−1 1.31× 10−2 2.29× 10−2

Decision (TrendMK) Decreasing Decreasing Decreasing

Riverview

ZMK 2.85 3.84 4.59
p-valueMk 4.34× 10−3 1.25× 10−4 4.25× 10−6

Decision (TrendMK) Increasing Increasing Increasing
ZMMK 1.94 2.16 2.29
p-valueMMk 5.12× 10−2 3.07× 10−2 2.19× 10−2

Decision (TrendMK) Increasing Increasing Increasing

Step 1: Data Preprocessing Phase: To enhance the quality
of the data and prepare it for decomposition, the original SPI
time series undergo a data preprocessing phase:

– Savitzky–Golay Filter: This filter is applied to smooth
the SPI data and preserves the essential shape and
trends of the original time series while minimizing high-
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Table 3. The results of the trend analysis for SPI-6, SPI-9, and SPI-12 obtained through a two-tailed test at a significance level of 5 % using
ITA technique.

False Bay Park

Variables SPI-6 SPI-9 SPI-12

Slope −3.51× 10−3
−1.14× 10−3

−4.49× 10−3

Indicator −20.08 −20.12 −20.07
±CI at 95 % ±9.24× 10−5

±7.52× 10−5
±6.82× 10−5

Hlabisa Mbazwana

Slope −1.68× 10−3
−2.31× 10−3

−1.86× 10−3

Indicator −20.52 −20.72 −20.64
±CI at 95 % ±6.81× 10−5

±9.35× 10−5
±7.15× 10−5

Pongolapoort Dam

Slope 2.26× 10−3
−2.88× 10−3

−3.34× 10−3

Indicator −19.27 −19.40 −19.55
±CI at 95 % ±2.22× 10−5

±3.62× 10−5
±6.72× 10−5

Mkuze Game Reserve

Slope −2.00× 10−3
−3.04× 10−3

−3.80× 10−3

Indicator −20.09 −20.22 −20.25
±CI at 95 % ±2.81× 10−3

±4.67× 10−3
±4.40× 10−3

Ingwavuma Manguzi

Slope −1.61× 10−3
−2.26× 10−3

−2.88× 10−3

Indicator −21.96 −21.05 −20.77
±CI at 95 % ±6.81× 10−5 1.01±×10−5

±1.19× 10−5

Riverview

Slope 1.69× 10−3 2.19× 10−3 2.37× 10−3

Indicator 22.54 22.22 21.86
±CI at 95 % ±1.54× 10−5

±1.35× 10−5
±1.56× 10−5

frequency noise. This step ensures that important sig-
nal patterns are retained during further processing. The
smoothed signal becomes the input signal for decompo-
sition technique.

– CEEMDAN Parameter Settings: CEEMDAN is used to
break the smoothed signal into several IMFs and a resid-
ual component. Before decomposition, the necessary
parameters for CEEMDAN are configured. These pa-
rameters control the number of realizations, noise am-
plitude, and stopping criteria for decomposition.

Step 2: Model Development Phase: Each IMF, includ-
ing the residual, is independently modelled using a hy-
brid ARIMA–LSTM approach. This process involves several
steps:

a. Data Partitioning

– The data for each IMF is split into: Training set
(80 %) and Testing set (20 %). This split ensures

that model learning and evaluation are based on
separate subsets to avoid overfitting.

b. Normalization

– Prior to model training, the data is normalized using
Min-Max normalization to ensure that input fea-
tures fall within a similar scale, which improves
training stability and convergence speed.

c. Modelling Each IMF with ARIMA–LSTM

– The two models are integrated so that both lin-
ear (ARIMA) and nonlinear (LSTM) dependen-
cies within each IMF are effectively captured. The
modelling process follows the algorithm shown in
Fig. 4.

d. Feature Selection and Hyperparameter Tuning

– The performance of ARIMA and LSTM mod-
els heavily depends on the feature selection and
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Figure 9. SPI signals smoothed by Savitzky-Golay (SG).

hyperparameters. The auto_arima( ) function and
Bayesian Optimization were used to automate and
optimize the search for best-performing hyperpa-
rameters for the ARIMA-LSTM model by evaluat-
ing model performance over a probabilistic space.

e. Model Training

– Each IMF is trained individually using the selected
features and optimized hyperparameters, resulting
in a trained model for each component.

Step 3: Forecast Reconstruction Phase

– After training, each IMF is forecasted individually. The
final forecasted SPI value is obtained by summing the
predictions of all individual IMFs, including the resid-
ual component:

SP̂I(t)=
n∑
i=1

IM̂Fi (t)+Rest

This additive reconstruction ensures that the original
structure and dynamics of the SPI series are preserved
in the forecast, improving overall accuracy.

Step 4: Model Evaluation Phase
The reconstructed SPI prediction is then evaluated using

multiple performance metrics: RMSE, DS, and coefficient of
determination. The Taylor diagram is also utilised to evalu-
ate the model performance. These metrics help quantify the
predictive accuracy and reliability of the hybrid framework.

2.11 Performance Evaluation

To establish the predictive superiority of the SG-
CEEMDAN-ARIMA-LSTM model, a comparison was
conducted against other models, including ARIMA, LSTM,
ARIMA-LSTM, SG-ARIMA-LSTM, and CEEMDAN-
ARIMA-LSTM models. The performance of the proposed
hybrid-based model is evaluated using three indicators
namely, root mean square error (RMSE), coefficient of
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Figure 10. Decomposition of Smoothed SPI-6, SPI-9 and SPI-12 Index Using CEEMDAN: Each IMF represents different frequency com-
ponents of the SPI index, from high-frequency oscillations (IMF1) to low-frequency trends (IMF5), showing the variability in precipitation
patterns over the years from 1980 to 2023.

determination (R2) and directional symmetry (DS). The
high value of R2 and DS reflects the better performance of
the forecasting model while the lower the value of RMSE
illustrates better forecasting performance.

RMSE=

√√√√1
n

n∑
i=1

(
yi − ŷavg

)2 (43)

R2
=

[
n∑
i=1

(
yi − yavg

)(
ŷi − ŷavg

)]2

n∑
i=1

(
yi − yavg

)2 n∑
i=1

(
ŷi − ŷavg

)2 (44)

DS=
100
n− 1

n∑
i=2

di (45)

where

di =

{
1, (yi − yi−1)

(
ŷi − ŷi−1

)
> 0

0, otherwise (46)

n is number of data points, yi and ŷi observed and fore-
casted, respectively. yavg and ŷavg an average of the actual
and forecasted values, respectively. Furthermore, this study
conducts a qualitative evaluation of the prediction model’s
performance using a Taylor diagram (Taylor, 2001). The Tay-
lor diagram offers a statistical evaluation of the degree of
agreement between the models in terms of their SD, RMSE,
and R2, while providing a concise summary of the cor-
respondence between predicted and observed values. The
differences in DS, RMSE, and R2 values among the pre-
diction models are depicted as individual points on a two-
dimensional plot within the Taylor diagram. This diagram,
though it follows a common structure, proves especially
valuable when evaluating intricate models.
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Table 4. ADF Test Results for SPI Values (SPI-6, SPI-9, SPI-12) at
Different Stations.

Station Name SPI ADF p-value Critical
Statistic Value (5 %)

False Bay Park SPI-6 −2.1926 0.2089 −2.8925
SPI-9 −3.2142 0.0192 −2.8915
SPI-12 −1.4829 0.5419 −2.8949

Hlabisa SPI-6 −1.9314 0.3175 −2.8925
Mbazwana SPI-9 −1.5629 0.5022 −2.8939

SPI-12 −1.1867 0.6793 −2.8946

Pongolapoort SPI-6 −2.8759 0.0482 −2.8925
Dam SPI-9 −2.7909 0.0596 −2.8909

SPI-12 −2.1864 0.2112 −2.8909

Mkuze Game SPI-6 −3.1136 0.0256 −2.8949
Reserve SPI-9 −1.6134 0.4762 −2.8939

SPI-12 −2.5689 0.0996 −2.8949

Ingwavuma SPI-6 −2.1418 0.2281 −2.8994
Manguzi SPI-9 −3.6158 0.0055 −2.9026

SPI-12 −1.9049 0.3298 −2.9026

Riverview SPI-6 −1.7509 0.4051 −2.9051
SPI-9 −1.1840 0.6804 −2.9079
SPI-12 −2.0298 0.2737 −2.9015

3 Results and Discussion

3.1 Rainfall Data Series

Figure 6 illustrates the daily and monthly cumulative precip-
itation data recorded at the uMkhanyakude district meteo-
rological stations in KwaZulu-Natal province, South Africa,
from the early 1980s to 2023. The data comprising 20 %
was employed for prediction, whereas the data represent-
ing 80 % was applied for training. The SPI was computed
utilising rainfall data from meteorological stations in the
uMkhanyakude district, which provide sufficiently extensive
records and a consistent structure (Hırca et al., 2022).

3.2 SPI Time Series and Trend Analysis

This study SPI values for the 6-, 9-, and 12-month intervals
were computed using the monthly mean time series shown
in Fig. 6. Figure 7 illustrates the time series of the SPI cal-
culated for the 6-month (SPI-6), 9-month (SPI-9), and 12-
month (SPI-12) intervals. All SPIs (SPI-6, SPI-9, and SPI-
12) demonstrate numerous occurrences of moderate to severe
droughts in the studied area. A significant drought episode
was reported from late 2004 to 2009. Moreover, SPI-12 ex-
hibits a persistent drought spell that commenced between
2014 and 2016, resulting in a decline in water supply condi-
tions in the region (Bukhosini and Moyo, 2023). The statis-
tics across all timelines indicate a troubling trend of extended
and intense drought conditions in recent years. This under-

scores the pressing necessity for efficient water management
and drought readiness in the area. Initially, we assess the
trend throughout the research area employing nonparametric
techniques. The ensuing conclusions will be obtained via ad-
vanced trend analysis methods employed to investigate SPI
trends.

Figure 8 illustrates the regional outcomes of the ITA
methodology used on the 6-, 9-, and 12-month SPI series to
ascertain the potential meteorological drought trend in the
uMkhanyakude district. Figure 8 includes two vertical bands
to elucidate the potential trends of arid and humid conditions:
a red band indicating the drought threshold (SPI=−1.5) and
a blue band denoting the wet threshold (SPI= 1.5). The zone
between the two bands signifies normal conditions, hence fa-
cilitating the depiction of both low and high SPI trends using
the ITA methodology. Each plot compares the first and sec-
ond halves of the data series to identify trends.

In general, both Fig. 8 and Table 3 show that all stations,
except Riverview, indicate a downward trend for all time
scales, in terms of the ITA. For example, the ITA results ob-
tained using 6-month SPI values exhibit a slightly decreasing
trend in precipitation, moving toward the upper right quad-
rant, indicating the detection of drier conditions over the
6-month timescale. Some points approach the severely wet
threshold but do not cross it, indicating that there were no
extreme wet periods, though some drier periods are evident
near the severe dry line. The ITA results obtained using 9-
month SPI values show a more pronounced decreasing trend,
indicating a relatively weaker increase in wet conditions over
a 9-month timescale. Several points approach the severe dry
threshold, but the data remains mostly within the 95 % con-
fidence bounds, indicating moderate variability in precipita-
tion trends. On the other hand, the SPI-12 plot demonstrates
a noticeable decreasing trend toward dryness, as many points
fall below the no-trend line and approach the severe dry re-
gion. Riverview indicates the increasing trend across all time
scales. The increasing distance between the black dots and
the no-trend line highlights a shift toward drier conditions
in the second half of the series. In general, the analysis sug-
gests a gradual increase in precipitation for shorter periods
(SPI-6), moderate upward trends for medium-term periods
(SPI-9), and a more substantial shift toward dry conditions
over longer periods (SPI-12) for Riverview. The variability
is evident, but a clear progression toward drier conditions
is evident, particularly in the SPI-12 plot. This observation
could be indicative of changing precipitation patterns, which
is crucial for understanding drought risk and informing water
resource management strategies.

Table 2 presents the results of the Mann-Kendall (MK)
and Modified Mann-Kendall (MMK) trend tests for the Stan-
dardized Precipitation Index (SPI) over 6-month (SPI-6),
9-month (SPI-9), and 12-month (SPI-12) periods. The re-
sults indicate that across five stations all time scales both
MK and MMK methods showed significant decreasing trend
with negative Z-score values. For example, False Bay Park,
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Figure 11. The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots at different
timescales (Right) for SPI-6, SPI-9, and SPI-12 of Riverview meteorological station.

Z_MK are ZSPI-6 =−10.89, ZSPI-9 =−12.89, ZSPI-12 =

−13.82 and Z_MMK are ZSPI-6 =−6.27, ZSPI-9 =−6.28,
ZSPI-12 =−6.29. The p-values of MK and MMK show the
significance of the trends, with values way below 0.05 con-
firming statistically significant trends. In all cases except
Riverview, the p-values are extremely low (� 0.05), indicat-
ing strong evidence of significant decreasing trends in precip-
itation for all SPI periods. Both the MK and MMK tests con-
firm decreasing trends across all time scales, with the Z_MK
and Z_MMK values becoming more negative as the SPI
period increases, reflecting an intensifying downward trend
over longer periods (from SPI-6 to SPI-12). For Riverview
station, the results indicate an increasing trend with positive
Z-score values, i.e. Z_MK are ZSPI-6 = 2.85, ZSPI-9 = 3.84,
ZSPI-12 = 4.59 and Z_MMK are ZSPI-6 = 1.19, ZSPI-9 =

2.16, ZSPI-12 = 2.29. In general, all these results are con-
sistent with those shown using the ITA (see Table 3). The
Riverview station experience increasing trend because it is
located closer to the coast, hence it is influenced by a com-
bination of geographic, oceanic and climatic factors. For an
example, this station could be influenced by the Agulhas Cur-
rent, which flows southwards along the east coast of South
Africa, bringing warm, moist air from the Indian Ocean, and

thus enhancing evaporation that brings constant availability
of moisture in the atmosphere.

3.3 SPI Time Series Forecasting Results

The study proposes a hybrid model that applies the Savitzky-
Golay (SG) filter to process raw SPI data, thereby reducing
noise and enhancing forecasting analysis. To demonstrate the
effectiveness of the SG filter, appropriate parameters such
as window size and polynomial order were selected through
trial and error using data from the study sites (Sibiya et al.,
2024). A window size of 21 and a polynomial order of 5 were
chosen for smoothing. Figure 9 shows how the SG filter ef-
fectively tracks the general trend while preserving the shape
of peaks and minimizing noise. This filter was applied to dif-
ferent time scales of the SPI time series. It autonomously
calibrates according to peak distribution, exhibiting optimal
performance, particularly with asymmetric peaks, while pre-
serving peak height integrity. The application of the SG filter
effectively mitigates short-term fluctuations and eliminates
noise from the time series, resulting in cleaner data, thereby
enhancing the reliability of the subsequent decomposition
process. By reducing noise, decomposition techniques can
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Figure 12. The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots at different
timescales (Right) for SPI-6, SPI-9, and SPI-12 of Hlabisa Mbazwana meteorological station.

more accurately capture the authentic underlying patterns
and components within the data.

After applying a Savitzky-Golay filter to the series, the
CEEMDAN algorithm decomposes the filtered SPI series
into six subseries with different amplitudes and frequencies.
The results from the False Bay Park station are utilized here
as an illustration to prevent repetition. In these results, the de-
composed set of time series consists of five IMF components
and a residual component, as shown in Fig. 10 (for all time
scales). During the decomposition process, white Gaussian
noise is added to create noisy signals. The original sequence
exhibits high nonlinearity and nonstationarity, with the fre-
quency of the IMF components gradually decreasing. Fig-
ure 10 depicts this gradual decrease in frequency as the order
of the IMF components increases. As each IMF is further de-
composed, it becomes less volatile and cyclical, which aligns
with the characteristics of the decomposed IMF. Therefore,
by predicting each IMF and the residual, the forecast pre-
cision can be enhanced. A forecasting model is then con-
structed for each component, and the prediction results are
obtained by summing up the outputs of all predicted compo-
nents.

In predictive modeling, this study employed Bayesian op-
timization for hyperparameter tuning because of its effective-
ness in improving model performance for complex, black-
box, and non-differentiable functions. The hyperparameter
configuration space comprises an n-dimensional functional
space that encompasses all possible combinations of hyper-
parameters for the specified model. The benchmark analy-
sis began with the ARIMA model, using the Box–Jenkins
methodology. This process started with an assessment of sta-
tionarity through the augmented Dickey–Fuller (ADF) test.
The series showed p-values exceeding the 5 % significance
threshold, indicating non-stationarity (see Table 4). As a re-
sult, differencing was applied to achieve stationarity. This
study employed a stepwise approach using the auto_arima(
) function within the ARIMA framework to identify the op-
timal parameters (see Table 5). Table 6 delineates the hy-
perparameter search space employed for tuning the LSTM
model utilizing a Bayesian optimization approach. Each hy-
perparameter is presented alongside its respective range or
selected value, which delineates the parameters within which
the Bayesian search investigated optimal configurations.

The models in Table 7 were compared for their predic-
tion ability before and after time series decomposition in this
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Figure 13. The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots at different
timescales (Right) for SPI-6, SPI-9, and SPI-12 of Ingwavuma Manguzi meteorological station.

Table 5. Accuracy criteria for different model parameters of the ARIMA model applied in SPI-6, SPI-9 and SPI-12 at different meteorological
stations of uMkhanyakude district.

Station Name SPI-6 SPI-9 SPI-12

Model AIC Model AIC Model AIC

False Bay Park ARIMA(5,0,3) 517.757 ARIMA(3,1,1) 333.328 ARIMA(1,1,0) 183.988
Hlabisa Mbazwana ARIMA(5,1,5) 322.514 ARIMA(3,0,5) 248.815 ARIMA(2,1,2) 152.295
Pongolapoort Dam ARIMA(4,1,3) 438.230 ARIMA(3,1,2) 350.618 ARIMA(1,1,0) 254.076
Mkuze Game Reserve ARIMA(4,1,2) 432.320 ARIMA(3,0,3) 330.540 ARIMA(0,1,1) 164.170
Ingwavuma Manguzi ARIMA(4,0,5) 417.071 ARIMA(3,1,1) 350.196 ARIMA(0,1,1) 153.087
Riverview ARIMA(4,1,5) 435.687 ARIMA(3,1,0) 365.509 ARIMA(2,1,1) 168.812

research. The objective was to determine if smoothing and
decomposing time series improve the model’s prediction per-
formance. Figures 11–16 show a comparison of the various
models’ prediction outcomes using the Taylor diagram. In
general, all the models accurately replicate the original SPI
time series at all timescales (refer to Figs. 11–16) in terms of
the time series plot. However, the SG-CEEMDAN-ARIMA-
LSTM model (shown in red) appears to have the closest
fit to the data, displaying superior accuracy across differ-
ent phases, particularly in extreme values. Nonetheless, the

hybrid models (SG-ARIMA-LSTM, CEEMDAN-ARIMA-
LSTM, and SG-CEEMDAN-ARIMA-LSTM) show better
precision in capturing peaks, rapid transitions and troughs
compared to the standalone LSTM or ARIMA models. Ta-
ble 7 displays an assessment of the predictive performance
metrics of several models utilising RMSE, R2, and DS. As
the period extends, the RMSE values decrease; however, the
DS and cap R-squared values typically enhance (see Ta-
ble 7). This indicates that the models’ predictive accuracy
progressively enhances with an extended duration, reach-
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Table 6. Hyperparameter ranges in LSTM–Bayesian search Method.

Hyperparameters Values Hyperparameters Values

Number of LSTM units (32, 256) Activation function (ReLu, Sigmoid, Tanh,)
Number of LSTM hidden size (32, 256) Optimizer Adam
Batch size (16,128) Loss function Mean Square error
Epoch (50,300) Dropout (0.05, 0.1)
LSTM learning rate (0.0001, 0.001) Regularization Early stopping

Figure 14. The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots at different
timescales (Right) for SPI-6, SPI-9, and SPI-12 of Mkuze Game Reserve meteorological station.

ing its highest point at the 12-month interval. In terms of
RMSE, the SG-CEEMDAN-ARIMA-LSTM model outper-
forms the others, exhibiting the lowest error values across all
indices. For example, Riverview station, 0.2165 for SPI-6,
0.0921 for SPI-9, and 0.0566 for SPI-12. This indicates that
this model has the smallest prediction error, making it the
most accurate in terms of error reduction. Concerning R2,
which measures how well the model explains the variance in
the data, SG-CEEMDAN-ARIMA-LSTM again leads with
the highest values: 0.9602 for SPI-6, 0.9846 for SPI-9, and
0.9939 for SPI-12. This shows that the model provides the
best fit to the data. The CEEMDAN-ARIMA-LSTM model
is the second-best performer, also exhibiting impressive re-

sults, particularly in R2, where it achieves higher values of
0.9483 for SPI-6, 0.9751 for SPI-9, and 0.9933 for SPI-
12. The SG-ARIMA-LSTM model is the third-best hybrid
performer, with RMSE values of 0.2262 for SPI-6, 0.1051
for SPI-9, and 0.05639 for SPI-12. The SG-ARIMA-LSTM
model is the third-best performer, also exhibiting impressive
results, particularly in R2, where it achieves higher values
of 0.9392 for SPI-6, 0.9763 for SPI-9, and 0.9904 for SPI-
12. The SG-ARIMA-LSTM model is the third-best hybrid
performer, with RMSE values of 0.2597 for SPI-6, 0.1157
for SPI-9, and 0.0567 for SPI-12. In general, these results
highlight the efficacy of hybrid models, particularly those
incorporating SG and CEEMDAN processes, in improving
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Figure 15. The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots at different
timescales (Right) for SPI-6, SPI-9, and SPI-12 of Pongolapoort dam meteorological station.

predictive accuracy across multiple timescales of SPI, partic-
ularly for the SG-CEEMDAN-ARIMA-LSTM model. These
results are consistent with the Taylor diagram (see Figs. 11–
16), which indicates a significant improvement in prediction
accuracy after incorporating the SG and CEEMDAN signal
decomposition technique as the hybrid model exhibits supe-
rior performance in terms of prediction accuracy across all
timescales, surpassing other models. This suggests that the
inclusion of these techniques enhances the models’ ability
to capture both short-term and long-term dependencies, thus
making them more robust for drought prediction purposes.
Therefore, this hybrid model appears to be the most effec-
tive for drought prediction in this analysis. These findings
highlight the superiority of the proposed hybrid model in en-
hancing drought prediction accuracy compared to standalone
approaches.

4 Discussion

In this study, we utilized the Mann-Kendall and Modified
Mann-Kendall tests to determine the drought trend index
in meteorological variables within the basin. The MK and
MMK trend methods showed a significant decrease in all SPI

time scales based on rainfall data from five stations; how-
ever, the district, except for the Riverview station, showed an
increasing trend in the uMkhanyakude district. The study’s
findings align with prior research by Kganvago et al. (2021)
and Ngwenya et al. (2024). Ngwenya et al. (2024) conducted
a study using the Mann-Kendall test to assess the SPI values
at a 5 % significance level, revealing sustained drought con-
ditions in the Western Cape region. Kganvago et al. (2021)
indicated a notable decline in drought conditions in the West-
ern Cape area of South Africa. We have also employed the
ITA, which enhances the MK and MMK tests in identifying
trends, and the results underscore the importance of compre-
hending drought conditions. The findings of our analysis val-
idate previous research by Naik and Abiodun (2020), high-
lighting the need to conduct trend studies on drought indica-
tors to investigate the impacts of climate change. The study
highlights the crucial role of SPI as a primary variable in
monitoring and forecasting droughts in the region, and its
potential to mitigate the adverse impacts of droughts and wa-
ter scarcity in the uMkhanyakude district in the future. The
objective was to determine if the model’s predictive perfor-
mance is enhanced by smoothing and deconstructing time
series data.
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Table 7. Performance measures for the comparison of observed and forecasted data of the models for SPI-6, SPI-9 and SPI-12 across various
lead times using statistical criteria.

False Bay Park

Model SPI-6 SPI-9 SPI-12

RMSE R2 DS RMSE R2 DS RMSE R2 DS

ARIMA 0.3504 0.8435 0.8426 0.2431 0.8976 0.8525 0.1689 0.9421 0.8426
LSTM 0.3128 0.9111 0.8327 0.2416 0.9521 0.8723 0.1626 0.9821 0.8519
ARIMA-LSTM 0.2476 0.9194 0.8327 0.1650 0.9531 0.8723 0.0507 0.9952 0.9009
SG-ARIMA-LSTM 0.2056 0.9458 0.8030 0.1348 0.9687 0.8218 0.0571 0.9940 0.9009
C-A-L 0.2182 0.9375 0.8713 0.0978 0.9834 0.8218 0.0496 0.9953 0.8911
SG-C-A-L 0.1835 0.9650 0.8416 0.1631 0.9836 0.8317 0.0349 0.9957 0.8941

Mkuze Game Reserve

ARIMA 0.3752 0.8642 0.8419 0.3475 0.8957 0.8792 0.2202 0.9697 0.8730
LSTM 0.3474 0.9121 0.8822 0.3354 0.9178 0.8030 0.1523 0.9890 0.8733
ARIMA-LSTM 0.3160 0.9273 0.8416 0.1561 0.9823 0.8218 0.1079 0.9926 0.8730
SG-ARIMA-LSTM 0.2307 0.9624 0.8515 0.1548 0.9825 0.8317 0.08252 0.9951 0.8019
C-A-L 0.1969 0.9726 0.8317 0.1430 0.9850 0.8515 0.04497 0.9986 0.9208
SG-C-A-L 0.1818 0.9742 0.8515 0.1232 0.9892 0.8617 0.04217 0.9990 0.9208

Pongolapoort Dam

ARIMA 0.4470 0.8797 0.8624 0.2993 0.9668 0.8119 0.1918 0.9763 0.8733
LSTM 0.4470 0.8962 0.8732 0.2873 0.9467 0.8238 0.1824 0.9851 0.8829
ARIMA-LSTM 0.4121 0.8969 0.8822 0.2599 0.9588 0.8921 0.1638 0.9862 0.8432
SG-ARIMA-LSTM 0.2224 0.9617 0.8019 0.2064 0.9803 0.8515 0.0686 0.9969 0.8119
C-A-L 0.2132 0.9649 0.8822 0.1572 0.9850 0.8218 0.0639 0.9975 0.8019
SG-C-A-L 0.1453 0.9839 0.8824 0.1429 0.9858 0.8911 0.0635 0.9978 0.8921

Hlabisa Mbazwana

ARIMA 0.4704 0.8347 0.8624 0.4234 0.8698 0.8921 0.2321 0.9556 0.8142
LSTM 0.3617 0.9041 0.8327 0.2163 0.9672 0.8119 0.1566 0.9806 0.8317
ARIMA-LSTM 0.3269 0.9369 0.8515 0.2139 0.9677 0.8218 0.1457 0.9813 0.8426
SG-ARIMA-LSTM 0.3011 0.9355 0.8416 0.1829 0.9747 0.8317 0.08540 0.9935 0.8218
C-A-L 0.2497 0.9592 0.8218 0.1662 0.9792 0.8218 0.0825 0.9949 0.9009
SG-C-A-L 0.1921 0.9795 0.8614 0.1332 0.9866 0.8218 0.07416 0.9952 0.9029

Ingwavuma Manguzi

ARIMA 0.4123 0.8716 0.8571 0.2706 0.9442 0.8750 0.2052 0.9784 0.8619
LSTM 0.3843 0.8931 0.8738 0.2524 0.2524 0.8691 0.1614 0.9828 0.8095
ARIMA-LSTM 0.3458 0.9044 0.8095 0.2428 0.9695 0.8541 0.8541 0.9847 0.8215
SG-ARIMA-LSTM 0.2767 0.9397 0.8076 0.2001 0.9724 0.8809 0.0815 0.9958 0.8929
C-A-L 0.2536 0.9503 0.8095 0.1945 0.9719 0.8214 0.0739 0.9972 0.9167
SG-C-A-L 0.2314 0.9565 0.8214 0.1575 0.9823 0.8809 0.0634 0.9978 0.8809

Riverview

ARIMA 0.4375 0.8132 0.8106 0.1708 0.9474 0.8038 0.1137 0.9570 0.7973
LSTM 0.3212 0.8510 0.8108 0.1537 0.9400 0.8108 0.0982 0.9705 0.8273
ARIMA-LSTM 0.2874 0.8767 0.8378 0.1314 0.9706 0.9595 0.0558 0.9934 0.9189
SG-ARIMA-LSTM 0.2262 0.9392 0.8243 0.1051 0.9763 0.8243 0.05639 0.9904 0.8108
C-A-L 0.2597 0.9483 0.8738 0.1157 0.9751 0.9324 0.05674 0.9933 0.9459
SG-C-A-L 0.2165 0.9602 0.8919 0.09214 0.9846 0.9324 0.05664 0.9939 0.9189

Note: C-A-L = CEEMDAN-ARIMA-LSTM.
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Figure 16. The time series of observations and hybrid forecasting models for SPI prediction (Left) and their Taylor diagram plots at different
timescales (Right) for SPI-6, SPI-9, and SPI-12 of False Bay Park meteorological station.

According to the statistical metrics in Table 7 and the
Taylor diagram (see Figs. 11–16), the effectiveness of hy-
brid models that incorporate filter and signal decomposition
techniques (SG and CEEMDAN) in improving prediction ac-
curacy, particularly for drought forecasting, is highlighted.
These findings support other research (Taylan et al., 2021;
Elbeltagi et al., 2023; Rezaiy and Shabri, 2024), which high-
lights the superior accuracy of hybrid drought forecasting
models compared to individual models. For example, Taylan
et al. (2021) developed a hybrid model to forecast drought us-
ing precipitation data from Çanakkale, Gökçeada, and Boz-
caada stations between 1975 and 2010. The study found that
the hybrid models, which incorporated preprocessing tech-
niques, performed better. Elbeltagi et al. (2023) utilized a hy-
brid model to estimate the SPI for 3, 6, and 12-month drought
periods from 2000 to 2019. The findings demonstrated that
RSS-M5P model yielded the most precise SPI predictions,
with MAE = 0.497, RMSE = 0.682, RAE = 81.88, RRSE
= 87.22, and R2

= 0.507 for SPI-3; MAE = 0.452, RMSE
= 0.717, RAE = 69.76, RRSE = 85.24, and R2

= 0.402 for
SPI-6 and MAE = 0.294, RMSE = 0.377, RAE = 55.79,
RRSE= 59.57, and R2

= 0.783 for SPI-12. The models em-
ployed to analyse drought in Jaisalmer, Rajasthan, yielded

the most effective results, exceeding those of RSS-RF and
RSS-RT. Additionally, Rezaiy and Shabri (2024b) introduced
a W-EEMD-ARIMA model for drought prediction. This
model utilises monthly precipitation data from Kabul span-
ning 1970 to 2019. The R2 value was 0.9946, the MAPE
was 18.9674, the RMSE was 0.0736, the MAE was 0.0575,
and the SPI-12 validation indicated that our model was ac-
curate. The outcomes obtained here surpassed those of the
ARIMA, Wavelet-ARIMA, and EEMD-ARIMA models in
terms of raw data (RMSE: 0.0858, MAE: 0.0660, MAPE:
24.5411, R2: 0.9925), analytical method (MAE: 0.1874,
MAPE: 60.0220, R2: 0.9361), and maximum likelihood esti-
mation (RMSE: 0.1002, MAE: 0.0691, MAPE: 23.7122, R2:
0.9898). During the SPI-3, SPI-6, and SPI-9 periods, our hy-
brid model consistently outperformed other models. Our pro-
posed hybrid model surpasses ARIMA, Wavelet-ARIMA,
and EEMD-ARIMA in enhancing the precision of drought
predictions, as evidenced by this data.

In terms of term forecasting accuracy, the hybrid models,
particularly SG-CEEMDAN-ARIMA-LSTM, consistently
outperformed all other models across all SPI timescales, ac-
cording to a comparison of this study’s results with previous
research. All models successfully reproduced the original
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SPI time series. With the range values of RMSE of 0.1453–
0.2314 for SPI-6, 0.0921–0.1631 for SPI-9, and 0.0349–
0.07416 for SPI-12, and the highest R2 values of 0.9565–
0.9839 for SPI-6, 0.9836–0.9892 for SPI-9, and 0.9939–
0.9990 for SPI-12 across all timescales, the SG-CEEMDAN-
ARIMA-LSTM model showed the most proficiency in cap-
turing extreme values and rapid transitions. That these meth-
ods, when combined, improve the models’ capacity to rep-
resent drought in the uMkhanyakude district, both in the
short and long term, is supported by the data. This makes
the models far better at foretelling when droughts will oc-
cur. In light of the foregoing, our study provides useful in-
formation regarding the use of the hybrid SG-CEEMDAN-
ARIMA-LSTM model to the forecasting of meteorological
droughts.

5 Conclusions

This study examined the trends in the Standardised Precip-
itation Index (SPI) over different timescales (SPI-6, SPI-
9, and SPI-12) utilising the Mann-Kendall (MK), modified
Mann-Kendall (MMK) test, and the innovative trend anal-
ysis (ITA) protocol. The monthly rainfall data from the
uMkhanyakude district, South Africa, covering the years
1980 to 2023, was used for these calculations. Rainfall has
been trending downward at a 95 % confidence level, ac-
cording to the MK and MMK tests. The ITA results sup-
ported these findings as well, revealing a declining trend
with most of the data points going below the 1 : 1 line. To
predict SPI data over various timescales, this research em-
ployed LSTM and autoregressive integrated moving aver-
age (ARIMA) models. Researchers used a hybrid model that
combines the SG-CEEMDAN processing method with the
ARIMA-LSTM model to enhance the precision of SPI fore-
casts. They also used SG filtering and full ensemble em-
pirical mode decomposition with adaptive noise (CEEM-
DAN). Figures 11–16 and Table 4 display the results of a
thorough comparison examination of the forecast outcomes.
The results revealed that the inclusion of preprocessing
techniques (SG filtering, CEEMDAN, and SG-CEEMDAN)
significantly improved the model performance in forecast-
ing SPI at all timescales. The performance consistently in-
creased with higher timescales, potentially due to lower
noise levels. Across different timescales, the SG and CEEM-
DAN combined hybrid model consistently outperformed
the individual models. Notably, the CEEMDAN-ARIMA-
LSTM model outperformed the SG-ARIMA-LSTM model
at all timescales, while the SG-CEEMDAN-ARIMA-LSTM
model consistently exhibited the lowest root mean square er-
ror (RMSE) values across all indices. These results demon-
strate that combining SG-CEEMDAN with ARIMA-LSTM
has the potential to significantly enhance the accuracy of me-
teorological drought forecasting.

The principal conclusion of the study is that ARIMA-
LSTM, in conjunction with SG, CEEMDAN, and SG-
CEEMDAN, serves as an effective instrument for early warn-
ing systems and meteorological drought prediction. The pro-
posed methodology in this paper serves as a framework
for modeling complex meteorological phenomena such as
drought, which is particularly pertinent in semi-arid regions.
Enhancing model performance and creating efficient models
for weather forecasting can be achieved through techniques
that address data noise, nonlinearity, and nonstationarity. To
enhance water resource management, make informed deci-
sions regarding agricultural output and tourism management,
and establish regulations, it is essential to acquire extremely
effective models for drought prediction. The omission of
exogenous environmental variables in the SG-CEEMDAN-
ARIMA-LSTM model represents a significant drawback of
the study. The model’s forecast accuracy and real-world ap-
plication are limited by disregarding these exogenous ef-
fects, which can substantially affect drought conditions. Fu-
ture studies should aim to include external variables, includ-
ing temperature, soil moisture, vegetation indices, and an-
thropogenic factors such as land use and water management,
to improve the model’s efficacy. This integration would pro-
vide a more thorough comprehension of drought dynamics,
hence improving the model’s accuracy and dependability in
drought predictions. Additionally, it is essential to investigate
alternate decomposition methods, such as enhanced CEEM-
DAN (iCEEMDAN), which may provide significant insights.

Data availability. The dataset and python codes used in this study
can be provided upon request to the corresponding author.

Author contributions. Supervision: SR, SM, NM; writing – origi-
nal draft: SS, NM; writing – review & editing: SR, SM; data acqui-
sition: SS, NM. All authors have read and agreed to the published
version of the paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. The authors bear the ultimate responsibil-
ity for providing appropriate place names. Views expressed in the
text are those of the authors and do not necessarily reflect the views
of the publisher.

Review statement. This paper was edited by Leonard K. Amekudzi
and reviewed by three anonymous referees.

Nat. Hazards Earth Syst. Sci., 26, 315–342, 2026 https://doi.org/10.5194/nhess-26-315-2026



S. Sibiya et al.: Meteorological Drought Trend Analysis and Forecasting 341

References

Alashan, S.: An improved version of innovative trend analyses,
Arab. J. Geosci., 11, 50, https://doi.org/10.1007/s12517-018-
3393-x, 2018.

Alashan, S.: Combination of modified Mann-Kendall method
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Öztopal, A. and Şen, Z.: Innovative trend methodology applications
to precipitation records in Turkey, Water Resour. Manag., 31,
727–737, https://doi.org/10.1007/s11269-016-1343-5, 2017.

Rezaiy, R. and Shabri, A.: An innovative hybrid W-EEMD-ARIMA
model for drought forecasting using the standardized precipi-
tation index, Nat. Hazards, https://doi.org/10.1007/s11069-024-
06758-z, 2024b.

Savitzky, A. and Golay, M. J. E.: Smoothing and differentiation of
data by simplified least squares procedures, Anal. Chem., 36,
1627–1639, https://doi.org/10.1021/ac60214a047, 1964.
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