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Abstract. The latest generation of convection-permitting re-
analyses, capable of representing atmospheric processes at
small spatial scales ( <4km), is crucial for studying the
temporal and spatial evolution of phenomena such as con-
vective storms and orographic precipitation. Given the long
(37 years) and continuous availability of the MERIDA HRES
convection-permitting reanalysis datasets over Italy, this
study employs its precipitation fields to investigate hourly
precipitation patterns, extremes, and quantify their increase
over time in this region. Precipitation clusters are extracted
from hourly reanalysis fields as spatially coherent structures,
yielding approximately 160000 of them per year, each one
characterized by intensity and shape indicators. The result-
ing HOPSS-X (HOurly Precipitation Spatial Structures and
eXtremes) dataset enables a detailed climatological analysis
of hourly precipitation frequency, intensity, and spatial ex-
tent across different seasons and regions. The Hourly Precip-
itation Extremes (HPEs) are selected from this dataset bas-
ing on the mean of local annual maxima in hourly precipi-
tation (RX1hour). Significant upward trends in HPEs occur-
rences (+20 %/ +30 %) are present during summer in sev-
eral Alpine and Prealpine regions, as well as in parts of Cal-
abria. In autumn, similar signals (+30 % / 440 %) emerge in
the southern Apennines and in coastal and maritime areas,
including the eastern Ligurian coast, eastern Sardinia, the
southern Adriatic Sea, and the Ionian Sea. These spatial and
seasonal patterns align with regions where convective pro-
cesses predominantly drive intense, localised precipitation,
potentially amplified by climate change. While these findings

should be considered in light of known limitations of reanal-
ysis products, such as spatial mismatches with observations
and temporal inhomogeneities, multiple independent obser-
vational studies support the increase in HPEs during sum-
mer and autumn in specific areas. Moreover, the methodol-
ogy presented here is broadly applicable in any region with
access to long-term convection-permitting reanalysis data. In
summary, the purpose of this study is to offer a contribu-
tion to the ongoing discussion on precipitation extremes and
trends in Italy and provide guidance for leveraging reanal-
ysis data to enhance infrastructure resilience to short-lived,
intense precipitation events.

1 Introduction

As global temperatures continue to rise due to climate change
(IPCC, 2023), significant alterations in large-scale precipita-
tion patterns are being observed across the globe (Allan et
al., 2020). These shifts can trigger even more pronounced
changes at the local level (Fowler et al., 2021), particularly in
the frequency, intensity, and timing of extreme precipitation.
The physical reason for these changes lies in the Clausius-
Clapeyron thermodynamic relationship (Hardwick Jones et
al., 2010), which describes how a warmer atmosphere can
hold more water vapour. Moreover, the rising ocean temper-
ature observed in recent decades (Garcia-Soto et al., 2021)
provides more moisture to fill the atmospheric column. Cli-
mate change produces however contrasting effects: some re-

Published by Copernicus Publications on behalf of the European Geosciences Union.



280 F. Cavalleri et al.: Hourly Precipitation Patterns and Extremization over Italy

gions may experience drier conditions, while others may see
more intense and frequent rainfall (Zaitchik et al., 2023).
Both drying and wetting regions may experience changes in
extreme precipitation (Donat et al., 2017). The thermody-
namic effects tend to produce a relatively uniform increase
in precipitation extremes, but dynamic contributions (such
as orography, coastal interaction, and changes in weather
regimes) can modulate these changes regionally, leading to
local variations in the intensity and frequency of extremes
(Pfahl et al., 2017). Moreover, such extremes are generally
more pronounced at shorter timescales, such as hourly, than
at longer durations (Lenderink et al., 2017).

The Mediterranean region, in particular, is recognised as a
climate change hotspot, undergoing warming at a faster rate
than many other parts of the world (Lionello and Scaras-
cia, 2018). The increasing sea surface temperatures in the
Mediterranean contribute to more frequent heavy precipita-
tion events (Senatore et al., 2025), in particular at the hourly
timescale (Peleg et al., 2025). Within this region, Italy is
especially vulnerable to short-lived extreme precipitation.
(Giovannini et al., 2021; Donnini et al., 2023; Padulano et al.,
2019), largely due to its complex orography and the dynam-
ical interaction between moist air masses, mountain chains,
and coastal interface (Stocchi and Davolio, 2017; Mazzoglio
et al., 2022). All these aspects highlight the need to investi-
gate whether and to what extent climate change is impacting
the distribution of hourly precipitation extremes over Italy.

Research on precipitation trends in Italy has been exten-
sive over the past decades, revealing a complex spatial and
temporal variability shaped by regional climatic dynamics,
topography, and large-scale atmospheric patterns. Several re-
gional investigations based on observational datasets con-
tributed to this discussion, emphasising pronounced local dif-
ferences. Caloiero et al. (2018, 2021) reported significant
negative trends for the period 1951-2016 in both seasonal
and annual total rainfall in Southern Italy and inland cen-
tral regions, especially in winter and autumn. Similarly, in
Trentino-Alto Adige (north-eastern Italy), Brugnara et al.
(2012) observed a decrease in annual precipitation on the
order of 1.0 %—1.5 % per decade in the period 1922-2009,
with spring and winter contributing most to the decline. In the
same study, the number of wet days significantly decreased
east of the Adige Valley (north-western Italy), while trends in
extremes (90th, 95th, 99th percentiles) were weak and mostly
non-significant. In Tuscany (west-central Italy), Bartolini et
al. (2014) found a declining trend in annual rainfall and wet
days for the period 1955-2007, largely due to winter and
spring decreases. In Calabria (southern Italy), Brunetti et al.
(2012), using a high-resolution daily dataset for the period
1923-2006, detected negative trends in mean precipitation
intensity (total precipitation per wet day), a reduction in daily
precipitation amounts, and a decreased frequency of high-
intensity daily events (95th and 99th percentiles). Similarly,
Pavan et al. (2017), analysing the Archivio Climatologico
per I'Italia Centro Settentrionale (ARCIS), a high-resolution
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gridded precipitation dataset for north-central Italy, for the
period 1961-2015, found widespread summer declines in
most regions — driven by fewer rainy days, longer dry spells,
and reduced daily intensity — except in the northern Alpine
area, where both total and intense precipitation increased. Fi-
nally, Capozzi et al. (2023) analysed multiple stations across
Campania (south-western Italy) for the period 2002-2021
and found an increasing trend in both precipitation intensity
and the frequency of heavy rainfall events during autumn,
particularly in the northern part of the region and in moun-
tainous areas.

Collectively, these studies show a complex and hetero-
geneous evolution of precipitation regimes in Italy. How-
ever, they are based on daily datasets, whereas climate
change impacts on precipitation are most evident at sub-
daily timescales (Lenderink et al., 2017). Sub-daily obser-
vational datasets usually cover limited regions and rarely
provide long-term, nationwide coverage (Blenkinsop et al.,
2018; Morbidelli et al., 2025). In Italy, the observational net-
work is extensive and of high quality, but since the 1990s
it has been managed at the regional level, resulting in some
heterogeneity among measurement networks. The GRidded
Italian Precipitation Hourly Observations (GRIPHO) dataset
(Fantini, 2019) was developed to homogenize hourly obser-
vations, but its limited temporal coverage (2001-2016) re-
stricts its usefulness for long-term trend analyses. Conse-
quently, sub-daily precipitation trends can be investigated
using observations available for specific regions only. Re-
gional analyses show a delay of sub-daily rainfall extremes
toward autumn and increasing event magnitude in Emilia-
Romagna (Persiano et al., 2020), while southern Italy ex-
hibits rising hourly extremes whose significance decreases
at longer durations (Avino et al., 2024). Mazzoglio et al.
(2020) developed the I12-RED dataset (1916-2022), show-
ing nationwide increases in annual maxima for short dura-
tions (especially 1h). In contrast, longer durations, such as
24 h aggregations, exhibit more spatially variable trends, in-
cluding some negative tendencies (Mazzoglio et al., 2025).
These findings underscore the need for innovative method-
ologies to effectively capture and interpret evolving patterns
in hourly extreme precipitation across Italy, beyond observa-
tions alone. This is also because rain gauge networks often
lack the spatial density needed to capture highly localised
events, such as convective storms, unless they occur directly
over a station, and consequently they tend to underestimate
extremes by about 20 % (Schroeer et al., 2018). Conversely,
radar and satellite-based precipitation estimates, while offer-
ing broader spatial coverage, can exhibit substantial positive
or negative biases, particularly during high-intensity events
or in areas affected by terrain-induced signal blocking (Wang
et al., 2021). For this reason, convection-permitting reanal-
yses, blending model outputs with observational data, have
proven to be valuable tools for investigating precipitation ex-
tremes and assessing their potential trends over time (Dallan
et al., 2024; Poschlod et al., 2021).
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In this context, this study aims to contribute to the ongo-
ing scientific discussion on precipitation trends and extremes
by proposing a methodological framework for an informed
use of convection-permitting reanalysis data to characterise
hourly precipitation structures across space and seasons,
and to investigate the potential precipitation extremization
over time. To this end, the hourly precipitation fields from
the convection-permitting MEteorological Reanalysis Italian
DAtaset — High RESolution, MERIDA HRES (Viterbo et al.,
2024) are employed, covering the 37 year period from 1986
to 2022 at about a 4 km resolution.

Even if convection-permitting reanalyses represent a state-
of-the-art, precipitation remains one of the most challeng-
ing variables to simulate, and it is not directly assimilated by
the reanalyses, but instead derived from assimilated variables
such as temperature, pressure, and humidity. These limita-
tions often lead to some discrepancies between simulated and
observed precipitation fields at the smaller scales, especially
during summer, mainly due to precipitation positioning un-
certainties (Cavalleri et al., 2024). This issue also arises from
the inherently chaotic nature of the atmosphere (Hohenegger
and Schir, 2007) together with limitations in the data assim-
ilation frequency of the driving global reanalyses (Kalnay et
al., 2024) (e.g., ERAS assimilates data every 12 h, much less
than typical timescales of convection). Assimilated observa-
tions remain the same regardless of the investigated temporal
scale. Temporal aggregation (e.g. daily) can sometimes hide
deficiencies at a smaller scale. At the sub-daily scale (e.g.
hourly) precipitation fields no longer benefit from this ef-
fect, making deviations from observations more noticeable.
Another relevant aspect is the potential divergence in pre-
cipitation trends between observations and reanalyses. Dis-
crepancies in trends of annual precipitation totals were high-
lighted in global reanalyses (Lussana et al., 2024) and Italian
regional ones (Cavalleri et al., 2024).

In light of these limitations, an approach based on pre-
cipitation structures has been adopted to mitigate position-
ing uncertainties issues. In particular, in this work spa-
tially continuous hourly precipitation structures and asso-
ciated extremes are identified through the use of a cluster-
ing technique. Clustering methods are commonly employed
to identify individual precipitation structures from gridded
datasets, particularly in the context of radar-based obser-
vations and operational verification. These techniques typi-
cally rely on threshold-based object identification combined
with clustering algorithms to isolate spatially coherent pre-
cipitation structures. For example, Wernli et al. (2008) de-
scribe an object-based verification method (SAL) that re-
quires the identification of distinct precipitation objects using
a threshold proportional to the domain’s maximum precipi-
tation value, a strategy also discussed by Davis et al. (2006).
Marzban and Sandgathe (2006) provide a broader review of
clustering approaches applied to precipitation fields, show-
ing how cluster analysis can be used to define features or ob-
jects in both forecast and observation fields, enabling verifi-
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cation. Moreover, clustering methods have also been applied
to classify sub-daily rainfall episodes according to their in-
ternal structure (Sottile et al., 2022). Several methods have
also been developed to track precipitation events over time
(Chang et al., 2016; White et al., 2017; Li et al., 2020). In
this study, however, a straightforward approach to identify
precipitation structures is proposed, not accounting for the
temporal evolution of the precipitation events, focusing on
each hourly time step independently.

The paper is organized as follows. Section 2 introduces
the MERIDA HRES reanalysis, detailing the reasons for
its selection along with its inherent strengths and limita-
tions, and describes the methodology adopted to construct
the HOurly Precipitation Spatial Structures and Xtremes
(HOPSS-X) dataset, publicly available on Zenodo at https:
//bit.ly/HOPSS-X (last access: 8 October 2025). Section 3
outlines the main results, focusing on the spatial distribu-
tion and seasonal patterns of hourly precipitation structures,
with particular emphasis on the extremes subset and related
trends. Section 4 discusses these findings in the context of
previous studies on precipitation trends and known limita-
tions of reanalysis data. Finally, Sect. 5 summarises the key
conclusions and outlines potential directions for future re-
search.

2 Data and Methods

2.1 MERIDA HRES, a convection-permitting
reanalysis

This study employs the hourly precipitation fields from
MERIDA HRES (Viterbo et al., 2024), a reanalysis devel-
oped for the Italian domain, resolving explicit convection
to better represent localised and intense precipitation events.
MERIDA HRES, developed by Ricerca sul Sistema Ener-
getico (RSE), employs the Weather Research and Forecast-
ing (WRF) model to dynamically downscale over Italy the
global ERAS reanalysis (Hersbach et al., 2020) to a higher-
resolution horizontal grid of approximately 4 km and 56 ver-
tical levels, with increased vertical resolution in the lower
atmosphere (levels located at 10, 35, 70, 100, 130, 180, 250,
325, 415, and 500 m). It is driven by large-scale initial and
boundary conditions from ERAS5 and applies a spectral nudg-
ing technique (von Storch et al., 2000) to constrain synoptic-
scale features while filtering out smaller-scale perturbations
that could introduce spurious signals. Additionally, SYNOP
surface air temperature observations are assimilated through
an observational nudging technique (Liu et al., 2012; Bo-
nanno et al., 2019; Viterbo et al., 2024), further enhanc-
ing the representation of regional atmospheric characteris-
tics. The dataset spans the period from 1986 to 2022, but is
constantly updated with about a two-year lag. The analyses
for this work are calculated over the domain 5.84 to 18.96° E
and 35.37 to 48.25° N, centred on the Italian peninsula, for
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the period 1986-2022, enclosing the full period of availabil-
ity for MERIDA HRES at the time of writing.

The specific choice of MERIDA HRES reanalysis is sup-
ported by previous validation studies. In particular, its pre-
cipitation fields have been assessed from climatological to
daily (Cavalleri et al., 2024; Viterbo et al., 2024) and hourly
(Giordani et al., 2025) timescales, also comparing with other
convection-permitting reanalyses for the same area, high-
lighting both its strengths and limitations. The effective hor-
izontal spatial resolution of MERIDA HRES has been eval-
uated in previous works using a wavelet spectral decompo-
sition approach (see Cavalleri et al., 2024, Fig. 2), which
demonstrated its ability to represent convective precipita-
tion, although it may not fully resolve the smallest structures.
Moreover, MERIDA HRES shows good agreement with both
gridded and station-based observations, and demonstrates
overall temporal stability when compared with homogenised
observational datasets (Cavalleri et al., 2024). These quali-
ties make it an appropriate product for hourly precipitation
trend analyses. Other convection-permitting models avail-
able for Italy, such as MOLOCH (Capecchi et al., 2023) and
SPHERA (Cerenzia et al., 2022; Giordani et al., 2023), have
been found to generally produce larger deviations from ob-
served precipitation trends than MERIDA HRES (Cavalleri
et al., 2024), while results from VHR-REA_IT (Raffa et al.,
2021) indicate a slightly weaker agreement with daily-scale
observations (Cavalleri et al., 2024). These aspects may limit
the applicability of other products in this study.

Nevertheless, these studies also indicate that MERIDA
HRES occasionally overestimates rainfall amounts during
summer in specific regions, including the Po Valley—Adriatic
interface, parts of the Calabrian mountains, southern Apu-
lia, and the southern portions of the main islands, with local
deviations from observations reaching 10-30 mm. However,
since these regions are generally dry during summer, the rel-
ative error can be substantial, up to locally doubling the ob-
served rainfall amounts in July and August (Cavalleri et al.,
2024). Moreover, the trend in the annual differences between
MERIDA HRES and homogenised observations precipita-
tion totals is on average 4 % per decade, meaning that this
fraction of annual precipitation increase might be attributable
to a deviation from observations rather than a true climate
signal (Cavalleri et al., 2024). This mismatch is not uniform
across the territory (see the supplementary material of Cav-
alleri et al., 2024). The knowledge of these specific inhomo-
geneities of MERIDA HRES will be taken into account when
discussing the results of this work (Sect. 4).

2.2 Precipitation structures detection and
characterization

The first step involves identifying coherent Hourly Precip-
itation Spatial Structure (HPSSs) in each MERIDA HRES
hourly field. To account for seasonal and regional differ-
ences, thresholds are calculated for each grid point of the re-
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analysis and separately for each season by taking the median
(i.e., 50th percentile) of precipitation values exceeding 1 mm.
After that, a spatial smoothing filter with a 20 km radius is ap-
plied to reduce noise and improve spatial consistency across
neighbouring grid cells (Fig. 1).

Precipitation values below 1 mmh~! are excluded to dis-
tinguish meaningful precipitation from background noise. In-
deed, below 1 mmh~! the spatial variability is very high,
whereas it significantly decreases above it, indicating that
precipitation becomes more spatially coherent and represen-
tative of broader areas (Lussana et al., 2023). During the first
stages of this work, a fixed 1 mm threshold was applied to
detect HPSS. Nevertheless, the choice of a uniform thresh-
old across the entire domain and for all seasons did not ad-
equately account for the spatial and seasonal variability of
precipitation regimes, leading to the merging of multiple dis-
tinct convective cells into a single, large cluster that did not
reflect the localised nature of HPSSs. This mismatch between
the actual physical scale of convective systems and the scale
of the detected clusters motivated the choice of a percentile-
based threshold. In determining the most suitable smoothing
radius, several values were tested. Radii larger than 20 km
excessively smoothed areas with higher thresholds, reduc-
ing the ability to resolve regions of intense precipitation.
Conversely, smaller radii retained too much noise, limiting
the effectiveness of the thresholds in isolating coherent pre-
cipitation structures. Moreover, 20 km approximately corre-
sponds to the boundary between the meso-f and meso-y at-
mospheric scales (Thunis and Bornstein, 1996), below which
convective phenomena typically occur.

Contiguous grid points exceeding the thresholds (Fig. 1)
are treated as an individual cluster. To reduce noise, clus-
ters composed of fewer than five grid points are ex-
cluded: approximately 95 % of them exhibit intensities be-
low 10mmh~"', and therefore have a negligible impact on
the focus of this study on extreme precipitation. Each re-
tained cluster is identified as an HPSS. More specifically,
in this work HPSSs are spatially continuous hourly precip-
itation structures, identifying detectable and relevant pre-
cipitation with reference to a given area and season. Fig-
ure 2 shows an example of the procedure used to identify
HPSSs, applied to the hourly precipitation field of 20 Oc-
tober 2011 at 13:00:00 UTC. On that day, intense precipita-
tion affected Rome and the surrounding areas, causing sev-
eral floods throughout the city and widespread power outages
(Bonanno et al., 2019).

Each identified HPSS is characterized by a set of features
describing its date and time of occurrence, position, and to-
tal and maximum precipitation intensity, as summarized in
Table 1. The maximum linear spatial extent of a HPSS is de-
fined as the major axis of its minimum enclosing ellipse —
i.e., the smallest ellipse that fully contains all grid points be-
longing to the structure (Wernli et al., 2008). The choice of
characterizing the shape of an HPSS by its maximum linear
extent is motivated by the fact that atmospheric spatial scales
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Figure 1. Seasonal maps of the median of hourly precipitation values above 1 mm, used as thresholds.
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Figure 2. Example of HPSS detection process for the day 20 October 2011, 13:00:00 UTC. (a) Raw precipitation field, (b) after applying
the threshold and the clustering (each border colour represents a different cluster), (¢) minimum enclosing ellipses (in red) identify retained

structures.

are generally defined in linear terms (Thunis and Bornstein,
1996). Moreover, deriving this feature from the minimum en-
closing ellipse allows for a consistent characterization of pre-
cipitation structure having very different shapes. Additional
features are included in the complete database available only,
while only features used in this study are reported here.
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2.3 Structure-based statistics

The HPSS detection methodology described above pro-
duced the HOPSS-X dataset, which can be analysed through
the set of features associated with each HPSS. First,
the seasonal distributions of mean precipitation intensity
(tot_tp/area), peak precipitation intensity (tp_max),
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Table 1. The set of feature recorded for each HPSS which are relevant for this study.

Feature name in the database

Description and/or definition

Unit of measure

time Date and hour of the field where the HPSS is detected -

tp_max Maximum hourly precipitation value within the HPSS mmh~!
lon_max Longitude where tp_max occurs degrees
lat_max Latitude where t p_max occurs degrees
cdm_lon Intensity-weighted average longitude of the HPSS degrees
cdm_lat Intensity-weighted average latitude of the HPSS degrees
tot_tp Hourly precipitation summed over all points composing the HPSS ~ mmh~!
area Number of pixels composing the HPSS -

max_extent Length of the major axis of the HPSS minimum enclosing ellipse ~ degrees

and maximum linear spatial extent (max_extent) of all
HPPS are examined. Then, spatial patterns of hourly precip-
itation are investigated. To account for location uncertainty
inherent in reanalysis data and avoid misleading point-scale
analyses, statistics are not evaluated at individual grid points
but within a 0.5° moving window (& 156 grid points) with
0.1° increments in both latitude and longitude. In each of
these windows, the Number of occurrences (N) of HPSSs
whose centre of mass (cdm_lat, cdm_lon) fell inside the
window is counted. Because the sliding distance (0.1°) is
smaller than the window size (0.5°), a single HPSS is counted
in multiple adjacent windows, ensuring smooth spatial transi-
tions. Then, some features are averaged among all the HPSSs
falling in a window. Specifically, the Average Mean Intensity
(Meanlnt), Average Peak Intensity (PeakInt), and Average
Maximum Linear Spatial Extent (SpatExtent) are obtained
by averaging tot_tp/area, tp_max and max_extent
respectively, as detailed in Table 2.

To help disentangle the respective contributions of the
hourly spatial density of HPSSs and their frequency of occur-
rence, alternative metrics to N — such as the frequency of wet
hours (i.e., the percentage of hours with at least one structure
detected in the window) — were also evaluated (Fig. S1 in the
Supplement). These analyses produced very similar results,
and N is preferred as the indicator of HPSS occurrence due
to its easier interpretability.

Both MeanInt and PeaklInt are expressed in millimetres
per hour (mmh™"), but they reflect different aspects of pre-
cipitation intensity. MeanlInt represents the average intensity
across all grid points of all HPSSs within a given window,
while PeaklInt refers to the mean of the maximum intensities
recorded at a single point for each HPSS. SpatExtent indi-
cates the average maximum linear extent of the HPSSs within
the same window. Finally, these values are cumulated (for N)
or averaged (for Meanlnt, PeakInt, SpatExtent) over time to
obtain characteristic values for each location. Statistics on
the full dataset, including climatologies of these indicators,
are presented in Sect. 3.1.
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2.4 Hourly extreme precipitation sub-setting

After characterising the properties of the HPSSs, the Hourly
Precipitation Extremes (HPEs) are selected from the full
dataset. The selection criterion is based on the annual max-
ima of hourly precipitation (RX1hour), calculated for each
grid point and each year. The resulting time series of 37
RX1hour values are then averaged throughout the period
19862022 to derive a threshold value for each cell of the
grid, representing the average RX1lhour at that location.
Higher threshold values were found to excessively restrict
the statistical sample of extremes, whereas lower values, al-
though expanding the subset of identified structures, would
have blurred the distinction between HPEs, as defined by Ex-
treme Value Theory (Coles, 2001), and more moderate high-
quantile HPSSs, thereby reducing the interpretability of the
results.

This approach is similar to the methodology used by
Lavers et al. (2025), who introduced the Extreme Rain Mul-
tiplier to classify extreme daily precipitation events. Lavers
et al. (2025) employ ERAS and consider daily precipitation
accumulations to compute the mean of the annual daily max-
ima (RX1day). The daily accumulation is the most appropri-
ate timescale considering the coarse spatial scale of ERAS
(Chinita et al., 2023; Raffa et al., 2021). In contrast, this study
uses a regional convection-permitting reanalysis, which pro-
vides a more accurate representation of hourly precipitation
and associated extremes. Therefore, it is possible to define
a threshold based on hourly maxima (RX1hour). As the last
step, the same Gaussian filter as specified in Sect. 2.2 is ap-
plied to smooth the average RX1hour field and reduce local-
scale noise (Fig. 3).

Finally, a HPSS is identified as HPE if its max-
imum precipitation value (tp_max) exceeds the aver-
age RXlhour value in the position where it occurred
(lat_max, lon_max). The selected HPEs can be inter-
preted as extreme precipitation events within a fixed-area
(Eulerian) framework, which is more suitable for this study
since no tracking of individual events is performed, unlike
in a Lagrangian approach that follows storm structures over
time (Ignaccolo and De Michele, 2010). In support of this
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Table 2. Description of indicators used for the analyses and their units of measure, where t = 1, ..., T indicates the different hours within
the period over which the indicator is computed (typically a season), and m =1, ..., M denotes the different HPSSs occurring at a timestep

within a given spatial window.

Mathematical description Unit of Measure

Short Name  Indicator Full Name

N Number of HPSS occurrences

MeanInt Average Mean Intensity

PeaklInt Average Peak Intensity

SpatExtent ~ Average Maximum Linear Spatial Extent

Zthl Z%:l 1 number
%Zzw:lﬁznﬁf:ltot_tpm/aream mmh~!
1T 1 M —
T 2i1 3 2om=1 EP_Maxy, mmh~!
1 ZT 1 ZM K

T 2ut=1 2om=1Max_extent, m

-

r35

N w
w o

N)
o
(y/ww) JnoyTxy abesane

=
(6]

Figure 3. 1986-2022 average of the annual maxima of hourly pre-
cipitation (RX1hour), after the application of a 20 km Gaussian fil-
ter.

interpretation, in Sect. 3.3 the local persistence of HPEs
is investigated, showing that HPSSs exceeding the extreme
threshold are typically short-lived, rarely persisting for more
than one hour, thus aligning with the common use of “ex-
treme event” terminology.

2.5 Hourly Precipitation Extremes statistics and trends

Extreme statistics are calculated within the subset of HPSSs
classified as HPEs with the same methodology described in
Sect. 2.3. Subsequently, the trends of the yearly series of
N, MeanlInt, PeakInt and SpatExtent are computed (results
shown in Sect. 3.2). The similarity between N and wet-hour
frequency (see Fig. S1) also applies to HPEs and their re-
spective trends (figures not shown). Within each moving win-
dow, the trend analysis is performed using the Theil-Sen
slope estimator (Sen, 1968), suitable for non-parametric data.
The statistical significance of the trends is evaluated using
the Mann—Kendall test (Mann, 1945; McLeod, 2005). To
control for the multiple testing problem across the spatial
domain, the False Discovery Rate (FDR) correction is ap-
plied (Benjamini and Hochberg, 1995; Wilks, 2006). Since
the FDR procedure tends to be conservative in the pres-
ence of spatial correlation, approximately correct global re-
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sults can be obtained by setting the FDR threshold to twice
the desired global significance level (Wilks, 2016, 2019).
Therefore, results are considered statistically significant if
the FDR-corrected p-value is below 0.1, corresponding to
a global significance level of 0.05. The results of the trend
analysis are presented in the Results Sect. 3.3.

3 Results
3.1 Hourly precipitation structures analyses

Before focusing on extremes, the overall patterns of HPSSs
across the dataset are first examined, providing a broader cli-
matological context to facilitate the interpretation of the sub-
sequent results on extreme precipitation. The dataset consists
of approximately 160 000 precipitation HPSSs per year over
the period 1986-2022. The interannual variability, calculated
as the relative standard deviation of the annual number of
HPSSs, is around 10 %. At the seasonal level, the highest
number of HPSSs is generally recorded in autumn (SON),
accounting for 29 % of the total, while summer (JJA) shows
the lowest share, with 21 %. Winter (DJF) and spring (MAM)
contribute similarly, representing 26 % and 24 % of the total
number of HPSSs, respectively. The fraction of hours show-
ing no identified HPSSs across the entire domain varies sea-
sonally, with approximately 11 % for winter, 12 % for spring,
9 % for summer, and 7 % for autumn. The number of HPSSs
detected per hour follows the distribution of Fig. 4.

The maximum number of HPSSs recorded in a single
hour is 136, observed at 14:00 UTC on 11 June 1992, as
a result of a widespread low-pressure area associated with
large quasi-stationary cyclone influencing the whole Italian
peninsula. Intensity and spatial scale distributions exhibit
markedly skewed shapes, with a sharp peak at low values fol-
lowed by an approximately exponential decay as their mag-
nitude increases (Fig. 5).

During summer and autumn, HPSSs tend to exhibit higher
median values and heavier tails for both mean precipitation
intensity (tot_tp/area, Fig. 5a) and peak precipitation
intensity (tp_max, Fig. 5b). The maximum linear spatial
extent (max_extent, Fig. 5¢) distributions show less pro-
nounced seasonal variation, with only summer displaying
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Figure 4. Distribution of the number of HPSSs recorded per hour.
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(24 x 90 x 37). Bin width: 5.

HPSSs with a slightly smaller extent. A small percentage of
HPSSs fall outside the range of the distributions plotted in
Fig. 5: 0.22 % of HPSSs exhibit a mean precipitation inten-
sity greater than 15mmh~!, 0.96 % have a peak precipita-
tion intensity above 40 mmh~!, and 2.98 % show a maxi-
mum linear extent larger than 100 km. According to defini-
tions of atmospheric scales in the scientific literature (Thu-
nis and Bornstein, 1996), phenomena with lifetimes ranging
from about one hour to one day — such as isolated thunder-
storms or groups of storms — typically occur within the lower
portion of the mesoscale, with spatial extents from approxi-
mately 2 km up to 200 km. The results of HPSSs distribution
analysis confirm that, at the hourly timescale, they generally
fall within the meso-y scale (2-20 km), with only occasional
instances exhibiting larger spatial extents. This result is con-
sistent with the fact that precipitation structures are extracted
from a 4km convection-permitting reanalysis precipitation
field, which is capable of representing convection (Cavalleri
et al., 2024) even if it may not fully resolve it at the smaller
scales. This finding is particularly relevant for applications
that require knowledge of the typical spatial scales of hourly
precipitation, such as spatial analysis of precipitation fields
(Fortin et al., 2018; Van Hyfte et al., 2023). In general, struc-
tures with smaller spatial extents tend to correspond to higher
intensities (see Fig. S2 in the Supplement). Overall, the ma-
jority of HPSSs concentrate on low values of intensity and
small spatial extents. This underscores the need to isolate the
most extreme HPSSs to better understand their specific char-
acteristics.

HPSSs are analysed using the methodology described in
Sect. 2.3, resulting in seasonal maps of N (Fig. 6), Spa-
tExtent (Fig. 7), MeanInt (Fig. 8) and PeakInt (not shown,
see Supplement). Higher values in a given area indicate
a greater number of HPSSs with their centre of mass lo-
cated within that region (for N), or larger values of MeanlInt,
PeakInt and SpatExtent for those same HPSSs. HPSSs may
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extend beyond the boundaries of the window in which they
are counted, since the averaging considers only the HPSSs
whose centre of mass lies within the window. However,
most of the recorded HPSSs are well delimited in a small
space (Fig. 5c). It is also important to emphasise that these
means are computed from distributions that are strongly
right-skewed, as shown in Fig. 5. Consequently, the values
presented in the maps should be interpreted with some cau-
tion. While they may not fully capture the absolute charac-
teristics of typical HPSS intensity and spatial extent, they are
informative when used to explore spatial and seasonal pat-
terns and their relative differences.

The spatial distribution of N (Fig. 6) shows that, in sum-
mer, most of the HPSSs occur in the Prealpine regions, with
secondary hotspots along parts of the Apennines, and almost
no HPSSs over the sea. In autumn and winter, the areas with
high N shift toward coastal and offshore areas, particularly
along the Tyrrhenian and Ligurian seas. During spring, the
Prealps and Apennines are again prominent, although the oc-
currences are generally lower than in summer. The Po Valley
and Prealpine region exhibit very low N during the winter
season. These seasonal patterns reflect the typical climatol-
ogy of convective precipitation in Italy, which tends to be
more frequent during the warmer months and over mountain-
ous regions and coastal areas (Lombardo and Bitting, 2024).

The seasonal maps of SpatExtent (Fig. 7) reveal that dur-
ing summer HPSSs have generally smaller extents, with typ-
ical average SpatExtent ranging between 10 and 20 km, es-
pecially along coastal areas and in southern Italy, and from
20 to 30 km in the other Italian areas. This is consistent with
the convective nature of summer precipitation. Spring shows
slightly larger SpatExtent, but still below 30 km over the Pre-
alps and in southern regions, where autumn also displays
similar values, despite showing larger ones over plain areas
in the north and central Italy. In contrast, winter is charac-
terised by generally larger HPSSs, especially over the Po
Plain, where average SpatExtent commonly reach 50 km, ex-
ceeding values registered over the Alps and Apennines. This
broader extent reflects the influence of large-scale synoptic
systems typical of wintertime precipitations over Italy. Over-
all, these patterns highlight a seasonal modulation in SpatEx-
tent, reflecting the shift from localised convective activity in
summer to more widespread, synoptic-driven precipitation in
autumn and winter.

The spatial distribution of MeanlInt (Fig. 8) highlights
summer as the season with the highest average intensities, of-
ten exceeding 5 mmh~! with maxima of more than 7 mmh~!
in some areas along the Adriatic coast, such as Calabria, the
Tyrrenian sea, southeastern parts of the islands and south-
ern Apulia. In winter, intensities generally range between
2 and 3mmh~! over most of the peninsula, dropping be-
low 2mmh~! along the Alpine arc and exceeding this value
only slightly in some southern areas and along the Tyrrhe-
nian coast. During spring, values between 3 and 4 mmh~!
are widespread throughout Italy, except for isolated spots
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Figure 6. Seasonal map of N occurring within the 0.5 x 0.5 windows (step size 0.1), averaged over the period 1986-2022.

over 4mmh~! in similar areas to those observed in sum-
mer. In autumn, slightly higher intensities, ranging from 4
to Smmh~!, cover most of the country, while lower values
persist mostly in the Prealpine and Alpine regions. Intensities
above Smmh~! are found mainly along the coastal areas and
over the surrounding seas.

The seasonal patterns of PeaklInt (Fig. S3 in the Supple-
ment) closely resemble those for MeanlInt, although PeaklInt
are generally higher. PeakInt increases from winter values
ranging between 2 and 7mmh~! to well over 15mmh™!

https://doi.org/10.5194/nhess-26-279-2026

during summer, with spring and autumn showing intermedi-
ate values. Notably, in autumn, PeakInt exceeding 10 mm h~!
are mostly confined to coastal areas and the surrounding seas.
In summer, Peaklnt surpasses 17 mmh~! in the same regions
characterised by high summer MeanlInt (Fig. 8).

Since it is not straightforward to determine the extent to
which the seasonal differences in those maps are influenced
by the use of seasonally varying thresholds for HPSS selec-
tion, a set of corresponding figures derived from the dataset
built using a fixed 1 mm threshold is provided in the Supple-
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ment (Figs. S4-S7). These figures display very similar spatial
patterns, albeit with generally lower intensity values. This
suggests that the observed seasonal differences primarily re-
flect the signal of the model rather than artefacts introduced
by the clustering method. Overall, these results are consistent
with the established climatology of the region (Crespi et al.,
2018; Giordani et al., 2025). However, while MeanInt and
PeakInt seasonal maps appropriately reflect higher values
during the autumn and summer seasons, they also show some
regions with unrealistically high precipitation. This overes-
timation of summer precipitation has been previously doc-
umented through comparisons with observational precipita-
tion fields in earlier studies (Cavalleri et al., 2024) (Giordani
et al., 2025). This issue will be examined in greater detail in
the Discussion Sect. 4.

3.2 Hourly Precipitation Extremes analyses

A subset of the dataset HOPSS-X is obtained (according to
Sect. 2.4) to gain insight into the HPEs patterns and tenden-
cies. This resulted in approximately 4.8 % HPSSs selected
as HPEs, corresponding to an average of around 7800 HPEs
per year across the whole domain, with a notable interannual
variability of about 30 %. Most HPEs are selected from sum-
mer (11 % of all summer HPSSs) and autumn (7 %), while
only a marginal fraction is identified in spring (1.5 %) and
winter (0.5 %). This seasonal breakdown results from the
combined effect of higher thresholds applied for HPSS iden-
tification during summer (Fig. 1), which selected relatively
intense HPSSs even within the full dataset for that season,
and the use of a fixed threshold (average RX1hour) for HPE
selection throughout the year. The greater number of HPEs
in summer and autumn is also consistent with the expectation
that hourly precipitation more effectively captures extremes
and their associated impacts at smaller spatial scales, such as
convective storms and other meso-y scale phenomena, par-
ticularly prevalent during the warmer seasons. Consequently,
Sect. 3.2 and 3.3 focus exclusively on summer and autumn
precipitation extremes.

A comparison between the distributions of intensity and
spatial scale within the HPEs subset (Fig. 9) and those from
the full dataset (Fig. 5) confirms that the applied filter ef-
fectively excludes a substantial number of HPSSs from the
lower tails of the distributions. This effect is quite obvious
for the peak intensity, which is explicitly used as the filtering
parameter. However, it also significantly influences the distri-
bution of mean intensity, suggesting that, on average, HPEs
are not only more intense locally but also tend to have higher
mean values. Moreover, the spatial extent distributions are
shifted towards larger values. Summarising, the applied fil-
tering leads to the exclusion of a large fraction of small and
weak HPSSs, not meaningful for the HPEs analysis.
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The climatological seasonal maps of N within the HPEs
subset (Fig. 10) highlights clear seasonal differences between
summer and autumn.

In summer, HPEs occur predominantly over mountainous
areas, particularly the Alps and some spots along the Apen-
nines, and Calabria, reaching 20 to 30 HPEs per 0.5° grid
window per year. In contrast, coastal and marine regions dis-
play a significantly lower N, often fewer than 3 per window
per year. In autumn, N is substantially less compared to sum-
mer. However, a clear spatial shift emerges: mountain areas
experience fewer to none HPEs, while coastal and marine
zones see some, with over 7 occurrences per window per year
observed along many stretches of coastline. The seasonal
redistribution is likely driven by the persistence of warm
sea surface conditions beneath a cooler atmosphere, creat-
ing conditions favourable to convection and sustaining in-
tense precipitation activity into autumn. (Cheng et al., 2022;
Argiieso et al., 2024).

Marked differences between summer and autumn also
emerge in terms of SpatExtent (Fig. 11). In summer, HPEs
rarely exceed 50km in size, except in limited areas such as
Friuli (North-East) and South Switzerland, and remain well
below 20 km across much of southern Italy and the islands.
Conversely, in autumn, significantly larger HPEs (exceeding
100 km in spatial extent) are frequently observed. Spatial ex-
tents remain small mainly in the south, along the Adriatic
coast, and over the islands. This suggests that HPEs are typ-
ically small, convective systems during summer across most
of the Italian territory, and during autumn along the south-
ern coastlines. In contrast, in northern Italy and neighbouring
regions, autumn HPEs are more frequently associated with
larger-scale systems.

The climatological maps for the MeanInt and the PeakInt
of HPEs are provided in the Supplement (Figs. S8 and S9).
Overall, their spatial patterns closely resemble those ob-
served for the full dataset, though with generally higher val-
ues, due to the filtering, which also reduces the seasonal dif-
ferences. Specifically, the MeanInt range from approximately
5to 15mmh™!, increasing from the Alpine regions to south-
ern Italy for both seasons, while the PeakInt range from 20
up to S0 mm h~!, with the lowest values again found over the
Alps and the highest values concentrated in the same hotspots
highlighted before, such as the southern Apulia.

3.3 Hourly Precipitation Extremes trends

Finally, given the context provided by the previous results, a
trend analysis within the subset of HPEs is conducted, fol-
lowing the methodology outlined in Sect. 2.5. Significant
trends in the number of HPEs occurrences (N) during sum-
mer and autumn are detected (Fig. 12). Trends are expressed
as percentages relative to the seasonal and local mean val-
ues of N (i.e., normalised by the values shown in Fig. 10).
For example, a 10 % trend in Fig. 12 means a decadal in-
crease of 10 % in N, indicating that, on average in that area,
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1986-2022.

approximately 30 % more HPEs occur at the end of the
study period compared to its beginning. Overall, a general
increase in HPEs occurrences is detected across the penin-
sula, even though only some regions exhibit statistically sig-
nificant trends.

In summer, a significant increase of approximately 20 %
to 30 % per decade is detected across several Alpine and Pre-
alpine regions, and in some parts of Calabria. In autumn, sig-
nificant trends are primarily concentrated over the southern
Apennines, and various coastal and sea areas, such as Lig-
urian eastern coast, the eastern coast of Sardinia, the southern
Adriatic Sea, and the Ionian Sea. Individual series of some
selected areas (specifically, inside colored 0.5 degree boxes
of Fig. 12) are extracted to visualise the HPEs annual occur-
rences along with the detected trends (Fig. 13). In summer,
trends ranging from 10 % to 40 %, depending on the region,
correspond to an increase of 2 to 6 HPEs per decade. In au-
tumn, comparable percentage changes are associated with a
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smaller increase of 1 to 2 HPEs per decade. In both seasons,
some regions also display positive trends that are not statis-
tically significant (e.g., boxes 4 and 8 in Figs. 12 and 13),
likely due to high interannual variability that dominates the
signal.

Trends are also computed for the SpatExtent, Meanlnt,
and PeakInt of HPEs (see Figs. S10-S12 in the Supplement,
respectively). Overall, only weak trends (below 10% per
decade) are observed, primarily over land points in summer
and over some marine areas in autumn, showing spatial het-
erogeneity in the sign of the signal with a slight tendency
toward increasing intensities and decreasing spatial scales.
However, none of these trends is statistically significant at
any location. This suggests that the detected increase in N
is potentially driven by an underlying intensification of ex-
treme precipitation that, while not statistically significant in
Meanlnt or Peaklnt, results in more frequent exceedances.
Owing to its lower noise sensitivity, the metric N allows these
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changes to emerge more clearly and to reach statistical sig-
nificance.

Trend estimates could be biased by potential double-
counting of temporally persistent HPEs, as the analysis is
conducted at hourly resolution. To address this, an additional
analysis quantifies HPEs persistence, defined as the number
of consecutive hours during which an HPSS exceeds the lo-
cal average RX1hour threshold within the same window.

Results (Fig. 14) show that persistence exceeds one hour
only marginally in most regions, with average persistence
values above 1.5 h limited to a few localised areas expecially
during autumn, such as the Ligurian Gulf, where persistent
mesoscale convective systems are more common (Cassola et
al., 2016), and in parts of eastern Sardinia and southeast-
ern Sicily, where prolonged convective activity can occur
(Forestieri et al., 2018). These findings support the overall
temporal isolation of most HPEs and suggest that the impact
of double-counting on trend estimates remains limited.
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4 Discussion

In understanding the results of this work, it is important to
underline the uncertainties in analysing signals from hourly
precipitation as represented by MERIDA HRES. First, while
this 4 km model can explicitly represent convective processes
(Viterbo et al., 2024; Cavalleri et al., 2024), it may not fully
resolve all aspects of these phenomena. For the purposes of
this study, however, the HPSS isolated from MERIDA HRES
hourly fields resulted consistent with the spatial scales un-
der investigation (Thunis and Bornstein, 1996) and allows
for a characterization of hourly precipitation patterns, even
if some sub-grid aspects of convection may not be fully cap-
tured.

Then, an overestimation of summer precipitation is
present, which has also been documented in previous stud-
ies (Cavalleri et al., 2024). The areas exhibiting very high
HPSS intensities, as shown in Fig. 8, are highly localised
and often occur near the coasts. This behaviour may be asso-
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Figure 14. Seasonal (JJA and SON) maps of the average HPEs persistence (expressed in hours) occurring within the 0.5 x 0.5 window (step

size 0.1).

ciated with a less accurate estimation of skin temperature at
the land-sea interface due to the interpolation of skin temper-
ature from the coarse ERAS domain to the finer-resolution
MERIDA HRES domain. Overestimation of skin tempera-
ture may occur at certain points along the coastlines, leading
to high values of latent heat flux. In particular meteorologi-
cal conditions associated with convective instability, this may
exacerbate convection, resulting in an overestimation of pre-
cipitation amounts.

Nat. Hazards Earth Syst. Sci., 26, 279-297, 2026

However, it is important to notice that these biases are tem-
porally stable and do not coincide spatially with the areas
showing significant HPSs increases. Another aspect to con-
sider is the deviation of MERIDA HRES annual precipita-
tion trends from observational ones (Cavalleri et al., 2024).
The average deviation over Italy has been quantified at ap-
proximately 4 % for decade. This value is not negligible, but
relatively small if compared to the 10 % to 40 % increases
found in HPEs occurrences. Althought these quantities are
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not directly comparable, as they refer to different precipi-
tation characteristics and temporal scales, they qualitatively
provide the potential magnitude of bias, indicating that the
impact on the detected HPE trends is limited. Moreover, the
regions where this discrepancy is more marked (see supple-
mentary material of Cavalleri et al., 2024) do not overlap
with those in which significant trends in HPEs occurrences
have been found. In principle, such biases could have masked
decreasing trends in those areas; however, the overall spatial
pattern suggests that this scenario is highly unlikely.

The increasing trends in hourly HPEs identified in this
study for the period 1986-2022 align with several previ-
ous research efforts based on both sub-daily and daily ex-
treme precipitation observations across Italy and its specific
regions. In particular, Mazzoglio et al. (2025) reported pos-
itive trends in the same Prealpine area analyzed here, based
on the RX1hour index, largely attributed to summer convec-
tive activity. At a regional scale, Dallan et al. (2022) exam-
ined extreme precipitation trends from 1991 to 2020 by sep-
arating storm intensity and occurrence frequency, attributing
the observed increases in the Eastern Alps to a growing pro-
portion of sub-daily convective storms during summer. Sim-
ilarly, Persiano et al. (2020) found a generalized increase in
both the frequency and intensity of sub-daily extreme rain-
fall over the Apennines in Emilia-Romagna (northern Italy)
for the 1961-2015 period. Moreover, Pavan et al. (2017), us-
ing a daily gridded precipitation dataset for the north and
central Italy covering 1961-2015, reported significant posi-
tive trends in the 90th percentile of daily precipitation across
most of the Alpine area and the northern Po Valley during
summer, also supporting the idea that summer and autumn
are the seasons most affected by precipitation changes. In au-
tumn, some of the hourly HPEs trends detected in this study
agree with findings by Capozzi et al. (2023), who, based on
daily station data for the 2002-2021 period, documented an
increasing tendency in both the intensity and frequency of
heavy rainfall events in inland Campania. Additionally, the
autumnal trends over the central Prealps are in line with the
results of Pavan et al. (2017), who also reported significant
increases in daily precipitation extremes over the Alps dur-
ing autumn. Some of these studies adopt percentile-based
definitions of extremes; although not directly comparable to
Rx1hour in absolute terms, they are nonetheless consistent in
documenting a strengthening of intense precipitation across
Italy. This kind of local evidence provides an important ob-
servational context that supports the reliability of some of
the signals identified through the present reanalysis-based
approach.

5 Conclusions
This study employs hourly precipitation fields from the

convection-permitting MERIDA-HRES reanalysis to inves-
tigate the characteristics of hourly precipitation spatial struc-

https://doi.org/10.5194/nhess-26-279-2026

tures, with a focus on the extremes and their temporal evo-
lution over the period 1986-2022. This approach yields a
twofold outcome. First, it enables the construction of the
HOPSS-X dataset, an archive in which nearly 6 million pre-
cipitation structures are described by a set of intensity and
spatial characteristics. Second, a method is proposed to fa-
cilitate the description of hourly precipitation patterns, and,
by isolating the most extreme subset, to detect statistically
significant trends in the occurrence of hourly extremes.

In summer, increasing trends in HPEs occurrences are de-
tected over several Alpine and Prealpine regions as well as
in parts of Calabria. In autumn, the most prominent trends
emerged over the southern Apennines, over the central Pre-
alps, and several maritime regions, including Ligurian east-
ern coast, the eastern coast of Sardinia, the southern Adriatic
Sea, and the Ionian Sea.

The results obtained in this work represent an additional
perspective within the ongoing and complex debate on pre-
cipitation trends in Italy, even with full awareness of some
of the limitations of reanalysis datasets. Spatial uncertainty
of MERIDA HRES reanalysis was addressed through a
structure-based approach, which allowed the identification
and subsequent spatial aggregation of HPSSs using mov-
ing windows, with the intent of reducing the impact of spa-
tial misplacement errors. The results were also interpreted in
light of some known and documented local biases of the re-
analysis, such as the systematic — thought constant — overes-
timation of convective precipitation in some areas and local
deviations between modelled and observed trends at longer
timescales. The areas where statistically significant trends in
the occurrence of HPEs are detected generally did not over-
lap with these of such inconsistencies, supporting the robust-
ness of the results.

The comparison with previous works on precipitation
trends and extremes, based on observational data at both
daily and sub-daily timescales, supports the robustness of the
results presented in this work. In particular, the consistency
observed across different studies strengthens the evidence of
increasing occurrences of HPEs over specific regions of Italy
during summer and autumn.

Future developments may involve leveraging the dataset
HOPSS-X to explore additional characteristics of hourly pre-
cipitation structures, such as their dominant propagation di-
rection and potential associations with changes in large-scale
atmospheric circulation (Iacomino et al., 2025). In selected
regions, identifying and employing sufficiently long hourly
observational records could allow for a more direct valida-
tion of the detected trends. The approach could also be ex-
tended to identify precipitation structures of different nature
and duration, including synoptic-scale precipitation struc-
tures, by analysing longer accumulation periods (e.g., 3, 6,
12, or 24 h). Furthermore, similar datasets based on precipi-
tation structures could be produced using the same method-
ology to detect precipitation extremes in other regions where
convection-permitting reanalyses are available.
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